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Abstract 

Consistent, large-scale operational monitoring of forest structure is essential for estimating forest-

related carbon emissions, analyzing forest degradation, and quantifying the effectiveness of forest 

restoration initiatives. The Global Ecosystem Dynamics Investigation (GEDI) lidar instrument onboard 

the International Space Station has been collecting unique data on vegetation structure since April 2019. 

Here, we employed global Landsat analysis-ready data to extrapolate GEDI footprint-level forest canopy 

height measurements, creating a 30m spatial resolution global forest canopy height map for the year 2019. 

The global forest height map was compared to the GEDI cross-validation data (RMSE = 6.6m; MAE = 

4.45m, R2 = 0.62) and available airborne lidar data (RMSE = 9.07m; MAE = 6.36m, R2 = 0.61). The 

demonstrated integration of GEDI data with time-series optical imagery is expected to enable 

multidecadal historic analysis and operational forward monitoring of forest structure and dynamics. Such 

capability is vital to support global climate and sustainable development initiatives. 
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1. Introduction  

Forests (defined here as wildland, managed, and planted tree cover) perform essential ecosystem 

functions that sustain the Earth climate and biosphere and provide a wide array of ecosystem services. 

Forest ecosystems are functioning as the largest terrestrial carbon storage (Dixon et al., 1994) and sink 

(Pan et al., 2011). Forest regrowth (natural restoration and tree plantations) is responsible for more than 

60% of the forest carbon sink (Pugh et al., 2019), while timber extraction and forest clearing for other 

land uses are among the largest sources of anthropogenic carbon emissions (Houghton, 1999). Forest 

restoration, avoiding forest conversion, and sustainable forest management are considered as cost-

effective natural climate solutions in stabilizing climate and preventing species extinction (Balmford et 

al., 2002; Gibson et al., 2011; Griscom et al., 2017).  

Spatially exhaustive, multitemporal data on global forest ecosystem structure are required for carbon 

accounting and parameterizing global-scale biogeochemistry, hydrology, biodiversity, and climate 

models. Global operational monitoring of forest structure is crucial for practical applications including 

carbon emissions and sequestration reporting, forest degradation assessment, and quantification of the 

effectiveness of forest restoration initiatives. Specifically, forest canopy height is used to estimate forest 

aboveground biomass and timber volume, to monitor the effects of forest degradation, to measure the 

success of forest restoration, and to model other key ecosystem variables such as primary production and 

biodiversity (Asner et al., 2012; Goetz & Dubayah, 2011). Traditionally, tree height has been measured in 

the field, and more recently, using Airborne Laser Scanning (ALS) systems. Both methods are expensive 

and impractical over large geographic extents. Satellite-based forest canopy height earth observation data 

have previously been limited to NASA GLAS (ICESat) and more recently to ATLAS (ICESat-2) lidar 

instruments (Lefsky, 2010; Simard et al., 2011; Popescu et al., 2018). However, these instruments are not 

optimized for vegetation mapping (Montesano et al., 2015; Hansen et al., 2016). 

The NASA Global Ecosystem Dynamics Investigation (GEDI) is a new spaceborne lidar instrument 

operating onboard the International Space Station (ISS) and collecting data since April 2019 (Dubayah et 
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al., 2020a). GEDI is a full waveform lidar specifically designed for measuring vegetation structure. GEDI 

data consist of footprint-based measurements collected between ~51.6°N and ~51.6°S globally (data 

coverage is limited by the ISS orbit inclination). The instrument provides an unprecedented sampling 

density of forest structural properties and is anticipated to sample 4% of the Earth’s land surface over a 

nominal two-year mission. The GEDI data are used to create a suite of vegetation structure and 

aboveground biomass products. The footprint-level vegetation canopy height and cover metrics for the 

first half year of GEDI observations (April-October 2019) are currently processed and available for 

analysis. Planned gridded products based solely on GEDI sample data will have a spatial resolution of at 

least 1km at the end of two years of observation. Standard GEDI products support core scientific 

objectives of the GEDI mission: estimation of aboveground biomass of tropical and temperate forests, 

modeling land surface carbon budgets and understanding the effects of vegetation structure on 

biodiversity (Dubayah et al., 2020a). 

Standard GEDI data products, however, have several limitations for practical applications. The 

footprint-level products represent a point sample of a limited portion of the land area, leaving much of the 

land surface without observations. GEDI’s transect sampling may not be suitable for targeting rare forest 

change events (i.e., selective logging), for practical implementation at local scale (e.g., within a logging 

concession), or tracking events through time. Integration of GEDI sample data with wall-to-wall global 

optical data time-series, e.g. from Landsat and Sentinel-2 satellites, enables the spatiotemporal 

extrapolation of GEDI information for consistent multidecadal monitoring of vegetation structure.  

The methodology for extrapolating lidar-based sampled forest structure and biomass data using wall-

to-wall optical remotely sensed imagery has been prototyped in different forest types and geographic 

extents. The GLAS-based canopy structure metrics and empirically derived footprint-level biomass 

measurements were extrapolated nationally (Chi et al., 2015), continentally (Baccini et al., 2008), and 

globally (Simard et al., 2011) using MODIS optical data. Landsat imagery was used to extrapolate 

GLAS-based forest canopy height (Hudak et al., 2002; Hansen et al., 2016) and biomass at local 

(Duncanson et al., 2010) and pan-tropical scales (Tyukavina et al., 2015). Integration of ALS and Landsat 
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data enabled the multidecadal analysis of forest extent and structure change at the national (Matasci et al., 

2018) and regional (Potapov et al., 2019) extents. The multitemporal Landsat data was found to be 

beneficial compared to other optical data sources for modeling forest structure properties (Lefsky et al., 

2001). Our earlier work (Tyukavina et al., 2015; Hansen et al., 2016; Potapov et al., 2019) demonstrated 

the importance of using Landsat-based land surface phenology metrics for forest structure modeling. 

Despite the earlier reports of optical data limitations for forest structure extrapolation (Donoghue & Watt, 

2006), the recent development of machine learning and time-series analysis has enabled accurate 

modeling of canopy height using optical data (Lang et al., 2019). 

Here, we introduce a medium resolution (30 meters per pixel) global map of forest canopy height for 

the year 2019 based on the integration of GEDI-derived vertical canopy structure metrics with Landsat 

multitemporal surface reflectance data. All GEDI data available to date (April-October 2019) were used 

for model calibration and uncertainty estimation. The optical multitemporal metrics were derived from 

Landsat analysis-ready data (Potapov et al., 2020). To quantify model uncertainty, we used set-aside 

GEDI reference data and ALS data collected over the USA, Mexico, the Democratic Republic of the 

Congo (DRC), and Australia. We also demonstrated the application of annual forest canopy height 

characterizations for multidecadal forest structure change assessment. The 2019 global forest canopy 

height map is available at https://glad.umd.edu/dataset/gedi/.    

2. Data 

2.1. GEDI canopy height metrics 

The GEDI Level 2 data include two products: GEDI L2A Elevation and Height Metrics and GEDI 

L2B Canopy Cover and Vertical Profile Metrics, available from the NASA/USGS Land Processes 

Distributed Active Archive Center (Dubayah et al., 2020b; 2020c). The data were collected between April 

18 and October 2, 2019. The data represent waveform return metrics for each 25m diameter GEDI 

footprint. For each footprint, we extracted a set of relative height (RH) metrics (RH75, RH90, RH95, and 

RH100) gridded to the Landsat 30m pixels. These data are based on the initial processing algorithms and 

contain six different versions of each RH metric corresponding to varying algorithm settings of 

https://glad.umd.edu/dataset/gedi/


5 
 

determining ground elevation from the original GEDI waveforms. The footprint data are provisionally 

geolocated and have expected positional errors of about 15-20m (standard deviation). 

2.2. ALS data 

Vegetation structure data collected using airborne lidar instruments (ALS) may be used as a proxy 

for field measurements (Lovell et al., 2003; White et al., 2016). We employed the ALS data as the 

“ground truth” to select the appropriate GEDI waveform metric for model calibration and for validation 

of modeled forest height. The ALS data used in our research were collected by the G-LiHT instrument 

over the United States and Mexico in 2013-2014 (Cook et al., 2013), by ALTM 3100 over the DRC in 

2014-2015 (Xu et al., 2017), and by Riegl LMS-Q560 over Australia in 2012-2017 (TERN AusCover, 

2020). The ALS data consist of transects and samples distributed to maximize the representation of 

different forest types. The source ALS observations (point cloud) were transformed into a canopy height 

model (CHM) which is calculated by taking the maximum above-ground height of the first return within 

each grid cell. The CHM spatial resolution was 1m (the USA, Mexico, and Australia) and 2m (the DRC). 

The CHM products were manually filtered to exclude buildings, power lines, and sensor artifacts. When 

the fine-resolution CHM data are aggregated to the 30m Landsat pixel grid, several statistics can be 

extracted from the distribution of CHM values per pixel (mean, median, percentiles, etc.) (Matasci et al., 

2018). The mean and median statistics do not allow discrimination between heterogeneous landscapes 

(e.g. savanna) and short closed-canopy forests, and the maximum value is prone to errors in lidar data. 

The 95th or 90th percentile values are preferable as they represent the top of the tree canopies while 

avoiding noise in lidar observations. Here, we defined the “forest canopy height” as the 90th percentile of 

ALS-based canopy height within the Landsat pixel, as in the approach of Potapov et al. (2019). 

2.3. Landsat analysis-ready data time-series 

The optical observation time-series are derived from Landsat analysis-ready data (ARD) (Potapov et 

al., 2020). To generate the ARD, we processed all Landsat Collection 1 (Tier 1) data from 1997 to 2019. 

For each Landsat image, we applied a set of decision tree models to obtain an observation quality layer 

that represents the per-pixel likelihood of observation contamination by clouds, haze, and cloud shadows. 
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Using MODIS surface reflectance data as a normalization target, we calibrated Landsat spectral data into 

normalized surface reflectance. Reflectance normalization reduced the effects of atmospheric scattering 

and surface anisotropy and ensured spatiotemporal consistency of spectral data. While the normalized 

surface reflectance is not equal to surface reflectance derived using atmospheric transfer models, it was 

shown to be closely related to MODIS Nadir BRDF-Adjusted Reflectance product (Potapov et al., 2020).  

Individual Landsat images were subsequently aggregated into 16-day composites using the 

observation quality layer to prioritize clear-sky images. Each 16-day ARD composite contains normalized 

surface reflectance values for blue, green, red, NIR, and two SWIR bands, brightness temperature, and the 

observation quality layer. The 16-day ARD data are publicly available globally for the 1997-2019 interval 

(https://glad.geog.umd.edu/ard/home). The ARD are stored in geographic coordinates with a spatial 

resolution of 0.00025° (approximately 30m at the Equator) and organized as a set of 1×1° tiles. The ARD 

tile format facilitates parallel data processing. 

3. Methods 

3.1 GEDI calibration and validation data 

We used a comparison of the “ground truth” forest canopy height, defined as the 90th percentile of 

ALS-based canopy height within the Landsat pixel with GEDI waveform return metrics to select the best 

GEDI metric as training data for the Landsat-based forest canopy height model. The following GEDI 

relative height (RH) metrics were examined: RH75, RH90, RH95, and RH100. We found that the RH95 

metric has the highest correlation with the 90th percentile of ALS-based canopy height per Landsat data 

pixel (Fig. 1; Table 1). The RH90 underestimated canopy height (mean difference 2.3m) and RH100 

overestimated (mean difference -2.7m) compared to RH95 (mean difference 0.7m). The RH95 metric was 

selected as the training variable to calibrate our global forest height model. 

https://glad.geog.umd.edu/ard/home
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Figure 1. Comparison of the 90th percentile ALS-based forest canopy height with GEDI RH90 (A), RH95 

(B), and RH100 (C) metrics. The ALS data are collected in the USA, Mexico, the DRC, and Australia. 

 

Table 1. Comparison statistics between the 90th percentile ALS-based forest canopy height and GEDI 

relative height (RH) metrics. The ALS data are collected in the USA, Mexico, the DRC, and Australia. 

 RH75 RH90 RH95 RH100 

Root-mean-square error (RMSE) 8.8  6.9 6.5 7.2 

Mean absolute error (MAE) 6.1 4.5 4.2 5.3 

Mean difference 5.1 2.3 0.7 -2.7 

Coefficient of determination (R2) 0.65 0.7 0.71 0.7 

 

To select the highest quality training and reference data, we filtered the available GEDI data. We 

selected only the observations collected in a power beam mode (that is, using full strength lasers), during 

the night (to limit the background noise effects of reflected solar radiation), with beam sensitivity ≥0.9 

(sensitivity is a measure of signal-to-noise related to the canopy cover through which a waveform has 

sufficient energy to penetrate to the ground; Hofton and Blair, 2019), and where the range of predicted 

ground elevations among the six algorithms was ≤2m. The data collected during the leaf-off season in 

temperate and boreal forests were excluded. This filtering resulted in 372 million GEDI samples suitable 
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for model calibration and cross-validation. We randomly separated the GEDI samples into training (90%) 

and cross-validation (10%) data sets.  

The distribution of filtered GEDI data was highly unequal (Fig. 2), ranging from just a few samples 

to nearly 200,000 samples per 1×1° Landsat ARD tile. The average number of GEDI samples per tile was 

31,000. The highest number of samples per tile was observed in the northern part of the GEDI data range 

due to the convergence of ISS ground tracks. Cloud cover significantly affected the number of high-

quality GEDI samples. GEDI data availability was relatively low (14,000 samples per tile on average) for 

tiles located within humid tropical forests. 

 

Figure 2. Number of GEDI samples per 1×1° Landsat ARD tile. Only high-quality samples are included 

(372 million samples total). 

3.2. Landsat multitemporal metrics 

Land surface phenology information in the form of multitemporal spectral metrics has an established 

use in operational forest mapping and monitoring at continental and global scales (Hansen et al., 2013) 

and has been shown to facilitate forest height modeling (Tyukavina et al., 2015; Hansen et al., 2016; 

Potapov et al., 2019). Here we created a set of multitemporal spectral metrics to serve as consistent land 

surface phenology inputs for global annual forest height mapping and to overcome the inter-annual and 

seasonal inconsistency of clear-sky data availability. The metrics were derived for each year from 

corresponding annual time-series of normalized surface reflectance (23 16-day composites per year). The 

per-pixel 16-day time-series data is composed only of clear-sky observations during the snow-free season. 
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To facilitate spatiotemporal consistency of the reflectance time-series, we implemented gap-filling of the 

missing 16-day data. First, we search for data collected during the four preceding years. If no clear-sky 

data exist, we applied a linear regression to estimate missing reflectance values. The resulting annual 

source data consist of the spectral reflectance of all bands, selected normalized difference indices, spectral 

variability vegetation index (SVVI, Coulter et al., 2016), and tasseled cap greenness (Crist, 1985). A 

small portion of land area within humid tropical forests was not processed due to persistent cloud cover. 

The annual multitemporal metrics represent a set of Landsat spectral reflectance distribution and 

phenology statistics extracted from time-series data. To generate the annual metrics, we ranked 

reflectance and index values and extracted minimum, maximum, and median values, averages between 

quartiles, and standard deviation per year. We also ranked observations by the value of a vegetation index 

and by surface temperature to extract spectral information corresponding to specific phenological stages, 

as described in Potapov et al. (2020). Phenology metrics that reflect salient points of phenology cycle 

(start, peak, end of the season; growing season average and total) were based on the normalized difference 

vegetation index (NDVI) time-series. The full list of multitemporal metrics used for forest height 

modeling is presented in Fig. 3. To incorporate spatial features, in addition to each spectral metric we 

calculated the focal average of the metric value within the 3×3-pixel kernel. 

Spectral metrics were supplemented by land surface elevation derived from the Shuttle Radar 

Topography Mission (SRTM) data (http://srtm.csi.cgiar.org). 

 

http://srtm.csi.cgiar.org/
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Figure 3. Landsat multitemporal metrics. The first set of metrics represents summary statistics calculated 

from 16-day observation time-series ranked by the spectral reflectance or index value. The ranking is 

performed independently for each spectral band or index. The second set of metrics represents summary 

statistics calculated from 16-day observations ranked by the value of corresponding variable.  The third 

set represents phenology metrics extracted from NDVI time-series. Q1, Q2, and Q3 stand for 1st, 2nd, 

and 3rd quartiles.  

3.3. Forest height model calibration 

We implemented the bagged regression trees ensemble method (Breiman et al., 1984; Breiman, 

1996) to model forest height. A regression tree is a machine learning algorithm that allows modeling of 

continuous variables. It has been successfully used for forest structure and biomass mapping at the 

regional to global scales (Peterson & Nelson, 2014; Ahmed et al., 2015; Tyukavina et al., 2015; Hansen et 
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al., 2016; Matasci et al., 2018; Potapov et al., 2019). To reduce model overfitting, ensemble learning 

methods are usually employed, either in the form of random forest (Matasci et al., 2018) or using bagging 

(bootstrap aggregation) techniques (Potapov et al., 2019). Here we implemented the latter as an ensemble 

of 25 regression trees each calibrated using an independent sample of training data; the map value 

represents the ensemble median. 

The value of the GEDI RH95 metric was used as a dependent variable for the regression tree model. 

A standard definition of a “tree” used for carbon accounting and reporting is woody vegetation with the 

potential to reach a minimum height of 2–5 meters (UNFCCC, 2006). Here, we define a tree as woody 

vegetation with the height of 3 meters or above. Consistent with this definition, we assigned the forest 

height for the GEDI samples with RH95 <3m to zero.  

Several issues of the original GEDI data affected model calibration. First, GEDI height data do not 

discriminate trees from buildings, confounding vegetation height mapping in urban areas. Second, we 

found an overestimation of vegetation height in areas of complex topography, especially on steep slopes 

(Fig. 4). To limit the adverse effects of these calibration data errors we used existing tree canopy cover 

products for the years 2000 and 2010 (Hansen et al., 2013) as a reference. For a training pixel that had no 

tree cover in both 2000 and 2010, we set the forest height value to zero if one of the following criteria was 

also true: (a) the pixel was classified as water according to the ARD quality layer; (b) the pixel was 

located within an urban area (defined using the global urban dataset of Florczyk et al., 2019) and the 

Landsat-based annual maximum NDVI value was below 0.5; (c) the SRTM elevation was above 1,500 m 

and the slope was above 6°; or (d) the Landsat-based annual maximum NDVI value was below 0.3. These 

empirical thresholds were defined by visual analysis of Landsat image composites, NDVI metrics and 

GEDI observations within tropical and temperate forests. The slope threshold was informed by Simard et 

al. (2011). 
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Figure 4. Visual examples of differences between GEDI RH95 and forest canopy height. The RH95 values 

are shown for each sample; samples with RH95 value <3m are shown as gray markers, and ≥3m as red 

markers. The Google Earth imagery serves as the background. A – Sand dunes in Saudi Arabia (Lat/Long 

52.33;20.85); B – Alpine grasslands, New Zealand (169.66;-44.57); C – Build-up area, Sydney, Australia 

(151.19;-33.93). 

The Landsat multitemporal metrics for the year 2019 and SRTM elevation served as independent 

variables for the regression tree model. In total, 546 metrics were used as independent variables for model 

calibration. 

A random set of training samples was extracted from each tile within the GEDI data range to 

calibrate the regression tree model. To address the disproportionate GEDI training data distribution (Fig. 

2), we implemented equal sampling, extracting 500 random samples from each tile. The sampling rate for 

non-forest training was 1.5 times higher than for forest training to reduce effect of RH95 overestimation 

errors. The sampling procedure was repeated to create 25 independent training sets for each tile. 
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For each ARD tile (1×1°), a separate regression tree ensemble model was calibrated using training 

data collected within the target and neighboring tiles. This “moving window” model calibration approach 

allowed us to create locally calibrated model while maintaining global map consistency. The neighboring 

tiles were defined using a 12° radius. The radius was selected via visual analysis of the products 

calibrated using different sets of neighboring tiles for test areas in temperate and tropical forests. In total, 

between 100,000 and 200,000 samples were used to calibrate each regression tree model. An ensemble of 

25 trees was calibrated and applied to each tile to create the year 2019 forest height map. Overall, we 

calibrated 11,860 individual ensemble models within the GEDI data range. The same approach was used 

to extrapolate mapping south of 52°S. 

The prototype for the boreal forest height map, where GEDI data were absent (north of 52°N), was 

calibrated using training data extracted from the modeled forest height between 40°N and 52°N. We used 

continental models for the boreal forest height mapping. Three models were calibrated separately for (a) 

North America, (b) Europe and West Siberia, and (c) East Siberia and the Far East. The calibration was 

performed in two steps. First, models calibrated using forest height data were applied within each boreal 

region. Initial model results overestimated forest height within wetland areas and tundra. To address this 

error, we collected additional non-forest training in areas where our provisional map disagreed with the 

year 2010 tree canopy cover (Hansen et al., 2013). Then, the final boreal models were calibrated using the 

40°N - 52°N training data augmented with non-forest training collected north of 52°N.  

3.4. Product validation 

A set-aside 10% of the GEDI observations served as the primary validation reference data set. The 

GEDI validation data are assumed to represent a probability sample within 52°N - 52°S extent. To 

address per-tile variation of global GEDI data distribution (Fig. 2), we extracted 1,000 random samples 

from each tile (all samples were used for the tiles with less than 1,000 samples). In total, we used 13.4 

million validation samples. The RH95 metric gridded to Landsat pixel served as the reference value.  

The ALS data available for selected areas in the USA, Mexico, the DRC, and Australia served as 

“ground truth” data. While these data do not represent a probability sample, they span different forest 
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biomes and represent diverse forest types and ages. The disadvantage of the ALS data is that they were 

primarily collected over forests, while treeless ecosystems and heterogeneous landscapes (savannas, 

agroforestry) were not covered by airborne observations (specifically, in Africa). To reduce the effect of 

time difference between the ALS data collection (2012-2017) and Landsat modelling (2019), we excluded 

all Landsat pixels where forest loss was detected after 2009 using data from Hansen et al., (2013). We 

addressed disproportionate allocation of ALS data between continents by selecting an equal number of 

random ALS samples from North America, Africa, and Australia (1.3 million samples total). The 90th 

percentile of CHM canopy height per Landsat pixel was used as the reference data for Landsat-modeled 

forest height map accuracy assessment. 

We quantified forest height model uncertainty by comparing GEDI RH95 value and ALS-derived 

canopy height with Landsat-derived products at the output pixel/grid scale within the Landsat-mapped 

forest class (i.e. pixels with modeled forest height ≥3m). Inclusion of non-forest areas from the Landsat-

based map would increase the overall agreement and improve the linear regression fit between validated 

map and reference datasets (due to a large number of agreement samples within non-forest land), but 

would obscure the relationship between the product and validation data within forests. To quantify forest 

detection accuracy, we transformed both reference and Landsat-based data into binary forest and non-

forest classes using a set of thresholds to define different forest classes (≥3m, ≥5m, ≥10m). Using the 

resulting confusion matrices, we calculated map accuracy statistics for each reference data source and 

each forest class threshold. We did not perform the validation of the boreal forest height product 

prototype. 

4. Results  

Our 2019 global forest canopy height map is provisional but demonstrates the potential of 

spaceborne lidar and optical data integration providing an overview of forest structure at 30m spatial 

resolution (Fig. 5 A). The full-resolution map is available at https://glad.umd.edu/dataset/gedi/. Map 

subsets demonstrate canopy height variation related to natural forest types, clearly separating tall Blue 

Ridge Mountain forests and lower canopy height forests of Piedmont Plateau in Maryland (Fig. 5 B); 

https://glad.umd.edu/dataset/gedi/
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shorter flooded swamp forests and taller terra firma forests in the DRC (Fig. 5 C); shorter dry deciduous 

lowland forests and taller primary mountain evergreen forests in Cambodia (Fig. 5 D). Land management 

practices also can be identified by forest height: taller natural forests and shorter suburban tree cover in 

the USA; low canopy cover of secondary forests affected by shifting cultivation in Africa; low canopy 

height of rubber plantations compared to remaining tall natural forests in Southeast Asia. 

 

Figure 5. Global forest cover height map for the year 2019 produced through the integration of GEDI 

data (April-October 2019) and multitemporal metrics derived from Landsat ARD (Potapov et al., 2020). 

A. Global map overview. Close-up examples illustrating different forest and land management types (B) 

in the USA (77°W;38.9°N); (C) in the Democratic Republic of the Congo (18.8°E;1°N) and (D) in 

Cambodia (105°E;13.2°N) 

The comparison of the Landsat-based forest height map with the GEDI RH95 metric from the 

validation set-aside data (Fig. 6 A) yielded RMSE = 6.6m; MAE = 4.45m, and R2 = 0.62. Mean 
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difference of -1.0m indicates that the Landsat-based product underestimates forest height compared to 

validation data. The distribution of differences between Landsat-modeled and validation GEDI RH95 

values for strata representing each integer height value from 3 to 40m (Fig. 7 A) shows good 

correspondence between the map and reference data except for canopy height underestimation within 

short (<7m) and tall (>30m) forests. 

 

Figure 6. A. Comparison of the GEDI RH95 for set-aside validation data set with Landsat-modeled forest 

canopy height product (between 52°N and 52°S). B. Comparison of the ALS-based “ground truth” forest 

canopy height with Landsat-modeled forest canopy height product. The ALS data are collected in the 

USA, Mexico, DRC, and Australia.  

The modeled forest height and GEDI RH95 metrics were converted to forest/non-forest classes using 

a set of tree height thresholds and accuracies of the resulting Landsat-based maps were quantified (Tab. 

2). Accuracy metrics show that using a higher threshold (≥10m) to define forests yielded higher Overall 

Accuracy with more balanced omission and commission errors (corresponding to User’s and Producer’s 

Accuracy metrics) compared to forest classes defined using lower height thresholds. The forest class 

defined using ≥3m threshold demonstrated substantial omission (reflected by the lower Producer’s 

accuracy) compared to GEDI validation data. The comparison of the Landsat-based model with set-aside 
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GEDI data was done without applying any filters to the reference data. Thus, GEDI RH95 artifacts (i.e. 

forest height commission on slopes and within urban areas) affected the data inter-comparison. 

 

Figure 7. Distribution of differences between Landsat-modeled forest height and (A) GEDI RH95 

reference data and (B) ALS forest height reference data per strata defined by each integer value of 

Landsat-based forest height map between 3 and 40m. Red dots represent strata mean. 

 

Table 2. Accuracy of binary forest maps derived from a Landsat-based forest height map validated with 

GEDI RH95 and ALS-based forest height reference data. Both Landsat-based map and reference data 

were converted into forest/non-forest classes using a set of tree height thresholds (3, 5 and 10m). UA and 

PA were computed for the forest class. 

 Reference: GEDI RH95 Reference: ALS forest height 
Forest class 
threshold 

Overall 
Accuracy 
(OA) 

User’s 
Accuracy 
(UA) 

Producer’s 
Accuracy 
(PA) 

OA UA PA 

≥3m 83.0 93.0 62.6 87.6 97.4 87.9 
≥5m 87.8 89.0 66.7 88.1 96.1 88.7 
≥10m 92.9 85.5 71.4 90.1 95.1 90.0 

 

The comparison of our global map with the ALS reference data (Fig. 6 B) reveals higher uncertainty 

of the Landsat-modeled product, with RMSE = 9.07m; MAE = 6.36m, R2 = 0.61. The mean difference of 
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-3.8m indicates underestimation of forest height by the model. The error distribution (Fig. 7 B) suggests 

that the mean underestimation was greater within short (3m) and tall forests (above 21m height). We 

should note that the comparison with the ALS data is affected by the disproportional sampling of tall 

forests by the airborne data. Specifically, in the DRC the ALS data were mostly collected over humid 

tropical forests and do not include savannas and dry miombo ecoregions, causing oversampling of tall 

forests in the aggregate reference dataset. The forest map validation (Tab. 2) yielded higher and balanced 

User’s and Producer’s accuracies of the forest class compared to GEDI reference data. The lower Overall 

Accuracy compared to GEDI reference data may be explained by the disproportionally high presence of 

forests in the ALS reference data. 

One of the most important applications of the Landsat-based forest canopy height model is annual 

forest structure monitoring, enabling multidecadal analysis of forest dynamics. To illustrate the forest 

height monitoring, we applied the Landsat-based forest height model derived for the year 2019 to 

multitemporal metrics for each year, 2000 to 2018, for selected test regions. Presented examples show 

that annual time-series of canopy height may be used to detect stand-replacement dynamics, as well as 

forest degradation and enhancement (Fig. 8 and 9). An example from the Brazilian state of Mato Grosso 

(Fig. 8 A) illustrates that forest canopy height time-series capture not only forest clearing, but also 

degradation caused by selective logging and forest recovery after selective logging and surface fires. A 

data subset within selective logging operations on the island of Borneo (Fig. 8 B and Fig 9 D) highlights 

forest height decrease as a result of selective tree removal followed by forest restoration. An example of 

intensive plantation forestry in Arkansas (Fig. 8 D and Fig 9 B) reflects forest height change in a 

planting/harvesting cycle. These examples illustrate the potential utility of annual maps of forest structure 

in capturing forest loss and gain. 
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Figure 8. Examples of forest canopy height time-series maps. Each map represents an RGB composite of 

forest canopy height layers from the years 2000 (red), 2010 (green), and 2019 (blue). The gray tones 

represent stable forest and non-forest areas and colors represent forest dynamics including 

unidirectional changes (forest height decrease or increase detected by 2010 or 2019) and rotation (when 

a land parcel experienced forest canopy height reduction in 2010 followed by increase by 2019, and the 

opposite). (A) Mato Grosso, Brazil (54.48°W;11.51°S); (B) Island of Borneo, border between Malaysia 

and Indonesia (113.44°E ;1.27°N); (C) Oregon, USA (123.03°W;43.38°N); and (D) Arkansas, USA 

(91.29°W;33.18°N).  
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Figure 9. Examples of forest canopy height time-series profiles for sample pixels representing different 

land use practices. (A) Clearcut in primary forest in Oregon, USA (123.7°W;43.69°N); (B) Pine 

plantation management in Arkansas, USA (91.71°W;33.4°N); (C) Oil palm plantation establishment after 

primary forest clearing on Borneo, Malaysia (113.38°E;2.51°N); (D) Selective logging in primary forest 

on Borneo, Malaysia (113.68°E;2.09°N). 

5. Discussion 

Medium spatial resolution optical satellite data, such as Landsat, do not allow direct measurement of 

forest canopy height. However, this variable can be modeled by relating reference structure measurements 

to information on forest species composition, age, and growing conditions that can be derived from 

multitemporal spectral data. The model accuracy depends on the availability and quality of reference data, 

spatiotemporal consistency of optical data, and the geographic extent of model application. Due to non-

linear relation between surface reflectance and vegetation structure, non-parametric machine learning 

tools are usually employed for vegetation structure modeling (Hansen et al., 2016; Matasci et al., 2018; 

Potapov et al., 2019; Lang et al., 2019). Models calibrated within a limited geographic extent (i.e., at the 

national scale as demonstrated by Lang et al., 2019) may be expected to have higher accuracy compared 

to global or continental models. To compare with our tile-based model, we have tested a single global 

Landsat-based forest height model calibrated using the random subset of training data. The global model 
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demonstrated higher uncertainty (RMSE 9.07m and 10.43m for tile-based and global models, 

respectively) and a lower correlation with the ALS reference data (R2 0.61 and 0.53, respectively). We 

noticed that the global model underestimated tree cover in heterogeneous landscapes (i.e. agroforestry) 

and within broadleaf temperate forests (Fig. 10). Overall, tree models run over large areas performed less 

well than more locally calibrated models. GEDI affords the possibility of spatially disaggregating model 

runs, overcoming the limitations of decision trees when employing large training data sets and complex 

tree models across large geographic extents.  

 

Figure 10. Examples of forest canopy height map created using tile-based (A, C) and global (B, D) 

models. (A, B) Agroforestry landscape in Shandong province, China (116.5°E;35.69°N); (C, D) Mixed 

forests in Missouri, USA (92.19°W;37.72°N). 

The availability of GEDI data per tile is the main limitation for the tile-based model calibration. 

High-accuracy model required training data to be representative for all forest types and age cohorts. 

However, in regions with frequent cloud cover (i.e., Central Africa, Fig. 11), the limited clear-sky 

observations within a tile may disproportionally represent one forest type (in Fig. 11, primary humid 

tropical forests), while other land cover types (in Fig. 11, settlements and shifting cultivation complex) 

may be omitted. Using the data from neighboring tiles allowed us to collect representative training 

samples. We expect that a complete set of two years of GEDI data will allow reducing the radius for the 

neighboring tile search which will improve the local model precision. 
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Figure 11. Available high quality GEDI 

observations (black dots) over the 1×1° tile area 

in the DRC (tile center at 25.5°E;0.5°N). Landsat 

clear-sky 2019 image composite serves as a 

background. 

 

Several issues still exist in GEDI data that affect model calibration. Slopes affect tree cover height 

estimation by both spaceborne (Lefsky et al., 2007) and airborne (Neight et al., 2014) lidar instruments. 

While GEDI footprint size reduces the effect of slopes on canopy height estimation (Dubayah et al., 

2020a), additional correction of the footprint-level data may be required to reduce canopy height 

uncertainty. Properties of GEDI measurements such as the pulse width may also result in large differences 

between GEDI RH metrics and true canopy height, particularly in sparse low stature vegetation. We 

found that forest canopy height is overestimated when using GEDI RH95 within temperate and 

subtropical mountain grasslands, e.g. in New Zealand and Lesotho, highlighting limitations of using a 

waveform energy quantile (GEDI RH95) as a direct proxy for ALS-based canopy height in areas of 

complex topography and sparse tree cover. The GEDI RH95 metric does not discriminate between the 

height of trees and man-made objects (buildings, power lines). Residual geolocation error of GEDI data 

affects calibration of the Landsat-based models and footprint level validations. Shifts of a few meters can 

result in several meters of height error. Subsequent versions of the GEDI data should achieve geolocation 

accuracies of <10m (standard deviation) and include improvements to canopy height estimation and 
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ground detection algorithms, an urban mask, and other refinements which will address some of these 

issues. 

We suppose that the observed underestimation of the Landsat-modeled forest height compared to the 

ALS data is a consequence of several factors. The medium resolution of Landsat, which is the primary 

mapping data source in the current study, has been shown to limit the ability to correctly map the height 

of tallest forests (Hansen et al., 2016). Texture metrics derived from higher spatial resolution Sentinel-2 

data were demonstrated to have better sensitivity to the taller canopy heights (Lang et al., 2019). The 

regression tree model employed in the current study uses the median as the output value for a terminal 

node. That approach has limitations in mapping shortest and tallest forests, especially if the training data 

contain errors. The higher sampling rate for non-forest training which we implemented to reduce the 

effect of GEDI RH95 errors may have affected the lower (3-5m) forest height mapping. Limitations of 

calibration reference data, namely the GEDI RH95 metric, should also be considered.  

Due to the limitations of optical data caused by atmospheric contamination and relatively low 

observation frequency, we may expect to observe high-frequency noise in the annual model outputs (Fig. 

9 demonstrates the annual fluctuations of estimated forest height for test pixels). Data limitations 

precluded mapping forest height for parts of permanently cloudy regions in Central Africa. However, the 

approach prototyped by Potapov et al. (2019) that implements temporal filtering, gap-filling, and 

integration of the annual structure time-series with annual forest loss detection data has been shown to 

improve spatiotemporal consistency. Additionally, data from the future Landsat 9 satellite and integration 

of Sentinel-2 and Landsat time-series will increase observation frequency, which may reduce model 

uncertainty and eliminate the need for temporal filtering. 

6. Conclusion 

This pilot study illustrates that integration of spaceborne optical (Landsat) and lidar (GEDI) data sets 

may enable global annual forest canopy height monitoring at a 30m/pixel spatial resolution. As we move 

towards the operational version of the presented method, we are planning to improve model calibration by 

using additional and refined GEDI data as they become available. We have demonstrated that a Landsat-
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based forest canopy height model calibrated using GEDI data from the recent years can be applied to 

historic Landsat imagery, enabling forest structure analysis from the 1980s to present, and providing a 

tool for operational monitoring of forest degradation and restoration. The next steps include (a) expanding 

forest structure models beyond the GEDI data range using LVIS and ICESat-2 ATLAS data acquired in 

boreal forests for both training and validation, and (b) creating integrated annual forest canopy height, 

cover, and disturbance maps to monitor global carbon emissions from forestry operations and land 

conversions. Such operationally updated integrated forest structure and change maps will inform climate 

mitigation policy initiatives, including UNFCCC REDD+ (Reducing Emissions from Deforestation and 

Forest Degradation), the New York Declaration on Forests, and the Bonn Challenge land restoration 

initiatives (UNFCCC Secretariat, 2016; IUCN, 2018; NYDF Assessment Partners, 2019).  
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