|
using | ssv = Eigen::Matrix< double, dimx, 1 > |
|
using | osv = Eigen::Matrix< double, dimy, 1 > |
|
using | ssv = Eigen::Matrix< double, dimx, 1 > |
|
using | osv = Eigen::Matrix< double, dimy, 1 > |
|
using | Mat = Eigen::Matrix< double, dimx, dimx > |
|
using | arrayDouble = std::array< double, nparts > |
|
using | arrayVec = std::array< ssv, nparts > |
|
using | arrayUInt = std::array< unsigned int, nparts > |
|
|
| svol_apf (const double &phi, const double &beta, const double &sigma) |
|
double | logMuEv (const ssv &x1) |
| Evaluates the log of mu. More...
|
|
ssv | propMu (const ssv &xtm1) |
| Evaluates the proposal distribution taking a Eigen::Matrix<double,dimx,1> from the previous time's state, and returning a state for the current time. More...
|
|
ssv | q1Samp (const osv &y1) |
| Samples from q1. More...
|
|
ssv | fSamp (const ssv &xtm1) |
| Samples from f. More...
|
|
double | logQ1Ev (const ssv &x1, const osv &y1) |
| Evaluates the log of q1. More...
|
|
double | logGEv (const osv &yt, const ssv &xt) |
| Evaluates the log of g. More...
|
|
| APF (const unsigned int &rs=1) |
| The constructor. More...
|
|
double | getLogCondLike () const |
| Get the latest log conditional likelihood. More...
|
|
std::vector< Mat > | getExpectations () const |
| return all stored expectations (taken with respect to $p(x_t|y_{1:t})$ More...
|
|
void | filter (const osv &data, const std::vector< std::function< const Mat(const ssv &)> > &fs=std::vector< std::function< const Mat(const ssv &)> >()) |
| Use a new datapoint to update the filtering distribution (or smoothing if pathLength > 0). More...
|
|
template<size_t nparts, size_t dimx, size_t dimy, typename resampT >
auto svol_apf< nparts, dimx, dimy, resampT >::fSamp |
( |
const ssv & |
xtm1 | ) |
|
|
virtual |
Samples from f.
- Parameters
-
xtm1 | a Eigen::Matrix<double,dimx,1> representing the previous time's state. |
- Returns
- a Eigen::Matrix<double,dimx,1> state sample for the current time.
Implements APF< nparts, dimx, dimy, resampT >.
template<size_t nparts, size_t dimx, size_t dimy, typename resampT >
double svol_apf< nparts, dimx, dimy, resampT >::logGEv |
( |
const osv & |
yt, |
|
|
const ssv & |
xt |
|
) |
| |
|
virtual |
Evaluates the log of g.
- Parameters
-
yt | a Eigen::Matrix<double,dimy,1> representing time t's data observation. |
xt | a Eigen::Matrix<double,dimx,1> representing time t's state. |
- Returns
- a double evaluation.
Implements APF< nparts, dimx, dimy, resampT >.
template<size_t nparts, size_t dimx, size_t dimy, typename resampT >
double svol_apf< nparts, dimx, dimy, resampT >::logMuEv |
( |
const ssv & |
x1 | ) |
|
|
virtual |
Evaluates the log of mu.
- Parameters
-
x1 | a Eigen::Matrix<double,dimx,1> representing time 1's state. |
- Returns
- a double evaluation.
Implements APF< nparts, dimx, dimy, resampT >.
template<size_t nparts, size_t dimx, size_t dimy, typename resampT >
double svol_apf< nparts, dimx, dimy, resampT >::logQ1Ev |
( |
const ssv & |
x1, |
|
|
const osv & |
y1 |
|
) |
| |
|
virtual |
Evaluates the log of q1.
- Parameters
-
x1 | a Eigen::Matrix<double,dimx,1> representing time 1's state. |
y1 | a Eigen::Matrix<double,dimy,1> representing time 1's data observation. |
- Returns
- a double evaluation.
Implements APF< nparts, dimx, dimy, resampT >.
template<size_t nparts, size_t dimx, size_t dimy, typename resampT >
auto svol_apf< nparts, dimx, dimy, resampT >::propMu |
( |
const ssv & |
xtm1 | ) |
|
|
virtual |
Evaluates the proposal distribution taking a Eigen::Matrix<double,dimx,1> from the previous time's state, and returning a state for the current time.
- Parameters
-
xtm1 | a Eigen::Matrix<double,dimx,1> representing the previous time's state. |
- Returns
- a Eigen::Matrix<double,dimx,1> representing a likely current time state, to be used by the observation density.
Implements APF< nparts, dimx, dimy, resampT >.
template<size_t nparts, size_t dimx, size_t dimy, typename resampT >
auto svol_apf< nparts, dimx, dimy, resampT >::q1Samp |
( |
const osv & |
y1 | ) |
|
|
virtual |
Samples from q1.
- Parameters
-
y1 | a Eigen::Matrix<double,dimy,1> representing time 1's data point. |
- Returns
- a Eigen::Matrix<double,dimx,1> sample for time 1's state.
Implements APF< nparts, dimx, dimy, resampT >.
The documentation for this class was generated from the following file: