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1. Executive Summary 
BigDataStack aims to deliver a complete stack including an infrastructure management 
solution that drives decisions according to live and historical data, thus being fully scalable, 
runtime adaptable and highly performant. The overall objective is for BigDataStack to address 
the emerging needs of big data operations and data-intensive applications. The solution will 
base all infrastructure management decisions on data aspects (for example the estimation 
and provision of resources for each data service based on the corresponding data loads), 
monitoring data from deployments and logic derived from data operations that govern and 
affect storage, compute and network resources. On top of the infrastructure management 
solution, “Data as a Service” will be offered to data providers, decision-makers, private and 
public organisations. Approaches for data quality assessment, data skipping and efficient 
storage, combined with seamless data analytics will be realised holistically across multiple 
data stores and locations. 
 
To provide the required information towards enhanced infrastructure management 
BigDataStack will provide a range of services, such as the application dimensioning 
workbench, which facilitates data-focused application analysis and dimensioning in terms of 
predicting the required data services, their interdependencies with the application micro-
services and the necessary underlying resources. This will allow the identification of the 
applications data-related properties and their data needs, thereby enabling BigDataStack to 
provision deployment with specific performance and quality guarantees. Moreover, a data 
toolkit will enable data scientists to ingest their data analytics functions and to specify their 
preferences and constraints, which will be exploited by the infrastructure management 
system for resources and data management. Finally, a process modelling framework will be 
delivered, to enable functionality-based modelling of processes, which will be mapped in an 
automated way to concrete technical-level data analytics tasks.  
 
The key outcomes of BigDataStack are reflected in a set of main building blocks in the 
corresponding overall architecture of the stack. This deliverable is a refinement of the key 
functionalities of the overall architecture, the interactions between the main building blocks 
and their components, as they were described in the previous version of the architecture 
(Deliverable D2.4 - Conceptual model and Reference architecture). Comparing to the previous 
version of the architecture, key changes refer to the interplay between the application and 
data dimensioning and the components that manage the deployment lifecycle (i.e. 
deployment patterns generation and ranking and deployment management), the dynamic 
orchestrator and the overall quality and performance assessment during runtime. 
Additionally, there are changes in the specifications of several components (reflecting their 
latest implementation status) and as such their associated sections have received updates in 
this document as well (e.g. seamless analytics framework). It should be noted that additional 
design details and evaluation results for all components of the architecture will be delivered 
in the corresponding follow-up (WP-specific) deliverables addressing the user interaction 
block, the data as a service block and the infrastructure management block. It should be noted 
that v2.0 of this deliverable has been released to include relevant GDPR-related information 
(updates in Appendix 1, Appendix 2 and Appendix 3).   
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2. Introduction 
The new data-driven industrial revolution highlights the need for big data technologies, to 
unlock the potential in various application domains (e.g. transportation, healthcare, logistics, 
etc). In this context, big data analytics frameworks exploit several underlying infrastructure 
and cluster management systems. However, these systems have not been designed and 
implemented in a “big data context”. Instead, they emphasise and address the computational 
needs and aspects of applications and services to be deployed.  

BigDataStack aims at addressing these challenges (depicted in Figure 1) through concrete 
offerings, that range from a scalable, runtime-adaptable infrastructure management system 
(that drives decisions according to data aspects), to techniques for dimensioning big data 
applications, modelling and analysing of processes, as well as provisioning data-as-a-service 
by exploiting a seamless analytics framework. 

 
Figure 1 - Technical challenges 

2.1. Terminology 

The following table summarises a set of key terms used in BigDataStack, not regarding 
acronyms but regarding actual usage, given the big number of concepts and technologies 
addressed by the envisioned stack. 

Term Description 
Application services Components/micro-services of a user’s application 
Data services  “Generic” services such as cleaning, aggregation, etc. 
Dimensioning  Analysis of a user’s application services to identify the data and 

resources needs/requirements 
Toolkit Mechanism enabling ingest of data analytics tasks & setting of 

requirements (from an end-user point of view) 
Graph An overall graph including the application services and the data 

services  
Process modelling “Workflow” modelling regarding business processes 
Process mining Analytics tasks per process of the “workflow” 
Process mapping Mapping of business processes to analytics tasks to be executed 



 
 Project No 779747 (BigDataStack) 

 D2.5 – Conceptual model and Reference architecture II 

 Date: 03.07.2019 

 Dissemination Level: PU 

 

 page 8 of 108 bigdatastack.eu 

Interdependencies between 
application / data services 

Data flows between application components and data services 

Table 1 - Terminology 

2.2. Document structure 
The document is structured as follows:  

 Section 3 provides an overview of the capabilities offered by the BigDataStack 
environment, including the key offerings and the main stakeholders addressed by 
each offering.  

 Section 4 introduces the identified main phases, to showcase the interactions 
between different key blocks and offerings of the stack.  

 Section 5 presents the overall project architecture.  

 Section 6 provides descriptions of the main architecture components. 

 Finally, in Section 7, a detailed sequence of events depicting the information flows is 
provided. It should be noted that these sequence diagrams capture the interactions 
on the overall architecture level and are not supposed to provide details of the 
interactions on lower levels given that these are provided by the corresponding design 
and specification reports of the work package deliverables and will be refined in later 
reports accordingly. 
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3. BigDataStack Capabilities 
This section provides an overview of the capabilities that will be offered by BigDataStack, in 
terms of offerings towards an extensive set of stakeholders. The goal is to present a set of 
“desired” capabilities as the key goals of BigDataStack. The components providing and 
realising these capabilities are thereafter described in the overall architecture. 

3.1. Key offerings 

BigDataStack offerings are depicted through a full “stack”, that aims not only to facilitate the 
needs of data operations and applications (all of which tend to be data-intensive), but also 
promote these needs in an optimized way.  
 
As depicted in Figure 2, BigDataStack will provide a complete infrastructure management 
system, which will base the management and deployment decisions on data from current and 
past application and infrastructure deployments. A representative example would be that of 
a service-defined deployment decision by a human expert (current approach), where he 
chooses to deploy VMs on the same physical host, to reduce data transfer latencies over the 
network (e.g. for real-time stream processing). On the other hand, the BigDataStack approach 
instead will base the decision making according to information from current and past 
deployments (e.g. generation rates, transfer bottlenecks, etc.), which may result in a superior 
deployment configuration. To this end, the BigDataStack infrastructure management system 
would propose a data-driven deployment decision resulting in containers/VMs placed within 
geographically distributed physical hosts. This simple case shows that the trade-off between 
service and data-based decisions on the management layer should be re-examined nowadays, 
due to the increasing volumes and complexity of data. The envisioned “stack” is depicted in 
Figure 2, which captures the key offerings of BigDataStack. 
 

 
Figure 2 - Key offerings 

The first core offering of BigDataStack is efficient and optimised infrastructure management, 
including all aspects of management for the computing, storage and networking resources, 
as described before. 
 
The second core offering of BigDataStack exploits the underlying data-driven infrastructure 
management system, to provide Data as a Service in a performant, efficient and scalable way. 
Data as a Service incorporates a set of technologies addressing the complete data path: data 
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quality assessment, aggregation, and data processing (including seamless analytics, real-time 
Complex Event Processing - CEP, and process mining). Distributed storage is realised through 
a layer, enabling data to be fragmented/stored according to different access patterns in 
different underlying data stores. A big data layout and data skipping approach is used to 
minimize the data that should be read from the underlying object store to perform the 
corresponding analytics. The seamless data analytics framework analyses data in a holistic 
fashion across multiple data stores and locations and operates on data irrespective of where 
and when it arrives at the framework. A cross-stream processing engine is also included in the 
architecture to enable distributed processing of data streams. The engine considers the 
latencies across data centres, the locality of data sources and data sinks, and produces a 
partitioned topology that will maximise the performance. 
 
The third core offering of BigDataStack refers to Data Visualization, going beyond the 
presentation of data and analytics outcomes to adaptable visualisations in an automated 
way. Visualizations cover a wide range of aspects (interlinked if required) besides data 
analytics, such as computing, storage and networking infrastructure data, data sources 
information, and data operations outcomes (e.g. data quality assessment outcomes, 
application analytics outcomes, etc.). Moreover, the BigDataStack visualisations will be 
incremental, thus providing data analytics results as they are produced.  
 
The fourth core offering of BigDataStack, the Data Toolkit, aims at openness and extensibility. 
The toolkit allows the ingestion of data analytics functions and the definition of analytics, 
providing at the same time “hints” towards the infrastructure/cluster management system for 
the optimised management of these analytics tasks. Furthermore, the toolkit allows data 
scientists to specify requirements and preferences as service level objectives (e.g. regarding 
the response time of analytics tasks), which are considered by infrastructure management 
both during deployment time and during runtime (i.e. triggering adaptations in an automated 
way).  
 
The Process Modelling offering provides a framework allowing for flexible modelling of 
process analytics to enable their execution. Process chains (as workflows) can be specified 
through the framework, along with overall workflow objectives (e.g. accuracy of predictions, 
overall time for the whole workflow, etc) that are considered by mechanisms mapping the 
aforementioned processes to data analytics that can be executed directly on the BigDataStack 
infrastructure. Moreover, process mining tasks realize a feedback loop towards overall 
process optimisation and adaptation.  
 
Finally, the sixth offering of BigDataStack, the Dimensioning Workbench aims at enabling the 
dimensioning of applications in terms of predicting the required data services, their 
interdependencies with the application micro-services and the necessary underlying 
resources. 

3.2. Stakeholders addressed 

BigDataStack provides a set of endpoints to address the needs of different stakeholders as 
described below: 
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1. Data Owners: BigDataStack offers a unified Gateway to obtain both streaming and 
stored data from data owners and record them in its underlying storage infrastructure 
that supports SQL and NoSQL data stores. 

2. Data Scientists: BigDataStack offers the Data Toolkit to enable data scientists both to 
easily ingest their analytics tasks and to specify their preferences and constraints to 
be exploited during the dimensioning phase regarding the data services that will be 
used (for example response time of a specific analytics task). 

3. Business Analysts: BigDataStack offers the Process Modelling Framework allowing 
business users to define their functionality-based business processes and optimise 
them based on the outcomes of process analytics that will be triggered by 
BigDataStack. Mapping to specific process analytics tasks will be performed in an 
automated way. 

4. Application Engineers and Developers: BigDataStack offers the Application 
Dimensioning Workbench to enable application owners and engineers to experiment 
with their application and obtain dimensioning outcomes regarding the required 
resources for specific data needs and data-related properties.  

These actors interact with the corresponding offerings and provide information that is 
exploited thereafter by the infrastructure/cluster management system of BigDataStack. It 
should be noted that on top of these offerings, the Visualization Environment is also an 
interaction point with end users, providing the outcomes of analytics as well as the monitoring 
results of all infrastructure and data-related operations.  
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4. Main phases 
The envisioned operation of BigDataStack is reflected in four main phases as depicted in 
Figure 3 (and further detailed in the following sub-sections): Entry, Dimensioning, 
Deployment and Operation. 
 

 
Figure 3 - BigDataStack Main Phases 

 
During the entry phase, data owners ingest their data through a unified gateway. Analysts 
design business processes by utilising the functionalities of the Process Modelling framework 
in order to describe the overall business workflows, while data scientists can specify their 
preferences and pose their constraints through the Data Toolkit.  
 
During the dimensioning phase, the individual processes / steps of the overall process model 
(i.e. workflow) are mapped to analytics tasks, and the graph is concretized (including specific 
analytics tasks and application services to be deployed). The whole workflow is modelled as 
a playbook descriptor and is passed to the Dimensioning Workbench. In turn, the 
Dimensioning Workbench provides insights regarding the required infrastructure resources, 
for the data services and application components, through an envisioned elasticity model that 
includes estimates for different Quality of Service (QoS) requirements and Key Performance 
Indicators (KPIs).  
 
The goal of the deployment phase is to deliver the optimum deployment patterns for the data 
and application services, by considering the resources and the interdependencies between 
application components and data services (based on the dimensioning phase outcomes).  
 
Finally, the operation phase facilitates the provision of data services including technologies 
for resource management, monitoring and evaluation towards runtime adaptations. 

4.1. Entry phase 

During the entry phase, data is introduced into the system, the Business Analysts design and 
evaluate their business processes, and the Data Scientists specify their preferences and 
constraints through the Data Toolkit. Thus, the Entry Phase consists of three discrete steps: 

 Data owners ingest their data in the BigDataStack-supported data stores, through a 
unified gateway. They can directly choose if they want to store (non-) relational data 
or use the BigDataStack’s object storage offering. The seamless analytics framework 
brings together the LeanXcale database and the Object Store into a new entity, 
permitting the definition of rules for automatic balancing of datasets between these 
two basic data storage components (e.g. data older than 3 months should be moved 
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to the object store), as well as to describe and use a dataset, which may be spread 
over the two data storage components seamlessly. Streaming data can also be 
processed, leveraging the BigDataStack’s CEP implementation. 

 Given the stored data, Business Analysts can design processes utilising the intuitive 
graphical user interface provided by the Process Modelling framework, and the 
available list of “generic” processes (e.g. customer segmentation process). Overall, 
they compile a business workflow, ready to be mapped to concrete executable tasks. 
These mappings are performed by a mechanism incorporated in the Process 
Modelling framework, the Process Mapping component. 

 Based on the outcomes of process mapping, the graph of services (representing the 
corresponding business workflow) is made available to the Data Scientists through the 
Toolkit. The scientists can specify preferences for specific tasks, for example, what the 
response time of a recommendation algorithm should be or ingest a new executable 
in case a task has not been successfully mapped by the Process Mapping mechanism. 

The output of the Entry Phase is a Kubernetes-like configuration template file describing the 
graph/workflow (which includes all relevant information for the application graph with 
concrete “executable” services). We refer to this as a BigDataStack Playbook. This is passed 
to the dimensioning phase in order to identify the resource needs for the identified services. 

4.2. Dimensioning phase 

The dimensioning phase of BigDataStack aims to optimize the provision of data services and 
data-intensive applications, by understanding not only their data-related requirements (e.g. 
related data sources, storage needs, etc.) but also the data services requirements across the 
data path (e.g. the resources needed for effective data storage, analytics, etc.), and the 
interdependencies when moving from an atomic / single service to an application graph. In 
this context, dimensioning includes a two-step approach that is realised through the 
BigDataStack Application Dimensioning Workbench: 

 In the first step, the input from the Data Toolkit is used to define the composite 
application (consisting of a set of micro-services) needs with relation to the required 
data services. The example illustrated in Figure 4 shows that 3 out of the 5 application 
components require specific data services for aggregation and analytics.  

 The second step is to dimension these identified/required data services, as well as all 
the application components, regarding their infrastructure resource needs. That is 
achieved by exploiting load injectors generating different loads, to benchmark the 
services and analyse their resources and data requirements (e.g. volume, generation 
rate, legal constraints, etc.). 

 

 
Figure 4 - Dimensioning phase 
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The output of the dimensioning phase is an elasticity model, i.e., a mathematical function that 
describes the mapping of the input parameters (such as workload and Quality of Service - 
QoS) to needed resource parameters (such as the bandwidth, latency etc.). 

4.3. Deployment phase 

The deployment phase of BigDataStack aims at determining the optimum deployment 
configuration and deployment resources for the application and data services in terms of 
cluster resources. The need for such configuration emerges from the fact that to deploy the 
application and data services in a way such that it will meet the user’s needs, BigDataStack 
needs to account for the application and data services complexity/efficiency, the workload 
(e.g. requests per second) and the user-defined quality of service requirements/preferences 
(e.g. <100ms response time).  
 
To this end, the deployment phase of BigDataStack includes a four-step process: 

 In a first step of the deployment phase, the application and data services compositions 
(as represented by a BigDataStack playbook) is analysed, and the independent sub-
structures comprised of application and data services (referred to as “pods”) are 
identified. 

 Second, a set of resource templates are used to convert each pod into a series of 
candidate deployment patterns (CDPs), where each CDP is comprised of a pod and 
resource template.  

 Third, for each CDP, performance estimations are obtained from the Dimensioning 
phase (based on prior application benchmarking and analysis) given expected data 
and application workload or workloads. 

 Finally, each CDP is scored with respect to the user’s quality of service requirements 
and/or preferences to determine the suitability of each. The best configuration for 
each pod is then selected, either for immediate deployment or to be shown to the 
user for prior approval.  
 

 
Figure 5 - Deployment phase 

4.4. Operations phase 

The operation phase of BigDataStack is realised through different components of the 
BigDataStack infrastructure management system and aims at the management of the 
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complete physical infrastructure resources, in an optimised way for data-intensive 
applications. 
 
The operation phase includes a seven-step process as depicted in Figure 6:  

 Based on the deployment phase, outcomes regarding the optimised deployment 
pattern, computing resources are reserved and allocated. 

 According to the allocated computing resources, storage resources are also reserved 
and allocated. It should be noted that storage resources are distributed. 

 Data-driven networking functions are compiled and deployed to facilitate the diverse 
networking needs between different computing and storage resources. 

 The application components and data services are deployed and orchestrated based 
on “combined” data and application-aware deployment patterns. An envisioned 
orchestrator mechanism compiles the corresponding orchestration rules according to 
the deployment patterns and the reserved computing, storage and network 
resources. 

 Data analytics tasks will be distributed across the different data stores to perform the 
corresponding analytics, while analytics on top of these stores is performed through 
the seamless analytics framework. 

 Monitoring data is collected and evaluated for the resources (computing, storage and 
network), application components and data services and functions (e.g. query 
execution status). 

 Runtime adaptations take place for all elements of the environment, to address 
possible QoS violations. These include resource re-allocation, storage and analytics re-
distribution, re-compilation of network functions and deployment patterns. 
 

 
Figure 6 - Operations phase 
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5. Architecture 
The following figure presents the overall conceptual architecture of BigDataStack, including 
the main information flows and interactions between the key components.  
 

 
Figure 7 - BigDataStack architecture model 

 
First, raw data are ingested through the Gateway & Unified API component to the Storage 
engine of BigDataStack, which enables storage and data migration across different resources. 
The engine offers solutions both for relational and non-relational data, an Object Store to 
manage data as objects, and a CEP engine to deal with streaming data processing. The raw 
data are then processed by the Data Quality Assessment component, which enhances the 
data schema in terms of accuracy and veracity and provides an estimation for the 
corresponding datasets in terms of their quality. Data stored in Object Store are also enhanced 
with relevant metadata, to track information about objects and their dataset columns. Those 
metadata can be used to show that an object is not relevant to a query, and therefore does 
not need to be accessed from storage or sent through the network. The defined metadata are 
also indexed, so that during query execution objects that are irrelevant to the query can be 
quickly filtered out from the list of objects to be retrieved for the query processing. This 
functionality is achieved through the Data skipping component of BigDataStack. Moreover, 
slices of historical data are periodically transferred from the LeanXcale database to the Object 
Store, to free-up space for fresh tuples. 
 
Given the stored data, decision-makers can model their business workflows through the 
Process Modelling framework that incorporates two main components: the first component 
is Process modelling, which provides an interface for business process modelling and the 
specification of an end-to-end optimisation goals for the overall process (e.g. accuracy, overall 
completion time, etc). The second component refers to Process Mapping. Based on the 
analytics tasks available in the Catalogue of Predictive and Process Analytics and the specified 
overall goals, the mapping component identifies analytics algorithms that can realise the 
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corresponding business processes. The outcome of the component is a model in a structural 
representation e.g. a JSON file that includes the overall workflow, and the mapped business 
processes to specific analytics tasks.  
 
Following, through the Data Toolkit, data scientists design, develop and ingest analytic 
processes/tasks to the Catalogue of Predictive and Process Analytics. This is achieved by 
combining a set of available or under development analytic functions into a high-level 
definition of the user’s application. For instance, they define executables/scripts to run, as 
well as the execution endpoints per workflow step. Data scientists can also declare 
input/output data parameters, analysis configuration hyper-parameters (e.g. the k in a k-
means algorithm), execution substrate requirements (e.g. CPU, memory limits etc.) as service 
level objectives (SLOs), as well as potential software packages / dependencies (e.g. Apache 
Spark, Flink etc.). The output of the Data Toolkit component enriches the output of the 
previous step (i.e. Process Modelling) and defines a BigDataStack Playbook.  
 
The generated playbook is utilized by the Application and Data Services Deployment Patterns 
Generator. The component creates different arrangements (i.e. patterns / configurations) of 
deployment resources for each application and data service Pod. These candidate 
deployment patterns (CDPs) are passed to the Application Dimensioning Workbench, along 
with an end-to-end optimization objective and the information on the available resources, in 
order to estimate resource usage and QoS performance prior to actual deployment. The 
primary output of the Application Dimensioning Workbench is an elasticity model, which 
defines the mapping of the input QoS parameters to the concrete resource needed (such as 
the number of VMs, bandwidth, latency etc.). These decisions are depended on data-defined 
models. Thus, based on the obtained dimensioning outcomes, deployment patterns are 
ranked by the Deployment Patterns Ranker and the optimum pattern is selected for 
deployment, making the concluding arrangement of services data-centric. The Deployment 
Manager administers the setup of the application and data services on the allocated 
resources. 
 
During runtime, the Triple Monitoring engine collects data regarding resources, application 
components (e.g. application metrics, data flows across application components, etc.) and 
data operations (e.g. analytics / query progress, storage distribution, etc.). The collected data 
are evaluated through the QoS Evaluation component to identify events / facts that affect the 
overall quality of service (in comparison with the SLOs set in the toolkit). The evaluation 
outcomes are utilised by the Runtime adaptation engine, which includes a set of components 
(i.e. cluster resources re-allocation, storage and analytics re-distribution, network functions 
re-compilation, application and data services re-deployment, and dynamic orchestration 
patterns), to trigger the corresponding runtime adaptations needed for all infrastructure 
elements to maintain QoS. 
 
Moreover, the architecture includes the Global decision tracker, which aims at storing all the 
decisions taken by the various components. The overall BigDataStack system takes advantage 
of this recorded historical information to perform future optimisations. The key rationale for 
the introduction of this component is the fact that decisions have a cascading effect in the 
proposed architecture. For example, a dimensioning decision affects the deployment patterns 
compilation, the distribution of storage and analytics, etc. The information about whether 
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these decisions are altered during runtime will be exploited for optimised future choices 
across all components through the decision tracker. Moreover, the tracker holds additional 
information such as application logging data, Candidate Deployment Patterns, QoS failures, 
etc. Thus, as a global state tracker, provides the ground for cross-component optimisation, as 
well as tracking the state and history of BigDataStack applications. 
 
Finally, the architecture includes the Adaptive Visualisation environment, which provides a 
complete view of all information, including raw monitoring data (for resource, application and 
data operations) and evaluated data (in terms of SLOs, thresholds and the evaluation of 
monitoring in relation to these thresholds). Moreover, the visualization environment acts as 
a unique point for BigDataStack for different stakeholders, actors, thus, incorporating the 
process modelling environment, the data toolkit and the dimensioning workbench. These 
accompany the views for infrastructure operators (e.g. regarding deployment patterns). 
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6. Main architectural components 
Based on the overall architecture presented in the previous chapter, this chapter provides 
additional information regarding the individual components of the BigDataStack architecture. 

6.1. Resources Management 

The Resource Management sub-system provides an Enterprise grade platform which 
manages Container-based and Virtual Machine-based applications consistently on cloud and 
on-premise infrastructures. This sub-system makes the physical resources (e.g. CPUs, NICs 
and Storage devices) transparent to the applications. The application’s requirements will be 
computed based on the input from the Realisation Engine and by a constant monitoring using 
the Triple Monitor. The applications’ required resources are automatically allocated from the 
available existing infrastructures and will be dismissed upon execution completion. Thus, the 
Resource Management sub-system serves as an abstraction layer over today’s 
infrastructures, physical hardware, virtual hardware, private and public clouds. This 
abstraction allows the developing of compute, networking and storage management 
algorithms which can work on a unified system, rather than dealing with the complexity of a 
distributed system. 
 
BigDataStack will build on top of the open source OpenShift Kubernetes Distribution (OKD) 
project [1] for its Resource Management sub-system. The OKD project is an upstream project 
used in Red Hat’s various OpenShift products. It is based and build around Kubernetes and 
operators and is enhanced with features requested by commercial customers and Enterprise 
level requirements. According to Duncan et al. [2] ODK is “an application platform that uses 
containers to build, deploy, serve, and orchestrate the applications running inside it”. OKD 
simplifies the whole process [3] of the deployment of a “fine-grained management over 
common user applications” and management of the containerized software (the lifecycle of 
the applications). Since its initial release in 2011, it has been adopted by multiple 
organizations and has grown to represent a large percentage of the market. According to IDC 
[4], OKD aims at accelerating the application delivery with “agile and DevOps methodologies”; 
moving the application architectures toward micro-services; and adopting a consistent 
application platform for hybrid cloud deployments. 
 
As a base technology, OKD uses Docker and/or CRI-O for containerization and Kubernetes [5] 
for their orchestration, including packaging, instantiation and running the containerized 
applications. It also implements “geard” or “gear daemon” [6], a command-line client for the 
management of containers and its linkage to systems across multiple hosts, used for the 
installation and management of application components [7]. On top of the above described 
technologies, OKD adds [8]: 

 Source code management, builds, and deployments for developers 
 Managing and promoting images at scale as they flow through your system 
 Application management at scale 
 Team and user tracking for organizing a large developer organization 
 Networking infrastructure that supports the cluster 
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OKD integrates in the DevOps and users’ operation following a hierarchical structure, as 
shown in Figure 8. A master node centralizes the API/authentication, data storage, 
scheduling, and management/replication operations, while applications are run on Pods 
(following the Kubernetes philosophy). 
  

 
 

Figure 8 - OKD architecture overview inside the DevOps operation [8] 
 
Following this layered architecture, users access the API, web-services and command line 
directly from the master node, while the applications and data services are accessed through 
the routing layer where the services are located, that is, in the physical machine the pod was 
deployed. Finally, the integrated container registry includes the set of container images which 
can be deployed in the system. 
 
Another important point for the project is the protection of security and privacy of the user. 
On top of the security provided by Kubernetes, OKD also offers granular control on the 
security of the cluster. As shown in [4], users can choose a whitelist of cipher suites to meet 
security policies; and share PID between containers to control the cooperation of containers.  
 
By building on top of OKD, we ensure that BigDataStack components are easily portable to 
different cloud offerings, such as Amazon, Google Compute Engine, Azure, or any On-Premise 
deployment based on OpenStack. 
 
To ensure a more transparent and simple resource management we are working on several 
fronts that will be present on our architecture: 

 Kuryr: Network speed up by better integrating OKD on top of OpenStack cloud 
deployments. Working on Kuryr OpenStack upstream project to integrate OpenShift 
SDN networking into OpenStack SDN networking, simplifying the operations, as well 
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as achieving remarkable performance boost (up to 9x better). By using Kuryr at the 
OKD level we connect the containers directly into the OpenStack networks, instead of 
having 2 different SDNs and the performance problem of double encapsulation. 

 Kernel Driver: New (NVMe) Kernel driver that speeds up access to NVMe devices from 
VMs without guest image modification, achieving up to 95% of native performance – 
compare to standard 30% with existing VirtIO drivers. 

 Network Policies: Network Management through declarative API. As part of the Kuryr 
upstream work, we have also extended its functionality to support Kubernetes 
Network Policies, which allows user to define the access control to the different 
components of their applications in a fine grained manner. These policies are defined 
in a declarative way, i.e., by stating the desired status, rather than the steps to 
accomplish it. Then Kuryr will make sure that the isolation level desired at the OKD 
(containers) level is translated and enforced through OpenStack Security Group rules. 

 Operators: Development of operators for easy life cycle management of infrastructure 
and applications. In addition to the performance improvements, we are also pursuing 
the use of the operators design pattern. This entails the use and development of 
certain operators (containers) which have their business logic integrated and react to 
the current status of the system/applications until they match the desired status. This 
helps to install the applications in an easy/reproducible manners, as well as to deal 
with day two operations, such as scaling or upgrades. In this regard we are working on 
a Kuryr SDN operator that allows easy installation and scaling of OKD cluster on top of 
OpenStack environments. This network operator takes care of creating everything 
needed on the OpenStack side, as well as installing anything required by Kuryr both at 
the initial deployment time and upon OKD cluster scaling actions. Another example of 
operators being used are the Spark Operator and the Cluster Monitoring Operator 

 Infrastructure API: Unified API for infrastructure resources to make infrastructure 
management easy, and abstracted from the real infrastructure. To achieve this, the 
upstream community created the Kubernetes Cluster API project. We have been 
working on the support for the OpenStack abstraction together with its 
operator/actuator: Cluster API Provider OpenStack. This allows us to automate the 
creation/scaling actions regarding OKD nodes when running on top of OpenStack too. 
Thus, we can easily extend an OKD cluster as needed, just by modifying an object in 
Kubernetes/OKD: Similarly, this give us further advantages regarding resource 
management, e.g., if any of the VMs where our OKD is running dies (or the physical 
server that has it dies), the developed operator/actuator will automatically recreate 
the needed VMs in a different compute node, automatically recovering the system 
until it maps the desired status. 

 
Note that while the first two points are related to infrastructure performance, the later 3 are 
key points for managing infrastructure as code, as well as to enable easy 
configuration/adaptation by upper layers, such as the Data-Driver Network Management or 
the Deployment Orchestration components.  
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Figure 9 - OKD architecture overview in the users operations 

6.2. Data-Driven Network Management 

The Data-Driven Network Management component will efficiently handle network 
management and routing introspection, computing and storage resources, by collectively 
building intelligence through analytics capabilities. The motivation is to optimise computing 
and storage mechanisms to improve network performance. This component can obtain data 
from different BigDataStack layers (i.e. from storage layer to applications layer) and will be 
used to extract knowledge out of the large volumes of data to facilitate intelligent decision 
making and what-if analysis. For example, with big data analysis, the data-driven network 
management will know which storage or computing resource has high popularity. Based on 
the analysis result, the component will be able to produce insights on how to redistribute 
storage and/or computing resources to reduce network latency, improve throughput and 
satisfy access load and thus response time. 
 
Monitoring mechanisms over the storage layer will provide information to adjust the network 
parameters (e.g. by enforcing policies to achieve a significant reduction in data retrieval and 
response time). Also, monitoring mechanisms over the computing layer will enable the 
development of functionalities and trigger policies that will satisfy users’ requirements 
regarding runtime and performance.  
 
To serve data-driven network management, we will analyse the data coming from storage 
and computing resources within a workflow which is depicted in Figure 10. The workflow is 
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composed of three components namely: ingest, which consumes network data, process, 
which computes network metrics and analyse, which produces network insights. The lifecycle 
of the analysis task includes a set of algorithms which enable computational analytics over 
the data, conduct a set of control mechanisms and infer knowledge related to resources 
optimisation. Taking advantage of data-driven network management, big data applications 
will be able to access the global network view and programmatically implement strategies to 
leverage the full potential of the physical storage and computing resources. 

 
 

Figure 10 - Data-Driven Network Management components 

6.3. Dynamic Orchestrator 
The Dynamic Orchestrator (DO) assures that scheduled applications conform to their Service 
Level Objectives (SLOs). Such SLOs reflect Quality of Service (QoS) parameters and might be 
related to throughput, latency, cost or accuracy targets of the application. For example, to 
generate recommendations for online customers of an e-commerce website, the 
recommender has to analyse the customer profile and provide the recommendation in a 
limited amount of time (e.g., 1 sec.), otherwise, the page load will be too slow and customers 
might leave the website. If the number of online customers increases, then the recommender 
will need to improve its recommendations throughput in order to keep up serving the 
recommendations in less than 1 second. The DO will then modify the deployment in order to 
improve throughput, so that the recommender does not violate the corresponding SLO. 
The DO assures conformation to SLOs by applying various dynamic optimisation techniques 
throughout the runtime of an application at multiple layers across various components of the 
data-driven infrastructure management system. As such, the DO knows about the adaptation 
actions that can be carried out for an application and when these actions should be carried 
out, i.e. what actions will affect each SLO. 
 
Figure 11 depicts the high-level interactions of the dynamic orchestrator with other 
components. Newly scheduled applications are deployed through the Application and Data 
Service Ranking component (ADS-Ranking).1 The ADS-Ranking scores possible deployment 
patterns/configurations (CDPs) and selects the one which it predicts to best satisfy the SLOs. 
After an application is deployed, the DO monitors its performance through the triple 
monitoring engine. In case there are SLO violations, the QoS component sends a message 
with the violation to the DO, which has two choices: (i) Initiate a re-deployment of the 
application through ADS (this choice will be made when SLOs can only be reached with major 

                                                
1 ADS-Ranking is also sometimes referred to as the Deployment Recommender, as in many 
scenarios its practical application is to recommend a deployment configuration for the user. 
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deployment changes, e.g., selecting another ADS ranking option), (ii) Performing more fine-
grained adaptations at different components of the system (e.g., the DO might perform 
“small” changes in the deployment configuration such as the number of replicas). 

 
Figure 11 - High-Level Interaction with other Components 

 
Note, that each of the other components also have their internal control loop and their 
internal logic for performing (high-responsive) actions, independently of the orchestrator or 
any of the other components. The primary challenge of the dynamic orchestrator is to reach 
a (close-to) optimal adaptation decision quickly, i.e., with a small overhead. This is a difficult 
goal, because application tasks will be distributed and adaptation can be achieved at different 
components (application, platform, network). The relationship between an adaptation 
technique and how it affects an SLO is not clear in advance and two adaptation techniques at 
different components might lead both to conformation of an SLO. Likewise, two adaptations 
at two components, might also conflict with each other.  As such, the main challenges of the 
dynamic orchestrator are: 

 Conflicting adaptations in different components 

 Overhead for adaptation decisions 

 Optimal adaptation 

The orchestration logic itself is not implemented using hardcoded rules, but instead, uses 
Reinforcement Learning (RL). RL allows the DO to dynamically change its adaptation logic over 
time based on the outcome (feedback) from previous decisions. In RL, this means that the 
orchestration problem is broken down into: 

 States: These are system and application metrics (e.g. CPU usage and throughput) and 
the current and past SLOs fulfillment. 

 Actions: These change in deployment (e.g. add/remove a replica). 

 Reward: The reward value is positive and proportional to resource utilization (to avoid 
underutilization) if SLOs are met, negative otherwise. 

Figure 12 depicts a more detailed view of the dynamic orchestrator. Each application has its 
own BigDataStack application, RL Agent and RL Environment; while the Manager is unique for 
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all applications. The Manager is in charge of the communication with the other components, 
receiving the Playbook, receiving the metrics and passing them to the corresponding 
BigDataStack application, and receiving the action to be taken from the RL Agent, and sending 
it to the ADS-Ranking or the platform for performing dynamic adaptations.  

 

Figure 12 - Dynamic Orchestrator Detailed View 
 
Moreover, Figure 13 depicts the different classes of the DO. Their inner working, step by step, 
is the following: 

1. The Manager handles the communication with all the other components, using 
RabbitMQ and creates one instance of BigDataStackApplication for each application 
to be monitored. 

2. The BigDataStackApplication creates the RLEnvironment, with its actions and state 
spaces, and the RLAgent that will be in charge of learning and deciding the best 
adaptation actions to take when an SLO is violated. 

3. Each time a new message comes in, the Manager sends the information to the 
corresponding BigDataStackApplication, which updates the RLEnvironment state. 

4. If a message with an SLO violation comes in, the Manager triggers the RLAgent, to 
decide which action should be taken according to the current RLEnvironment state. 

5. Then, the Manager sends a message to the ADS-Ranking requesting the identification 
of a new deployment configuration or to ADS-Deploy to directly change the 
deployment. 
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Figure 13 - High-level class diagram of the Dynamic Orchestrator 
 

6.4. Triple Monitoring and QoS Evaluation 
The Triple Monitoring and QoS Evaluation are two closely related components with clearly 
separated responsibilities:  

 The objective of the Triple Monitoring is to collect, store and serve metrics at three 
levels of the platform: application, data services and infrastructure (cluster) resources.  

 The goal of the QoS Evaluation is to continuously evaluate those metrics against 
constraints (thresholds) or objectives imposed by certain BigDataStack platform users. 

6.4.1. Triple Monitoring 

The monitoring engine manages and correlates/aggregates monitoring data from different 
levels to provide a better analysis of the environment, the application and data; allowing the 
orchestrator to take informed decisions in the adaptation engine. The engine collects data 
from three different sources: 

 Infrastructure resources of the compute clusters such as resource utilisation (CPU, 
RAM, services and nodes), availability of the hosts, data sources generation rates and 
windows. This information allows the taking of decisions at a low level. These metrics 
are directly provided by the infrastructure owner or through specific probes, which 
track the quality of the available infrastructures. In the context of bigdatastack, the 
infrastructure’s metrics are collected by Kubernetes. Those metrics will be ingested to 
the triple monitoring engine by federating Prometheus instances. 
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 Application components such as application metrics, data flows across application 
components, availability of the applications etc. This information is related directly to 
the data-driven services, which are deployed in the infrastructure. These metrics are 
associated with each application, and they should be provided by those applications. 
For application related to BigDataStack infrastructure, the most suitable method is to 
embed Prometheus exporter to each of those applications. Use case application will 
be sending metrics via a http method for flexibility reason. 

 
 Data functions/operations such as data analytics, query progress tracking, storage 

distribution, etc. This is a mix of data and storage infrastructure information providing 
additional information for the “data-oriented” infrastructure resources. 

The component will cover both raw metrics (direct measurements provided by the 
infrastructure deployed sensors or external measurement systems like the status of 
infrastructure) and aggregated metrics (formulas to exploit metrics already collected and 
produce the respective aggregated measurements that can be more easily used for QoS 
tracking). The collection of metrics will be based on both solutions: the direct probes in the 
system that should be monitored and the direct collection of the data from the monitoring 
engine.   
 

 The probe approach will cover the information systems, where the platform will be 
able to deploy and collect direct information. In this case, the orchestration engine 
must manage the deployment of the necessary probes. This approach can cover other 
cases, where the probe is included directly in the application, and the orchestration 
only needs to deploy the associated application, which can provide the metric 
information to the monitoring engine. 

 The direct collection will cover the scenarios where the platform cannot deploy any 
probe, but the infrastructures or the applications expose some information regarding 
these metrics. In this case, the monitoring engine will be responsible for collecting the 
metrics data that are exposed by a third party via a REST_API (Exporter). 
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After collecting and processing the data, the monitoring engine will be responsible for 
notifying other components when an event happens based on the metrics that it is tracking 
and specific attributes such as computing, network, storage or application level. Moreover, it 
will expose an interface to manage and query the content. This functionality is implemented 
in the QoS Evaluator (SLA Manager). Figure 14 depicts the Triple Monitoring Engine and their 
components. 
 

Figure 14 - Triple Monitoring Engine architecture diagram 
 
The Triple Monitoring Engine will be based on the Prometheus monitoring solution (see [9] 
for more details) and is composed of the following components: 

 Monitoring Interface: This is responsible for exposing the interface to allow other 
components to communicate. The interface will manage two ways of interaction with 
other components: i) exposing a REST API (outAPI, Figure 14) that will enable other 
components to know specific information, for example, if another component wants 
to know more details about one violation, to take the correct decision, or if they need 
to configure new metrics to collect directly by the monitoring engine. Therefore, the 
interface will consist of both a REST interface and a publish/subscribe notification 
interface. The publish/subscribe mechanism is implemented with RabbitMQ. This 
allows any components to consume in real-time information. 

 Monitoring Manager: This component handles subscriptions by storing the queue, the 
list of metrics and metadata related to the subscription. The manager consumes all 
metrics collected by Prometheus. Based on the subscriptions list, they are redirected 
to the component subscribed by the queue declared. 

 Monitoring Databases: ElasticSearch is currently used as the metrics database. 
MongoDB is also used to store all metrics requested via the outAPI in order to keep a 
track of metrics’ utilization. 
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 PrometheusBeat: Since Prometheus has a small retention period, BigDataStack 
optimization loops in various components (e.g. deployment patterns generation) 
raised the need for a solution that would allow accessing and holding the collected 
metrics. To this end, this component receives the metrics collected by Prometheus, 
and ingests them to a pipeline (Logstash) for being stored. 

 Optimizer: Since the Triple Monitoring Engine of BigDataStack collects monitoring 
data from different sources and all those data are utilized at specific time periods by 
different BigDataStack architecture components, storage optimization is required. 
Based on the information stored in the MongoDB (metrics utilization) this component 
decides about the time period for which the monitoring data should be kept. 

 Push gateway: The push gateway is a Prometheus exporter. It is used in BigDataStack 
specially for collecting monitoring data obtained after each Spark driver execution. 

 Collector Layer: This component is responsible for obtaining the data to be moved to 
the Monitoring manager. There are two ways to collect the data, either through a 
probe or through direct collection: 

o Probe API exposes an interface to allow different kinds of probes to send the 
monitoring data to the monitoring engine. 

o Direct collection is realized through a component that collects directly the 
monitoring data, by invoking other systems or components. For example, it 
receives the data directly from the Resource management engine or invoke 
the third-party libraries to obtain the state of the application and data services. 

Integration with resource management engines 
The Triple Monitoring Engine provides APIs for receiving metrics from different sources 
(infrastructure, application and data services) and expose them for consumption. Although 
different APIs will be available due to the great diversity of monitoring data sources, the 
recommended API is the “Prometheus exporters” model. Some of the technologies that are 
being considered for BigDataStack are already integrated within Prometheus, as shown in 
Table 2. 

Technology component Monitoring aspect Prometheus 
exporter availability 

Method  

Kubernetes Computing infrastructure Yes  Federation 
OpenStack Computing infrastructure Yes Exporter 
Spark/Spark SQL Data 

functions/operations 
Yes Exporter 

(SparkMeasure) 
IBM COS (Cloud Object 
Store) 

Data infrastructure No  

LeanXcale database Data infrastructure For some metrics Federation 
CEP  Data Infrastructure Yes Federation 

Table 2 - Prometheus integration 
 
Federation of Prometheus instances 
Federation is used to pull monitoring data from another Prometheus instance. This model is 
introduced in the BigDataStack Triple Monitoring Engine for two main reasons. Firstly, the 
platform uses Kubernetes as containers orchestrator, which embedded by default a 
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Prometheus (prometheus-ks8) instance. This instance collects monitoring data related to the 
cluster, nodes and services running. For security reasons it is not efficient to use prometheus-
k8s for collecting application- and data- related monitoring data. Secondly, the LeanXcale 
database and the CEP are independent systems and have their own Prometheus instances. 
For reusability reason and improvement (collect only monitoring data directly used by 
BigDataStack components) the proposed federation model is the most suitable method to 
achieve this requirement.  
 
In the federation mode, the master instance should be configured appropriately by specifying 
the interval of time where metrics will be collected, the source job also if needed, the metrics 
to collect can be specified. 

Figure 15 - Triple Monitoring Engine Federation Model 
 

6.4.2. QoS Evaluation 

The Quality of Service (QoS) Evaluation component is directly connected with the Triple 
Monitoring Engine to evaluate the quality of the application and data services deployed on 
the platform. To do so, it compares service metrics (key performance indicators) with the 
objectives set by the owner of the service and thus imposed over the BigDataStack platform 
when the service was deployed. The QoS Evaluation component is also responsible for 
notifying if the quality objectives are not met by the running the service. Therefore, the 
component is not responsible for obtaining the metrics (delegated to the monitoring engine) 
but to apply evaluation rules upon those metrics and notify when quality failures occur. 
 
The main entities within the QoS Evaluation are the following: 

 Agreement: it is a description of the QoS evaluation task to be carried out by the QoS 
Evaluation. It describes the creation and expiration time of the task, the provider and 
consumer of the application or service whose quality needs to be guaranteed, and the 
list of QoS constraints or guarantees to be evaluated. 

 SLO (Service Level Objective) or QoS guarantee: it is a set of thresholds for the value 
of a given metric, representing increasing levels of criticality. The last threshold is 
always the last limit or final objective to be meet. The other thresholds are used as 
checkpoints to better understand and control the dynamics of the indicator. The SLO 
belongs to the agreement. 
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 Violation: it is generated when the value of a the QoS metric trespasses any of the SLO 
thresholds. The QoS Evaluation component notifies each violation to other 
components of the platform subscribed to the event; perhaps the most important of 
the subscribers is the Dynamic Orchestrator, which is responsible for the service 
deployment adaptation decisions. 

 
The QoS Evaluation is made of the following components: 

 Interface component (REST API): through this interface the consumers of the QoS 
evaluation service can start/stop the evaluation of certain application metrics.  

 QoS database: it is responsible for storing all the content agreements, violation, 
service level objectives. This will be stored in the Global Decision Tracker. 

 Evaluator: it is responsible for performing QoS evaluation. A periodic thread is started 
to check the expiration date of agreements. For each enabled agreement, it starts a 
task to check agreement evaluation by getting needed metrics from the adapter. The 
task is also started when metrics are received from the Notifier. 

 Adapter: it is responsible for calling the monitoring system to obtain the metrics data. 
It will be different for each monitoring system, so it will be accountable for building 
the specific request to the Triple Monitoring System to gather and transform metrics 
to have them ready to compare with SLOs by the Evaluator. 

 Notifier: It is responsible for notifying to third parties that want to be alerted if 
something happens in the defined agreements, such that corrective actions can be 
taken. 

In the BigDataStack platform, application and data services QoS constraints (objectives are 
specified by the Data Scientist trough the Data Toolkit (see Section 6.13) together with the 
rest of information describing the application to be deployed. This is compiled in the so-called 
application playbook, which serves as the specification for the BigDataStack platform to 
deploy and operate the application. The following table shows and example of QoS 
constraints imposed over the response time of an online service called “recommendation-
provider”. Notice the Data Scientist can specify not only required response times but also 
recommended response time2: 
 
- name: recommendation-provider 
  metadata: 
    qosRequirements: 
    - name: "response_time" 
      type: "maximum" 
      typeLimit: null 
      value: 900 
      higherIsBetter: false 
      unit: "miliseconds" 
    qosPreferences: 
    - name: " response_time" 
      type: "maximum" 
      typeLimit: null 
      value: 300 
      higherIsBetter: false 
      unit: "miliseconds" 

                                                
2 Notice this is an extract of the playbook showing just one of the QoS constraints imposed on one service.  
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When a service deployment is requested, The Dynamic Orchestrator (i.e. the component in 
charge of making deployment adaptation decisions to satisfy QoS constraints) breaks down 
the QoS objective into thresholds of increasing levels of criticality. Depending on the nature 
of the QoS metric (indicator) to control and both the recommended and required values, the 
Dynamic Orchestrator may produce an arbitrary number of thresholds between the fist 
(related to recommended value) and last (related to the required value) thresholds.  
 
With every deployment, the Dynamic Orchestrator will request the QoS Evaluation 
component to create/start a task to continuously compare the service performance metric 
against those thresholds. This request is made asynchronously through a messages queue. 
This is implemented as topic within the RabbitMQ service (which acts as the message broker 
between BigDataStack components). In the previous example, the Dynamic Orchestrator may 
send the following message to the QoS Evaluation3: 
 
"qosIntervals": { 
  "reponse_time": [ 
    ">300", 
    ">500", 
    ">700", 
    ">900" 
  ] 
} 

 
The QoS Evaluation component incorporates the thresholds or intervals to be monitored 
(requested by the Dynamic Orchestrator) as a guarantee object in the agreement for the 
actual service deployment. In that way, all QoS constraints to be evaluated and guaranteed 
for the same service deployment are maintained together. In the previous example, the 
agreement and guarantee created from the Dynamic Orchestrator request may be like the 
following: 
 
{ 
  "id": "TEST-ATOSWL-NormServ-19022019-1", 
  "name": "TEST-ATOSWL-NormServ-19022019-1_agreement", 
  "details": { 
    "id": "TEST-ATOSWL-NormServ-19022019-1", 
    "type": "agreement", 
    "name": "TEST-ATOSWL-NormServ-19022019-1_agreement", 
    "provider": { 
      "id": "a-provider-01", 
      "name": "ATOS Wordline" 
    }, 
    "client": { 
      "id": "a-client-01", 
      "name": "Eroski" 
    }, 
    "creation": "2019-05-30T07:59:27Z", 
    "expiration": "2020-01-17T17:09:45Z", 
    "guarantees": [ 
    { 

                                                
3 Notice this is an extract of the enhanced playbook showing the QoS thresholds (intervals) for the evaluation 
of just one of the metrics (indicators) of one service. 
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      "name": "response_time", 
      "constraint": "[response_time>50]", 
      "importance": [ 
      { 
        "Name": "0", 
        "Type": "warning", 
        "Constraint": ">300" 
      }, 
      { 
        "Name": "1", 
        "Type": "warning 2", 
        "Constraint": ">500" 
      }, 
      { 
        "Name": "2", 
        "Type": "warning 3", 
        "Constraint": ">700" 
      }, 
      { 
        "Name": "3", 
        "Type": "error", 
        "Constraint": ">900" 
      } 
    ]} 
  ]} 
} 

 
The QoS Evaluation will continuously assess the value of all guaranteed QoS attributes 
(metrics or indicators) and detect violations, that is, when the value trespasses the different 
thresholds that have been specified. QoS violations are notified to any interested component 
of the BigDataStack platform through a publisher/subscriber mechanism implemented as 
topic within the RabbitMQ service (which acts as the message broker between BigDataStack 
components). Following the previous example, the following violation notifications may be 
published4: 
 
{  
  "Application": "TEST-ATOSWL-NormServ",  
  "Message: "QoS_Violation",  
  "Fields": { 
    "IdAggrement": "TEST-ATOSWL-NormServ-19022019-1",  
    "Guarantee": "response_time",  
    "Value": "351",  
    "ViolationType: { 
      "Type": "warning",  
      "Interval": "0" 
    }, 
    "ViolationTime": { 
      "ViolationDetected": "2019-06-30T07:59:27Z",  
      "AppExpiration": "2020-01-17T17:09:45Z" 
    } 
  } 
} 
{  
  "Application": "TEST-ATOSWL-NormServ",  

                                                
4 Notice that the first violation notification example is that of the lowest level of criticality (meaning a simple 
warning) while the second example if that of the highest criticality (meaning an error). 
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  "Message: "QoS_Violation",  
  "Fields": { 
    "IdAggrement": "TEST-ATOSWL-NormServ-19022019-1",  
    "Guarantee": "response_time",  
    "Value": "920",  
    "ViolationType: { 
      "Type": "error",  
      "Interval": "3" 
    }, 
    "ViolationTime": { 
      "ViolationDetected": "2019-06-30T09:34:21Z",  
      "AppExpiration": "2020-01-17T17:09:45Z" 
    } 
  } 
} 

 
Perhaps the most important of the subscribers is the Dynamic Orchestrator itself, which will 
respond to different violation alerts depending on the criticality of the threshold trespassed.  
 
The QoS Evaluation displays the warning (lowest criticality) and error (highest criticality) 
thresholds on the interface of the Triple Monitoring Engine, superimposed to the metrics 
evolution graphs to which apply. The following figure is an example of the Response Time 
evolution graph on the Triple Monitoring Engine. 

 

 
Figure 16 - SLO guarantees thresholds shown over the Response Time (left) and Throughput (right) 
metrics graphs: warning (lowest criticality) and error (highest criticality) thresholds as orange and red 

lines, respectively. 

6.5. Applications & Data Services Ranking / Deployment  
Application and Data Services Ranking/Deployment is a top-level component of the 
BigDataStack platform, as defined in the central architecture diagram (see Section 5). It 
belongs within the realisation engine of the platform and is concerned with how best to 
deploy the user’s application to the cloud, based on information about the application and 
cluster characteristics. From a practical perspective, its role is to identify which - of a range of 
potential deployment options - is the best for the current user, given their stated (hard) 
requirements and other desirable characteristics (e.g. low cost or high throughput), as well as 
operationalize the deployment of the user’s application based on the selected option. 
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In practice, the Application and Data Services Ranking/Deployment is divided into three main 
sub-components, namely: the main component ADS-Ranking; and two support components 
ADS-Deploy and ADS-GDT, which we describe in more detail below: 

 Application and Data Services Ranking (ADS-Ranking): This is dedicated to the 
selection of the best deployment option. Note that this component is sometimes 
referred to as the ‘deployment recommender service’, as from the perspective of a 
BigDataStack Application Engineer, it produces a recommended deployment for them 
on-demand.  

 Application and Data Services Deployment (ADS-Deploy): This is concerned with the 
physical scheduling/deployment of the application for the selected deployment 
option via Openshift.  

 Application and Data Services Global Decision Tracker (ADS-GDT): This stores 
information about the state of different applications and decision made about them. 

 
Application and Data Services Ranking (ADS-Ranking) 
ADS-Ranking is tightly coupled to the Application & Data Services Dimensioning (ADS-
Dimensioning) component of BigDataStack that sits above it. The main output of ADS-
Dimensioning is a series of candidate deployment patterns (ways that the user’s application 
might be deployed) including resource usage and quality of service predictions. It is these 
deployment patterns that ADS-Ranking takes as input (see REQ-ADSR-01 [10]) and 
subsequently selects one or more ‘good’ options for the Application Engineer. Each candidate 
deployment pattern represents a possible configuration for one ‘Pod’ in the user’s application 
(a logical grouping of containers, forming a micro-service) [11]. User applications may contain 
multiple pods. 
 
Communication to and from ADS-Ranking is handled via the Publisher-Subscriber design 
pattern. In this case, ‘messages’ are sent between components, which trigger processing on 
the receiving component. More precisely, ADS-Ranking subscribes to the ADS-Dimensioning 
component to receive packages of pod-level candidate deployment patterns (CDPs), one 
package per-pod in the application to deploy. On-receive, this triggers the ranking of the 
provided deployment patterns, as well as the filtering out of patterns that either do not meet 
the user’s requirements, or that are otherwise predicted to provide unacceptable 
performance. After ranking/filtering is complete, ADS-Ranking will select a single deployment 
pattern per-pod to send to the BigDataStack Adaptive Visualisation Environment. Within this 
environment, the user can either choose to deploy their application using the recommended 
patterns directly, customise the patterns and then deploy, or otherwise cancel the 
deployment process. Upon choosing to deploy with a set of patterns, those patterns are sent 
to ADS-Deploy for physical scheduling on the available hardware. 
 
Figure 17 illustrates the data flow between the components around ADS-Ranking. As we can 
see, ADS-Dimensioning first gets information about the user’s application and preferences 
from a BigDataStack Playbook and uses it to produce packages of candidate deployment 
patterns (CDPs). Each CDP represents a deployment configuration that we could use to deploy 
the user’s application pod (where some CDPs will produce more efficient or effective 
deployments than others). These pattern packages are sent as messages to ADS-Ranking, 
which ranks and filters those patterns, finally selecting one per-pod, which is predicted to 
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efficiently and effectively satisfy the user’s requirements. These top patterns are aggregated, 
then placed in a message envelope and sent back to the BigDataStack Adaptive Visualisation 
Environment, where the application engineer can accept those patterns and use them directly 
for deployment, or otherwise customise them first. Once the application engineer is happy 
with the deployment, they can then send the final patterns via the visualisation environment 
to ADS-Deploy, which will schedule deployment on OpenShift.  
 

 
Figure 17 - Process Flow for ADS Ranking/Deploy during First Time Deployment 

 
Internally, ADS-Ranking supports two central operations: 1) the first-time ranking/filtering of 
CDPs; and 2) re-ranking of CDPs in scenarios where the previous deployment is deemed 
unsuitable. The first operation (CDP ranking and filtering) is comprised of three main 
processes. These three processes are: 

 Pod Feature Builder: This takes as input a set of CDPs, and for each CDP in that 
package, it builds a single vector representation of that CDP, which combines all the 
information provided by dimensioning. It can also filter out CDPs that do not meet 
minimal Quality of Service (QoS) requirements, saving computation time later in the 
process. The output of this component is the (filtered) list of CDPs along with their 
new vector representations. This process targets REQ-ADSR-02 [10]. 

 Pod Scoring: This process takes the CDPs and vector representations as input and ranks 
those CDPs based on their predicted suitability, with respect to the user’s desired 
quality of service. To achieve this, it uses either a rule-based model or a supervised 
model [12] trained on previous CDP deployments and their observed fitness. The 
output of this process is a ranking of scored CDPs. This process targets REQ-ADSR-03 
and 04 [10]. 

 Pod Selection: This process takes as input the ranking of CDPs and selects one of these 
CDPs. This may be a simple process that takes the top CDP and filters out the rest. 
However, it may include more advanced techniques to better fit with user needs, such 
as making sure the selected CDP will provide sufficient extra processing capacity, in 
the case of applications that process data streams with fluctuating data rates. The 
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output of this process is a single CDP (per-pod), which is the recommended 
deployment that is shown to the user. This process targets REQ-ADSR-05 [10]. 

If the user’s application is comprised of multiple pods, then the recommended CDP for each 
pod are then collected and aggregated together to form a recommendation for the entire 
application. The aforementioned processes are implemented using Apache Flink [13] to 
facilitate low-latency real-time processing.  The overall flow for first-time ranking/filtering of 
CDPs is shown in Figure 18. In this simplified example, three CDPs are used as input for a single 
application (A1), which is comprised of two pods (P1 and P2). Pod 1 has two CDPs (A1-P1-1 
and A1-P1-2), while Pod 2 has one CDP (A1-P2-1). As we can see from Figure 18, these CDPs 
are first grouped by pod, to create parallel processing streams for each. For each CDP, these 
are then subject to feature extraction, to create the representation vectors. In this case, 
features from the overall pod (e.g. total cost) and features from each container (e.g. container 
latency) are extracted here. These CDPs and feature vectors are sent to pod scoring, to 
produce a numerical estimate of overall suitability of the CDP. The best CDP per-pod (A1-P2-
2 and A1-P2-1 here) are then grouped by application (A1) and then output (to the visualisation 
environment for viewing by the application engineer).  

 

Figure 18 - ADS-Ranking, First Time Deployment Internal Process Flow 
The second function (CDP Re-Ranking) is similar to the primary function, with the exception 
that it takes in a CDP that has been deemed to have failed the user in terms of quality of 
service along with context about that CDP (e.g. why it failed), and it introduces an additional 
‘Failure Encoding’ process: 

 Failure Encoding: This process examines the context of a failed CDP and encodes that 
failure into the CDP structure as features, such that they can be used by the Pod 
Feature Builder when generating the CDP vectors. In this way, properties that promote 
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other CDPs that will not suffer from the same issues as the failed CDP can be 
upweighted during ranking. This process targets REQ-ADSR-07 [10]. 

Figure 19 illustrates the main processes and data flow within ADS-Ranking. In this case, re-
ranking is triggered by sending a set of CDPs representing a quality of service (QoS) failing 
user application deployment to ADS-Ranking. For this example, the application has two pods 
and hence two CDPs (A1-P2-2 and A1-P1-1), where a QoS failure has been detected for A1-
P1-2 (denoted by ). The first step that ADS-Ranking takes is to collect all the alternative 
CDPs that were not selected from the user’s application. These were stored in ADS-GDT 
(Global Decision Tracker), which will be described later. Once these CDPs have been 
collected, any CDPs for pods that were not subject to QoS failures are discarded, as these do 
not need to be considered for re-deployment (A1-P2-1). The remaining CDPs are then 
subject to failure encoding, which converts the failure information into a feature vector that 
can be used during ranking (<x>). The CDPs are then sent to the Pod Feature Builder in a 
similar manner to first-time ranking, where the normal process is followed, with the 
exception that the additional features obtained from the failure encoding are used to 
enhance ranking effectiveness. 
  

 
Figure 19 - ADS-Ranking, Re-Ranking Internal Process Flow 

 
Application and Data Services Deployment (ADS-Deploy)  
This process is triggered by the BigDataStack Adaptive Visualisation Environment and takes 
as an input the selected CDP(s). The aim of this component is two-fold. First, to use the given 
CDP(s) to launch the user’s application pods on the cloud infrastructure. Second, to notify 
relevant BigDataStack components of the deployment status, such that follow-on processes 
(such as monitoring) can commence. To achieve this, the ADS-Deploy component interacts 
with a container orchestration service (e.g. OpenShift), translating the CDP into a sequence 
of deployment instructions.  
 
This task is divided into the following steps: 
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1. Receive and check CDP. The component checks that the CDP triggering the 
deployment process is structurally correct. 

2. Translate CDP. The CDP is translated to an ontology that the orchestrator will 
understand. 

3. Interpretation and deployment. The orchestrator interprets the file received and starts 
the containers and rules. 

4. Communication with the user. The result of the process (either success or fail) is 
communicated to the rest of the architecture (and ultimately, to the user) as an event 
by means of a publisher-subscriber model. The main subscribers to this event will be 
the Dynamic Orchestrator, ADS-GDT components, along with the BigDataStack 
Adaptive Visualisation Environment. 

 
Application and Data Services Global Decision Tracker (ADS-GDT) 
The role of the Global Decision Tracker is (as its name suggests) to keep track of any state or 
decisions made about a user’s application related to its deployment or run-time performance. 
In effect, it is a data store that holds both the current configuration (BigDataStack Playbook 
and associated CDPs) for each deployed user application, along with relevant events 
generated by other components (e.g. ADS-Deploy reporting a successful deployment or the 
dynamic orchestrator reporting a quality of service failure). 
 
Like the other ADS-* components, ADS-GDT uses the publisher-subscriber pattern to enable 
asynchronous one-to-many communication flows in a standardised and reliable manner. In 
this case, it subscribes to all the message queues that are relevant to deployment or 
application run-time activities and saves them within a local database. It also hosts a RESTful 
API service that provides bespoke access to the collected data for both BigDataStack 
services (e.g. ADS-Ranking during re-ranking) but also to the BigDataStack Adaptive 
Visualisation Environment, where application state information is needed for visualisation.  

6.6. Data Quality Assessment 

The data quality assessment mechanism aims at evaluating the quality of the data prior to 
any analysis on them to ensure that analytics outcomes are based on datasets of specific 
quality. To this end, BigDataStack architecture includes a component to assess the data 
quality. The component incorporates a set of algorithms to enable domain-agnostic error 
detection, in a given dataset. The domain-agnostic approach followed aims at facilitating the 
goals of data quality assessment without prior knowledge of the application domain / context, 
thus making it “generalised” and applicable to different application domains and as a result 
to different datasets. While current solutions in data cleaning are quite efficient when 
considering domain knowledge (for example in eHealth regarding the correlation between 
different measurements of different health parameters), they provide limited results 
regarding data volatility, if such knowledge is not utilised. BigDataStack will provide a data 
quality assessment service that exploits Artificial Neural Networks (ANN) and Deep Learning 
(DL) techniques, to extract latent features that correlate pairs of attributes of a given dataset 
and identify possible defects in it. 
 
The key issues that need to be handled by the Data Quality Assessment service are: 
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 Work in a context-aware but domain-agnostic fashion. The process should be 
adaptable to any dataset, learn the relationships between the data points and 
discover possible inconsistencies. 

 Model the relationships between data points and reuse the learned patterns. The 
system should store the models learned by the machine learning algorithms, and 
reuse them through an optimisation component, which checks if the raw data have 
similar patterns, dataset structure or sources. In that case, already existing models 
should be activated, to complete the process in an efficient manner. 

The way to learn and predict the relationships between data points, to discover possible 
deviations, is to exploit the recent breakthroughs in Deep Learning, and the idea of an 
embedding space. Figure 20 depicts a serial architecture, which tries to predict if two entities 
are related to each other. 
 

 
 

Figure 20 - Domain agnostic data cleaning model architecture 
 
Given the learned distributed encodings of each entity 𝑥, 𝑦 or, in our case any data point, we 
can discover if these two candidate entities or data points are related. Thus, considering the 
DANAOS use case, if the temperature sensor emits a value that is illogical given other rpm 
sensor readings, the relationship between these two data points would be associated with a 
low score (or probability). This could provide significant improvements in the results of an 
analytical task that the data scientist wants to execute, and is part of a general business 
process. 
 
To optimize the data quality assessment process, we introduce a subcomponent that 
retrieves previously learned models, when a similar dataset structure arrives in the system, 
or the same data source sends new data. 
 
Data quality assessment component inputs: 

 The raw data ingested by the data owner through the Gateway & Unified API 
 The data model provided by the optimizer if exists 
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 User preferences and specifications, ingested through the Data Toolkit 

Data cleaning component outputs: 
 Assessed data, establishing data veracity 

o A probability score for each tuple in the database column 
 Trained, reusable ML models, stored in a repository for later use 

The main structure of the Data Quality Assessment component is depicted in Figure 21. 
Based on this figure the flow is as follows: 

 The Data Pre-processing unit takes raw data and converts them in a form that the 
machine learning algorithms can work with  

 The main pillar of the service is the data cleaning component, which takes the pre-
processed data as input, trains a new model and stores it in the model repository 

 During the assessment phase, a scheduler pulls newly ingested data to be assessed 
 The data quality assessment module retrieves the learned model from the repository 

and makes the necessary predictions 
 The assessed data are updated into the distributed storage 

 
Figure 21 - Data Cleaning Module Architecture 

6.7. Real-time CEP 
Streaming engines are used for real-time analysis of data collected from heterogeneous data 
sources with very high rates. Given the amount of data to be processed in real-time (from 
thousands to millions of events per second), scalability is a fundamental feature for data 
streaming technologies. In the last decade, several data streaming systems have been 
released. StreamCloud [14], was the first system addressing the scalability problem allowing 
a parallel distributed processing of massive amount of collected data. Apache Storm [15] and 
later Apache Flink [13] followed the same path providing commercial solutions able to 
distribute and parallelise the data processing over several machines to increase the system 
throughput in terms of number of events processed per second. Apache Spark [16] added 
streaming capability onto their product later. Spark’s approach is not purely streamed, it 
divides the data stream into a set of micro-batches and repeats the processing of these 
batches in a loop. 
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The complex event processing for the BigDataStack platform will be a scalable complex event 
processing (CEP) engine able to run in federated environments with heterogeneous devices 
with different capabilities and aggregate and correlate real-time events with structured and 
non-structured information stored in the BigDataStack data stores. The CEP will take into 
account the features of the hardware, the amount of data being produced and the bandwidth 
in order to deploy queries. The CEP will also consider redeploy and migrate queries if there 
are changes in the configuration, increase/decrease of data, changes in the number of queries 
running or failures.  
 
Data enters the CEP engine as a continuous stream of events, and is processed by continuous 
queries. Continuous queries are modeled as an acyclic graph where nodes are streaming 
operators and edges are data streams connecting them. Streaming operators are 
computational units that perform operations over events from input streams and outputs 
resulting events over its outgoing streams. Streaming operators are similar to relational 
algebra operators, and they are classified into three categories according with their nature, 
namely: stateless, stateful and data store. 

 Stateless operators are used to filter and transform individual events. Output events, 
if any, only depend on the data contained in the current event. 

 Stateful operators produce results based on state kept in a memory structure named 
sliding window. Sliding windows store tuples according to spatial or temporal 
conditions. The CEP provides aggregates and joins based on time windows (e.g., 
events received during the 20 seconds) and size windows (e.g. the last 20 events). 

 User defined operators. They implement other user defined functions on streams of 
data. 

 Data store operators are used to integrate the CEP with the BigDataStack data stores. 
These operators allow to perform correlation among real time streaming data and 
data at rest. 

 
The main components of BigDataStack CEP are: 

 Orchestrator: It oversees the CEP. It registers and deploys the continuous queries in 
the engine. It monitors the performance metrics and decides reconfiguration actions. 

 Instance Manager (IM): It is the component that runs a continuous query or a piece of 
it. They are single threaded and run in one core. 

 Reliable Registry: It stores information related to query deployments and components 
status. It is implemented by Zookeeper. 

 Metric Server: It handles all performance metrics of the CEP. The collected metrics are 
load, throughput, latency of queries, subqueries and operators, CPU, memory and IO 
usage of IMs. These metrics are handled by Prometheus time series database. 

 Driver: The interface between the CEP and other applications. Applications use the 
CEP driver to register/unregister or deploy/undeploy a continuous query, subscribe 
with the output streams of the queries to consume results and mainly to send events 
to the engine. 

 
Figure 22 shows the different components of the CEP and their deployment in several nodes. 
Each node can run several Instance Managers (one per core).  The registry and metric server 
are deployed in different nodes although they can be collocated in the same node. The client 
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and receiver applications are the ones producing and consuming the CEP data (shown as 
dashed black lines). The rest of the communication is internal to the CEP. The Orchestrator 
communicates with the IMs to deploy queries (configuration messages) and registers this 
information in Zookeeper (Zookeeper communication). All components send performance 
metrics to the metric server (yellow dashed lines). 
 

 
Figure 22 - CEP Components and Deployment 

6.8. Process mapping and Analytics 

The Process mapping and analytics component of the BigDataStack architecture consists of 
two separate sub-components: Process Mapping and Process Analytics.  

 The objective of the Process Mapping sub-component is to predict the best algorithm 
from a set of algorithms available in the Predictive and Process Analytics Catalogue, 
given a specific dataset D and a specific analysis task T. 

 The goal of the Process Analytics sub-component is to discover Processes from event 
logs and apply Process Analytics techniques to the discovered process models in order 
to optimize overall processes (i.e., workflows). 

6.8.1. Process Mapping 

The inputs of the Process Mapping sub-component consist of: 
 The analysis task T (e.g., Regression, Classification, Clustering, Association Rule 

Learning, Reinforcement Learning, etc.) that the user wished to perform 
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 Additional information that is dependent on the analysis task T (e.g., the response – 
predictor variables in the case of Supervised Learning, the desired number of clusters 
in the case of Clustering, etc.). 

 A dataset D that is subject to the analysis task T 

Table 3 provides an overview of the main symbols used in the presentation of the Process 
Mapping sub-component. 

Symbol Description 
T An analysis task (e.g., clustering, classification…) 
D A dataset  
T(D) The analysis task T applied on dataset D 
A(T) An algorithm that solves the analysis task T (e.g., A(T)=K-means for T=Clustering) 
A(T,D) An algorithm applied on D to solve the task T 
M(D) A model describing a dataset D 
T An analysis task (e.g., clustering, classification…) 
D A dataset  
T(D) The analysis task T applied on dataset D 

Table 3 - Μain symbols used in Process Mapping 
 
The output of the Process Mapping sub-component is an algorithm A(T) that is automatically 
selected as the best for executing the data analysis task T at hand. The best algorithm can be 
based on various quantitative criteria, including result quality or execution time, and 
combinations thereof.  
 

 

Figure 23 - High-level architecture of Process Mapping sub-component 
 
High-level Architecture 
 
Figure 23 provides an overview of the different modules and their interactions. The Process 
Mapping sub-component comprises the following four main modules: 
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 Data Descriptive Model: This module takes as input a dataset in a given input form and 
performs automatically various types of data analysis tests and computation of 
different statistical properties, in order to derive a model M(D) that describes the 
dataset D. Based on the relevant research literature, examples of information that is 
typically captured by the model M(D) include: dimensionality and the intrinsic (fractal) 
dimensionality, set of attributes, types of attributes, statistical distribution per 
numerical attribute (mean, median, standard deviation, quantiles), cardinality for 
categorical attributes, statistics indicating sparsity, correlation between dimensions, 
outliers, etc. The exact representation of the model M(D) is going to be presented in 
the following more concretely, but it can be considered as a feature vector. Thus, in 
the following, the terms model and feature vector are used interchangeably. 
Subsequently, the produced feature vector M(D) is going to be used in order to 
identify previously analysed datasets that have similarities with the given dataset. This 
is achieved by defining a similarity function sim(M(D1),M(D2)) that operates at the 
level of feature vectors M(D1) and M(D2). 

 Analytics Engine: The main role of this module is to provide an execution environment 
for analysis algorithms. Given a specific dataset D and a task T, the Analytics Engine 
can execute the available algorithms A(T) on the specific dataset, and obtain its result 
A(D,T). The available algorithms are retrieved from the Predictive and Process 
Analytics Catalogue for algorithms available in BigDataStack. In this way, evaluated  
results of analysis algorithms executed on datasets are kept along with the model 
description of the dataset. Separately, we implement in the analytics engine the 
functionality of computing similarities between models of datasets, thereby enabling 
the retrieval of the most similar datasets to the dataset at hand. 

 Analytics Repository: The purpose of this repository is to store a history (log) of 
previous evaluated results of data analysis tasks on various datasets. Each record in 
this repository corresponds to one previous execution of a specific algorithm on a 
given dataset. It contains the model of dataset that has been analysed in the past, 
along with the algorithm executed, and its associated parameters. In addition, the 
record keeps one or more quality indicators, which are numerical quantities 
(evaluation metrics) that evaluate the performance of the specific algorithm when 
applied to the specific dataset. 

 Evaluator: Its primary role is to evaluate the results of an algorithm that has been 
executed, and provide some numerical evaluations indicating how well the algorithm 
performed. For example, for clustering algorithms, several implementations of 
clustering validity measures can be used to evaluate the goodness of derived clusters. 
For classification algorithms, the accuracy of the algorithm can be computed. For 
regression algorithms, R-Squared, p-values, adjusted R-Squared and other metrics will 
be computed to evaluate the quality of the result. Apart from these quality metrics, 
performance-related metrics are also recorded, with execution time being the most 
representative such metric. 

Once the Process Mapping sub-component has received the required inputs, the data is 
ingested into the Data Descriptive Model where characteristics and morphology aspects of 
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the dataset D are analysed, in order to produce the model M(D). Then, together with user 
requirements are forwarded to the Analytics Engine. At this point a query is made from the 
Analytics Engine to the Analytics Repository, a storage of previously executed analysis models 
and the final algorithms that were executed in each case. We distinguish two cases: 

 No similar models can be found: In this case, the available algorithms from the 
Predictive and Process Analytics Catalogue that match the user requirements are 
executed, and the results are returned and evaluated in the Evaluator (where quality 
metrics are computed for each run depending on its performance). The results are 
stored in the Analytics Repository. 

 A similar model can be found: In this case, the corresponding algorithm (that 
performed well in the past on a similar dataset) is executed on the dataset at hand, 
and the results are again analysed in the Evaluator. The results are again stored in the 
Analytics Repository. In case the result is not satisfactory, the process can be repeated 
for the second most similar model, etc. 

Example of Operation 

The operation of Process Mapping entails two discrete phases: (a) the learning phase, and (b) 
the in-action phase.  

In the learning phase, the system executes algorithms on datasets and records the evaluations 
of the results in the analytics repository. Essentially, the system learns from executions of 
algorithms of different datasets.  

 

Figure 24 - Learning phase of Process Mapping: Processing the first dataset D 
 
The learning phase starts without any evaluated results in the analytics repository. As shown 
in Figure 24, when the first dataset D is given as input, the Descriptive Model Generator 
produces the model M(D). In parallel, the available algorithms A1, A2, …, An are executed on D 
and their result is given to the Evaluator, which computes the available metrics M1 and M2. 
Examples of metrics could be accuracy and execution time. Then, this information is stored in 
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the analytics repository: the model M(D), the algorithm Ai, and the values of metrics M1 and 
M2. Notice that the actual dataset is not stored, however it is shown in the figure just for 
illustration purposes. 
 
 

 

Figure 25 - Learning phase of Process Mapping: Processing the second dataset D' 
 
Figure 25 shows the processing of a second dataset D’, still in the learning phase. The same 
procedure as described above is repeated, and the results are added to the Analytics 
Repository. 

The in-action phase corresponds to the typical operation of Process Mapping in the context 
of BigDataStack, namely to perform the actual mapping from an abstract task T (which is 
present as a step of a process designed in the process modelling framework) to a concrete 
algorithm A(T) that can be executed on the dataset D at hand, i.e., A(T,D). The following 
example aims at clarifying the detailed operation. 

Figure 26 shows a new dataset which is going to be processed based on the specification 
received from the process modelling framework. Next, the Process Mapping automatically 
suggests the best algorithm (A*) from the pool of available algorithms A1, A2, …, An.  
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Figure 26 - The in-action phase of Process Mapping 
 
As depicted in the figure above, the Descriptive Model Generator produces the model for the 
new dataset, and then this model is compared against all available models in the analytics 
repository in order to identify the most similar dataset. In this example, M(D) is the most 
similar model. Then, the best performing algorithm is selected from the results kept for M(D). 
The values of available metrics (M1 and M2) are used to identify the best algorithm based on 
an optimization goal, which could rely to one metric or a combination of metrics, according 
the needs of the application. In the example, the output of Process Mapping is depicted as 
algorithm A1. 

Technical Aspects of Prototype Implementation 

At the time of this writing, which corresponds to the first half of the project, we have a 
prototype implementation of Process Mapping in place. The prototype targets a specific class 
of analysis algorithms, namely Clustering algorithms, in order to be focused. In the second 
half of the project, this functionality is going to be extended. Below, we provide the technical 
details and individual techniques used by Process Mapping. 

First, the Descriptive Model Generator follows two alternative approaches for model 
generation (i.e., feature extraction) from the underlying dataset, based on the state-of-the-
art methods for automatic clustering algorithm selection. The first approach, called attribute-
based, generated eight (8) features from the dataset: logarithm of number of objects, 
logarithm of number of attributes, percentage of discrete attributes, percentage of outliers, 
mean entropy of discrete attributes, mean concentration between discrete attributes, mean 
absolute correlation between continuous attributes, mean skewness of continuous 
attributes, and mean kurtosis of continuous attributes. The second approach, called distance-
based, computes the vector of pairwise distances d of all pairs of objects in the dataset. Then, 
it generates nineteen (19) features from d. The first five (5) features are the mean, variance, 
standard deviation, skewness and kurtosis of d. The next ten (10) features are the ten 
percentiles of distance values in d. The last four (4) features are based on the normalized Z-
score, namely they correspond to the percentage of normalized Z-score values in the range: 
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[0,1), [1,2), [2,3), [3,infinity). Determining the best approach between attribute-based and 
distance-based is a subject of experimental evaluation in the context of BigDataStack. A 
recent paper reports that distance-based approach is better for clustering tasks. 

Second, the Analytics Engine is implemented as a wrapper around WEKA, a library for machine 
learning tasks. In the current implementation three clustering algorithms are used (Kmeans, 
FarthestFirst, and EM) for the proof-of-concept prototype. In the second half of the project, 
we are going to replace WEKA with Spark’s MLlib. Also, we are going to extend the 
functionality to other machine learning and analysis tasks, other than clustering. 

Last, but not least, the Evaluator uses metrics both for the quality of data analysis as well as 
for performance. The result quality for clustering is evaluated using Silhouette coefficient, a 
metric for clustering quality assessment that is based on intra-cluster distances and inter-
cluster distances. In terms of performance, the Evaluator records the execution time needed 
by the algorithm to produce the results. The application that runs in BigDataStack can select 
whether algorithm selection will be based on optimizing result quality, performance, or an 
arbitrary (application-defined) combination of these two. 

6.8.2. Process Analytics 

The Process Analytics sub-component comprises the following four main modules: 
 Discovery: The main objective of this component is via a given event log to create 

a process model. 
 Conformance Checking/Enhancement: This component’s role is dual. Firstly, in the 

Conformance Checking Stage a process model is evaluated against an event log for 
missing steps, unnecessary steps, and many more (process model replay). 
Secondly, in the Enhancement Stage user input is considered (e.g. cost-
effectiveness or time effectiveness of a process) to create an according model of 
a process. Also, in this stage dependency graphs will be created and through 
metrics, such as direct succession and dependency measures to be utilized by the 
Predictions component.  

 Log Repository: A repository consisting of any changes to a model during 
Conformance Checking/Enhancement stage. 

 Prediction: Dependency graphs and weighted graphs of process models, created 
in the Enhancement phase will be used in collaboration with an active event log to 
predict behaviour of an active process. 

 Model Repository: A storage unit of all process models, user-defined or created in 
the Discovery stage. 

The input variables of this mechanism are: 
 Event logs. 
 Process models (not obligatory). 

The output of the mechanism is as follows: 
 Discovered process models. 
 Enhanced process models. 
 Diagnostics on process models. 
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 Predictions - Recommendations on events occurring in process models. 

The main structure of the predictive component is depicted in Figure 27: 
 

 
Figure 27 - Internal architecture of Process Analytics sub-component 

6.9. Seamless Analytics Framework 

A single logical dataset can be stored physically in many different data stores and locations. 
For example, an IoT data pipeline may involve an ingestion phase from devices via a message 
bus to a database and after several months the data may be moved to object storage to 
achieve higher capacity and lower cost. Moreover, within each lifecycle phase, we may find 
multiple stores or locations for reasons such as compliance, disaster recovery, capacity or 
bandwidth limitations etc. Our goal is to enable seamless analytics over all data in a single 
logical dataset, no matter what the physical storage organization details are. 
 
In the context of BigDataStack, we could imagine a scenario where data would stream from 
IoT devices such as DANAOS ship devices, via a CEP message bus, to a LeanXcale data base 
and eventually, under certain conditions be migrated to the IBM COS Object Store. This flow 
makes sense since LeanXcale provides transactional support and low latency but has capacity 
limits. Therefore, once the data is no longer fresh it could be moved to object storage to 
vacate space for newer incoming data. This approach is desirable when managing Big Data.  
 
The seamless analytics framework aims to provide tools to analyse a logical dataset which 
may be stored in one or more underlying physical data stores, without requiring deep 
knowledge of the intricacies of each of the specific data stores, nor even awareness of where 
the data is exactly stored. Moreover, the framework provides the tools to automatically 
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migrate data from the relational datastore to the object store, without the interference of a 
database administrator, with no downtime or expensive ETLs, ensuring data consistency 
during the migration process at the same time. 
 
A given dataset may be stored within multiple data stores and the seamless analytics 
framework will permit analytics over it in a unified manner. LXS Query Engine is extended in 
order to support queries over a logical database that might be split across different and 
heterogeneous datastores. This extended query engine will serve as the federator of the 
different datastores and will a) push down incoming queries to each datastore b) retrieve the 
intermediate results and merge them in order to return the unified answer to the caller. 
Therefore, the data user will have the impression of executing a query against a single 
datastore which hosts the logical dataset, without having to know how the dataset is 
fragmented and split within the different stores. Finally, the federator will provide a standard 
mechanism for retrieving data: JDBC, thus allowing for a variety of analytical frameworks such 
as Apache Spark to make use of the Seamless Analytical Framework to perform such tasks. 
 
The data lifecycle is highlighted in the following figure: 

 
Figure 28 - Seamless Interface 

Data is continuously produced in various IoT devices and forwarded to the CEP engine for an 
initial real-time analysis. This analysis might identify potential alerts or challenges which are 
triggered by submitting specific rules which use data coming from a combination of sources 
and are relevant under a specific time window. CEP later ingests data to the LeanXcale 
relational datastore, which is the first storage point due to its transactional semantics that 
ensure data consistency. After a period, data can be considered historical and are of no use 
for an application. However, they are still invaluable as they can participate in analytical 
queries that can reveal trends or customer behaviours. As a result, data are transferred to the 
Object Store that is the best candidate for such type of queries. Due to this, data is 
continuously migrating between stores, and the seamless interface provides the user with a 
holistic view, without needing to keep track of what was migrated when. 

6.10. Application Dimensioning Workbench  

The goal of the dimensioning phase is to provide insights regarding the required infrastructure 
resources primarily for the data services components, linking the used resources with load 
and expected QoS levels. To this end, it needs to link between the application/service-related 
information (such as KPIs and workload, parameters of the data service etc.) and the used 
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resources to be able to provide recommendations towards the deployment mechanisms, 
through e.g. prediction and correlation models. Benchmarking against these services is 
necessary in order to concentrate the original dataset that is needed in a variety of business 
scenarios, such as sizing the required infrastructure for private deployments of the data 
services or consulting deployment mechanisms in a shared multitenant environment where 
multiple instances of a data service offering may reside.  
 
The main issues that need to be handled by the Dimensioning Workbench are: 

 The target trade-off that needs to be achieved between a generic functionality and an 
adapted operation. For example, benchmarking for each individual application 
request would lead to very high and intolerable delays during the deployment process. 
Thus, one would need to abstract from the specifics of an application instance through 
the usage of suitable workload features, benchmark in advance for a variety of these 
workload features and thus only need to query for the most suitable results during the 
deployment stage. 

 The achieved abstraction and automation for easily launching highly scalable and 
multi-parameter benchmarks against the data services, with minimal user interaction 
and need for involvement. This would require the rationale of a benchmarking 
framework inside ADW that will be able to capture the needed variations between the 
configuration parameters (workload, resource etc), adapt to the needed client types 
per data service as well as the target execution environment of the tests (e.g. different 
execution platforms such as OpenShift, Docker Swarm, external public Cloud offerings 
such as AWS etc). 

 The workflow/graph-based nature of the application, which implies that application 
(and data service) structure should be known and taken under consideration by the 
analysis. To this end, needed annotations are required so that the generic structure 
which is provided as input to the Workbench through the Data Toolkit contains all the 
necessary information such as expected QoS levels (potentially for different metrics), 
links between the service components etc. On top of this structure, the workbench 
can quantify the expected QoS per component and then propagate through the 
declared dependencies. 

 While application structure is provided to the workbench, this will often not imply a 
particular deployment configuration for the application (e.g. what node types will be 
suitable for the user’s application). Multiple trade-offs in this domain could also be 
given to the users, enabling them to make a more informed final decision based on 
cost or other parameters. For this reason, the dimensioning workbench needs to 
receive this input of available deployment patterns from the Pattern Generation in 
order to populate them with the expected QoS, information that is taken under 
consideration in the process for final ranking and selection.  

 Adaptation of benchmarking tests in a dockerized manner in order to be launched 
through the framework in a coordinated and functional manner, based on each test’s 
requirements and needed sequences. 

Dependencies of the dimensioning component especially in the form of anticipated exchange 
of information (in type and form) are presented in the following bullets. Inputs include:  
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 Structure of the application along with the used data services is considered an input, 
as concretized by the Data Toolkit component (in the form of a playbook file, the 
BigDataStack Playbook) and passed on to the Dimensioning component, following its 
enrichment with various used resource types from the Pattern Generator, and 
including expected workload levels inserted by the user in the Data toolkit phase. This 
is the structure upon which the Dimensioning workbench needs to append 
information regarding expected QoS per component.  

 Types of infrastructure resources available in terms of size, type, etc (referred to as 
resource templates). This information is necessary at the Pattern Generator side in 
order to create candidate deployments. 

 Different types of Data Services will be provided by BigDataStack to the end users. 
Each of these services may have different characteristics and functionalities, affected 
in a different manner and quantity by the application input (such as the data schema 
used). Consideration of these features should be included in the benchmarking 
workload modelling of the specific service (e.g. number of columns in the schema 
tables, types of operations, frequency of them  etc.), as well as inputs that may be 
received by the application developer/data scientist, such as needed quality 
parameters of the service (such as latency, throughput needed etc.) or other 
preferences declared through the Data Toolkit.  

 Application related current workload and QoS values should be available to enable the 
final creation of the performance dataset, upon which any queries or modelling will 
be performed. This implies a collaboration and adaptation with the used benchmark 
tests and/or infrastructure monitoring components such as the Triple Monitoring 
Engine, in case the used benchmarks do not report on the needed metrics.   

 Language and specification used by the Deployment component, or any other 
provisioned execution environment, given that ADW needs to submit such descriptors 
for launching the benchmarking tests. 

 Exposure of the necessary information, such as endpoints, configuration, results etc 
to the Visualization components of the project, in order to be embedded and 
controlled from that side as well. Thus relevant APIs and JSON schemas need to be 
agreed and implemented based on this feature. 

 
Necessary outputs:  

 The most prominent output of the Dimensioning phase is the concretized (in terms of 
expected QoS) playbook for a candidate deployment structure for the used data 
services in the format needed by the ADS-Ranking component that utilizes the 
dimensioning outcomes. This implies that the format used by Dimensioning to 
describe these aspects should be understood by the respective components and thus 
was agreed in collaboration, defined currently as a Kubernetes configuration template 
type of file structure called a BigDataStack Playbook. More concretely, this is 
operationalized as a series of candidate deployment patterns (CDPs), which describe 
the different ways that the user’s application might be deployed along with the 
expected QoS levels per defined metric. CDPs are provided in the respective file 
format, such that they can be easily used to perform subsequent application 
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deployment. The Dimensioning phase will augment each CDP with estimated 
performance metrics and/or quality of service metrics, providing a series of indicators 
that can be used to judge the potential suitability of each CDP. These estimates are 
used later to select the CDP that will best satisfy the user’s deployment 
requirements/preferences. 

 Intermediate results include the benchmarking results that are obtained through the 
benchmarking framework of ADW. These need to be exposed either to internal ADW 
components for subsequent stages (e.g. modelling or population of the playbook) or 
external such as Visualization panels towards the users for informative purposes. 

The main structure of the Dimensioning is depicted in Figure 29. The component list is as 
follows: 

 Pattern Generation: The role of pattern generation is to define the different ways that 
a user’s application might be deployed. In particular, given the broad structure of a 
user’s application provided by the Data Toolkit, there are typically many ways that 
this application might be deployed, e.g. using different node types or utilizing 
different replication levels. We refer to these different ways that a user’s application 
might be deployed as ‘candidate deployment patterns’ (CDPs). CDPs are generated 
automatically through analysis of the user’s application structure provided in the form 
of a ‘BigDataStack Playbook’ file from the Data Toolkit, as well as the available cloud 
infrastructure. Some CDPs will be more suitable than others once we consider the 
user’s requirements and preferences, such as desired throughput or maximum cost. 
Hence, different CDPs will encode various performance/cost trade-offs. These CDPs 
define the configurations that are used as filters for retrieving the most relevant 
benchmarking results during the Dimensioning phase, producing predicted 
performance and quality of service estimations for each. Even though Pattern 
Generation is part of Dimensioning, it is portrayed as an external component given 
that for each CDP the core Dimensioning block will be invoked. 

 ADW Core: The ADW Core is the overall component that is responsible for the main 
functionalities of Dimensioning. It is split into two main parts, the ADW Core 
Benchmarking, which is responsible for implementing and storing benchmarking runs 
with various setups, and the ADW Core Runtime that is used during the assisted 
deployment phase of BigDataStack in order to populate the produced CDPs with the 
predicted QoS levels. Following, a highlight of the various functionalities of each 
element is described, split into more fine-grained parts. 

 Bench UI: The Bench UI is used by the Data Service owner in order to define the 
parameters of the benchmarking process, which is performed “offline”, thus not in 
direct relationship to a given application deployment during runtime. It is necessary 
for this user to investigate the performance considerations of their service and 
proceed with this stage, during the incorporation of their data service in the 
BigDataStack ecosystem, in order to have gathered the necessary data a priori and 
not need to benchmark during the actual application deployment. The latter would 
create serious timing considerations and limitations that would not be tolerated by 
the end users. Through the Bench UI, multiple parameters can be defined, leading to 
a type of parameter sweep execution of a test, in order to automate and enable an 
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easier result gathering process. The UI includes a visual element for selection of the 
parameters, as well as a relevant REST endpoint in which the user can submit a JSON 
description of the test (thus enabling further automation through multiple REST 
submissions). It can also be used to monitor the progress of the test. Result viewing 
and relevant queries can also be performed via the central visualization component 
of BigDataStack, while a workload definition tab is expected to be supported also in 
Y3 of the project. 

 Test Control: Test control is used in order to prepare, synchronize and configure test 
execution. A number of steps are needed for this process based on the user’s selected 
options, such as running tests in a serial or parallel manner, preparing shared volumes 
and networks and so on. 

 Deployment Description Adapter: In order to enable launching of the defined tests in 
an execution platform (such as Openshift, Docker Swarm, external Clouds etc), 
relevant deployment descriptors should be created. For example, for Openshift a 
relevant playbook file needs to be created and populated with the parameters 
selected for the benchmark tests, such as input arguments, selected resources etc 
and then forwarded to ADS Deploy. A playbook template structure is created 
beforehand for each bench test type based on the execution needs of each test (e.g. 
number and type of containers, needed shared volumes and networks etc), necessary 
included data service etc, that is then populated with the specific instantiation’s 
details. Different execution platforms can be supported through the inclusion of 
relevant plugins that implement the according formats of that platform or the 
relevant API calls to setup the environment (a Docker Swarm version is already 
supported at this time). Through this setup the system under stress (data service) is 
automatically deployed, as well as the necessary number of bench test clients in order 
to cover the desired load levels. 

 Image repository: While this refers to the main image repository across the project, 
its inclusion here is used to indicate the necessary inclusion of the bench tests images, 
appropriately adapted based on the benchmarking framework’s needs, in terms of 
execution, configuration and result storing. 

 Results/Model repository: This component is intended to hold the benchmarking 
results obtained through the test execution process as well as hold the created 
regression models used during the Result Retrieval queries in the Runtime phase (Y3). 

 Structure Translator: This component acts as an abstraction layer and is responsible 
for obtaining the output of the Data Toolkit containing the application structure in the 
format this is expressed (e.g. playbook service structure) and extracting the 
parameters that are needed in order to instantiate the query towards the result 
retrieval phase. Furthermore, in cases of multi-level applications, it is responsible for 
propagating the process across the service graph. 

 Result Retrieval: This component is responsible for obtaining the specified 
deployment options from the CDPs, the anticipated workload and produce the 
predicted QoS levels of the service. This may happen either through direct querying 
of the stored benchmarked results (y2) or through the creation and training of 
predictive regression models (Y3) that will also be able to interpolate for cases that 
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have not been investigated, based on the training of the regressor and the depiction 
of the outputs (QoS) dependency from the predictor inputs (workload and h/w-s/w 
configuration used). 

 Output Adaptor: This component acts as an abstraction layer and is responsible for 
generating the output format needed for the communication with ADS Ranking (in 
the particular case enriching the inputed playbook file with the extra QoS metrics).  

 
 

Figure 29 - Application dimensioning internal structure and link with external components 

6.11. Big Data Layout and Data Skipping 

Here we focus on how to best run analytics on Big Data in the cloud. Today’s best practices to 
deploy and manage cloud compute and storage services independently leaves us with a 
problem: it means that potentially huge datasets need to be shipped from the storage service 
to the micro-service to analyse data. If this data needs to be sent across the WAN then this is 
even more critical. Therefore, it becomes of ultimate importance to minimize the amount of 
data sent across the network, since this is the key factor affecting cost and performance in 
this context. 
 
We refer the reader to the BigData Layout section (8.10) of the D2.1 BigDataStack deliverable 
which surveys the main three approaches to minimize data read from Object Storage and sent 
across the network. We augmented these approaches with a technique called Data Skipping, 
which allows the platform to avoid reading unnecessary objects from Object Storage as well 
as avoiding sending them across the network (also described in D2.1). As explained there, in 
order to get good data skipping it is necessary to pay attention to the Data Layout.  
 
In BigDataStack data skipping provides the following added-value functionalities:  

1. Handle a wider variety of datasets, go beyond geospatial data  
2. Allow developers to define their own data skipping metadata types using a flexible 

API. 
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3. Natively support arbitrary data types and data skipping for queries with UDFs (User 
Defined Functions) 

4. Handle continuous streaming data that is appended to an existing logical dataset. 
5. Continuously assess the properties of the streaming data to possibly adapt the 

partitioning scheme as needed 
6. Handle general query workloads. This is significant because often different queries 

have different, even conflicting, requirements for data layout.  
7. Handle query workloads which change over time.  
8. Build a benefit/cost model to evaluate whether parts of the dataset should be 

partitioned anew (thus rewritten) to adapt to significant workload changes. 
 
Previous research focused on the HDFS, whereas we plan to focus on Object Storage, which 
is of critical importance in an industrial context. Object Storage adds constraints of its own:  
once an object has been put in the Object Store, it cannot be modified, where even appending 
to an existing object is not possible, neither can it be renamed. This means that it is important 
to get the layout right as soon as possible and avoid unnecessary changes. Moreover, it is 
important for objects to have roughly equal sizes (see our recent blog on best practices [17]), 
and we are researching the optimal object size and how it depends on other factors such as 
data format. Moreover, the cost model for reorganizing the data layout is likely to be different 
for Object Storage than for other storage systems such as HDFS. 

6.12. Process modelling framework 

Process modelling provides an interface to business users to model their business processes 
and workflows as well as to obtain recommendations for their optimization following the 
execution of process mining tasks on the BigDataStack analytics framework. The outcome of 
the component is a model in a structural representation – a JSON formatted file. The latter is 
actually a descriptor of the overall graph reflecting the application and data services mapped 
to specific executables that will be deployed to the BigDataStack infrastructure. To this end, 
the descriptor is passed to the Data Toolkit component and then to the Application 
Dimensioning Workbench to identify their resource requirements prior to execution.  
 
The main issues that need to be handled by the Process modeling framework are:  

 Declarative process modelling approach: Processes may be distinguished in Routine 
(Strict) and Agile. Routine processes are modelled with the imperative method that 
corresponds to imperative or procedural programming, where every possible path 
must be foreseen at design time and encoded explicitly. If a path is missing, then it is 
considered not allowed.  Classic approaches like the BPEL or BPMN follow the 
imperative style and are therefore limited to the automation type of processes. The 
metaphor employed is the flow chart. Agile processes are modeled with the 
declarative method according to which declarative models concentrate on describing 
what must be done and the exact step-by-step execution order is not directly 
prescribed; only the undesired paths and constellations are excluded so that all 
remaining paths are potentially allowed and do not have to be foreseen individually. 
The metaphor employed is rules/constraints. Agility at the process level, entails “the 
ability to redesign and reconfigure Individual business process components, 
combining individual tasks and capabilities in response to the environment” [18]. 
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Declarative process modeling or a mixed approach seems to fit well in our 
environment providing the necessary flexibility in process modelling, mapping and 
optimization.   

 Structure to output to the Data Toolkit and subsequently to the application 
dimensioning framework, workflow/reference to executables/execution logic: The 
output of the process modeling framework should be a structure to feed the Data 
Toolkit and later on the dimensioning framework. The structure should provide for 
reproducing the process graph, the tasks mapping to executables and the logic in 
terms of rules/constraints that govern the execution flow and the execution of the 
process tasks. Process Modelling outputs the structure of the developed process 
model to Data Toolkit component. 
 

The main structure of the Process modelling framework is described below. The component 
list is as follows: 

 Modeling toolkit: This component provides the interface for business analysts to 
design their processes in a non-expert way, the interface for developers to provide in 
an easy way predefined tasks and relationship types as selectable and configurable 
tools for business analysts and the core engine to communicate with all the involved 
components towards design, concretization, evaluation, simulation, output and 
optimization of a business process.  

 Rules engine: The engine provides all the logic for defining rules and constraints, 
evaluating and executing them. The aim is the business analyst to be provided with a 
predefined set of rules offered as a choice through the tasks and relations toolbox.  

 ProcessModel2Structure Translator: This component generates the structure from the 
developed model that will feed the Data Toolkit and subsequently the dimensioning 
framework. This structure must be able to instantiate and run as an application. It will 
include the workflow, the logic in terms of relationships and rules regarding the 
execution of process tasks, reference and configuration of the involved analytics tasks 
(contained in the catalogue) and reference to other application tasks and services 
(which are not contained in any catalogue) (i.e. a task that generates a report from 
collected values, a task that finds the maximum value of a set of values, or a task that 
when triggered communicates using an API and turns off a machine, if we consider a 
process that controls the operation of machines). 
 

 
Process Modelling Framework Capabilities 
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Figure 30 - Process modeling framework 

 
The Process Modeler component is the first link in the chain. The Business Analysts have the 
ability to design their processes in a straightforward graphical way by using a visual editor.   
The user can create a graph containing nodes from a list provided and assign options to each 
node. In detail these nodes and their respective options are: 
 

 Data Load 
o Distributed Store 
o Object Store 

 Clean Data 
o Yes 
o No 

 Transform Data 
o Normalizer 
o Standard Scaller 
o Imputer 

 Classification 
o Binomial Logistic Regression 
o Multinomial Logistic Regression 
o Random Forest Regression 

 Regression 
o Linear Regression 
o Generalized Linear Regression 
o Random Forest Regression 

 Clustering 
o K Means 
o LDA 
o GMM 

 
 Frequent Pattern Mining 

o FP Growth 
 Model Evaluation 
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o Binary Classification 
o Multiclass Classification 
o Regression Model Evaluation 
o Multilabel Classification 
o Ranking Systems 

 Data Filter 
o Yes 
o No 

 Feedback Collector (External Service) 
 Recommendations Calculation (External Service) 
 Collaborative Filtering 

o ALS 
 
Additionally, the business analyst can define the overall objective of the graph which can be: 

 Analytics Algorithm Accuracy 
 Analytics Algorithm Time Performance 
 Save Computing Resources 
 Overall Time Efficiency 
 Overall Cost Efficiency 
 Decrease Average Throughput 
 Decrease Average Latency 

 
Finally, the Process Modeller Component provides the capability to import, export, save and 
edit the generated graphs.  

6.13. Data Toolkit 
The main objective of the data toolkit is to design and support data analysis workflows. An 
analysis workflow consists of a set of data mining and analysis processes, interconnected 
among each other in terms of input/output data streams or batch objects. The objective is to 
support data analysts and/or data scientists to concretize the business process workflows 
created through the process modelling framework. This can be done by considering the 
outputs of the process mapping component or choosing among a set of available or under 
development analytic functions, while parametrizing them with respect to the service-level 
objectives defined in the corresponding process. A strict requirement regards the capacity to 
support various technologies/programming languages for development of analytic processes, 
given the existence and dominance of set of them (e.g. R, Python, Java, etc). 
 
Towards this direction, the data toolkit is going to be modelled in a way that will enable data 
scientists to declare and parametrize the data mining/analytics algorithms, as well as the 
required runtime adaptations (CPUs, RAM, etc.), data curation operations associated with the 
high-level workflow steps of the business process model. 
 
At its core, the data toolkit will incorporate an environment which supports the design of 
graph-based workflows, and the ability to annotate/enrich each workflow step with algorithm 
or processes specific parameters and metadata, while respecting a predefined set of rules to 
which workflows must conform on in order to guarantee their validity. 
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There is a wide range of versatile flow-based programming tools that fit well the requirements 
for constituting the basis for the data toolkit, such as Node-Red [19]. Also a custom workflow-
design environment tailored for the specific needs of the data toolkit could be developed, 
supported by libraries such as D3.js [20] and NoFlo [21], which will allow for fine-grained 
control over all the elements associated with the data analytics workflow. 
 
Figure 31 depicts the core configuration user interface per functional component and/or 
service in the BigDataStack context. Therefore, the Data Scientist can parameterise her 
components providing details on the elasticity profile, the Docker images, the minimum 
execution requirements, the required environmental variables, the exposed interfaces and 
required interfaces (if any), existing attributes (i.e. lambda functions, etc.) and the 
corresponding health checks regarding the services.  
 

 
Figure 31 - Application configuration per graph components 
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6.14. Adaptable Visualizations 

The adaptable visualization layer has multiple purposes: (i) to support the visualization of data 
analytics for the applications deployed in BigDataStack, (ii) to provide a visual application 
performance monitoring dashboard of the data operations and the applications during 
benchmarking, dimensioning workbench and during operation and (iii) to integrate and 
facilitate various components such us Process Modeller, Data Toolkit, Benchmarking, 
Dimensioning Workbench, Triple Monitoring Engine, Data Quality Assesment and Predictive 
Maintenance. Importantly, the dashboard will be able to monitor the application deployed 
over the infrastructure. For the visualization of data analytics, it will provide a reporting tool 
that will enable to build visual analytical reports. The reporting will be produced from 
analytical queries and will include summary tables as well as graphical charts.  
 
The main issues that need to be handled by the adaptable visualizations framework are:  

 User authentication 
 KPIs definition and integration: Definition of a KPI must be possible through the 

framework if not supported elsewhere in the architecture 
 Triggering of events and production of visual notifications. Event handling and 

triggering of alarms or responses to the event must be supported. 
 Different views of the UI platform depending on the user role. 4 roles are defined: 

o Administrator (full UI View) 
o Business Analyst (Process Modeller View) 
o Data Analyst (Data Toolkit View) 
o Application Owner/Engineer (BenchMarking, Dimensioning Workbench, 

Analytics View) 
 Integration of Process Modeller, Data Toolkit and Benchmarking Components. 
 Deployment of playbooks towards the Dimensioning Workbench Component, 

visualization of the configurations recommended and deployment of the selected 
application. 

 Management of the Deployed Applications and handling of the Deployment 
Adaptation Decisions. Decisions are consumed from the Global Decision Tracker. 

 Ability to redeploy applications when QoS Warnings are received and Deployment 
Alterations are considered. 

 Visualisation of the Predictive maintenance for both cases of full datasets and 
exclusively quality assessed data. 

 Visualisation of the Data Quality Assessments in summary customizable tables. 
 

The foreseen I/O and the structure of the visualization framework in terms of definition of 
the subcomponents and their interactions are listed in the following bullets. 
 
Necessary inputs: 

 Analytic outcomes as input from the seamless data analytics framework 
 Real-time monitoring data as input from the triple monitoring engine. Data will refer 

Application components monitoring, to Data & Services monitoring and to Cluster 
resources monitoring   

 CEP outcomes as input from the real-time CEP of the Storage engine 
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 Input from exposed data sources to facilitate KPIs definitions and event triggering 
rules. 
 

Necessary Outputs: 
 Output of visual reports 

 
The main structure of the Adaptable visualizations framework is depicted in Figure 32. The 
component list is as follows: 

 Visualization toolkit: this component connects all the components (Process Modeller, 
Data Toolkit, BenchMarking, Dimensioning Workbench) and makes available a tool set 
of offered capabilities (e.g. types of graphs, reports, tables) 

 Rights management module (Admin Panel): this component handles the permissions 
to modify views to components, editors and event triggers 

 Data connector: this component makes possible to retrieve data schemas and data 
from the exposed data sources to assist in defining KPIs and set event triggers. 
Furthermore, it could provide the same way access to historical data or reports 

 Events processing: this component makes possible to define event triggers that will 
produce visual notifications, warnings or generation of specific reports 

 

 
Figure 32 - Visualization framework building blocks 
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7. Key interactions 

7.1. User Interaction Layer 

User Interaction within the BigDataStack ecosystem plays an important role in the entire 
lifecycle of a big data application / operation. There exist the following user roles: Business 
Analysts, Data Analysts and/or Data Scientists. 
 
First, the Business Analyst uses the Process Modelling Framework to define the business 
processes and associated objectives and accordingly design a BPMN-like workflow for the 
actualization of the business-oriented objectives and the required analytic tasks to 
accomplish. The analyst is able to design, model and characterize each step in the workflow 
according to a list of predefined rules encapsulated by a rules engine component of the 
modelling framework. The output of this process is a graph-like output (i.e. in JSON format) 
with a high-level description of the workflow from the business analyst’s perspective along 
with the related end-to-end business objectives. The sequence diagram of Process Modelling 
is depicted in Figure 33. 
 

 
Figure 33 - Information flows in Process Modelling 

Figure 34 depicts a high-level application graph designed by the Business Analyst by 
indicatively incorporating within the data workflow four (4) processing steps with editable 
fields by means of drop-down lists, namely data load, data clean, perform analytic task and 
evaluate result. 
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Figure 34 - Example of a high level BRMN-like application graph 

 
Next, the Process Mapping component provides an association of the process steps modeled 
by the Business Analyst with specific analytic tasks, following a set of criteria related to each 
process task, while considering any constraints defined in the business objectives. These 
criteria may contain the characterization of required data, time, resources and/or 
performance parameters need to be concretized to perform the analytic tasks.  The output of 
this step is a workflow graph (i.e. in JSON format) enriched with the mappings of the business 
process steps grounded to algorithms, runtime and performance parameters. 
 
Then, the Data Analyst and/or the Data Scientist uses the Data Toolkit, to perform a series of 
tasks related to the concretization of the analytics process workflow graph produced in the 
process mapping step, as depicted in Figure 35, such as: 

 Concretizing the business objectives in terms of selecting lower bounds for hardware, 
runtime adaptations, performance for which the selected algorithms perform 
sufficiently well. 

 Defining the data source bindings from where the datasets related to the task will be 
ingested. 

 Defining any data curation tasks (i.e. data cleaning, feature extraction, data 
enrichment, data sampling, data aggregation, Extract-Transform-Load (ETL) 
operations) necessary for the algorithms and the related steps. 

 Configuring and parametrizing the data analytics tasks returned (i.e. selected) by the 
Processes Mapping component, and additionally providing the functionality to design 
and tune new algorithms and analysis tasks, which are then stored to the Catalogue 
of Predictive and Process Analytics and can be re-used in the future. 

 Selecting and defining performance metrics for the algorithms, along with the 
acceptable ranges with respect to the business objectives and service-level objectives, 
used to evaluate the algorithm/model and resources configurations. 
 

At the end, a Playbook (i.e. in YAML format) representing the grounded workflow for each 
business process will be generated, in the format that further feeds the Dimensioning 
workbench in order to provide the corresponding resource estimates for each node of the 
graph. 
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Figure 35 - Information flows in Process Mapping 

 
The following figure (Figure 36) presents the sequence diagram, which depicts the main 
information flows for the User Interaction Layer of the BigDataStack architecture.  
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Figure 36 - User Interaction Layer Sequence Diagram 
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Example Use Case: Predictive Maintenance 
Regarding the entry phase described above, an example is presented in the following sections 
to link the functionalities of different components to an actual use case. 
 
Business Analyst’s View 
The following figure (Figure 37) shows the perspective of a business analyst in terms of 
Process Modelling, which treats Real-time ship monitoring (RTSM) as a whole. This is expected 
to be the view (not in terms of user interface but in terms of processes and abstraction of 
information) of the Process Modelling Framework. Moreover, through the framework, the 
business analyst will be able to specify constraints (as noted with red fonts in the figure). 
Overall, separate processes, actions and data required to perform RTSM. As shown, the first 
step is the vessel and weather data acquisition. That includes a dataset with granularity down 
to a minute and 2 years timespan for vessel data, along with weather data as provided by the 
National Oceanic and Atmospheric Administration (NOAA), i.e., granularity of weather reports 
up to 3 hours for every 30 minutes of a degree. Past this, given that there are plenty of 
attributes within both datasets, there has to be some attribute selection rule. For example, 
only 190 approximately are required from both datasets, because these are the most reliable 
and important. Following this, the data are imported into two different components. The first 
is the monitoring tool, which simulates and enhances the on-board tools of the Alarm 
Monitoring System (AMS). Given that, if an anomaly occurs a rule-based alert has to be 
produced close-to or in real time. The second component is the Predictive Maintenance Alert. 
This informs the end user that the current data under examination pinpoint a malfunction 
that has occurred in the past. Again, this should work close-to or even better in real-time. 
Consecutively, given that identifying an upcoming malfunction is achieved, spare part 
ordering follows. The ordered spare part has to be delivered at least 1 day before the 
estimated time of arrival, while ordering of spare parts should be performed only by suppliers 
that are to be trusted. Quality of service should not be neglected while cost criteria are also 
taken into account. Finally, given the delivery port of the spare part, re-routing of the vessel 
takes place, where the estimated time of arrival to the closest port is less than 12 hours. 
 

 
Figure 37 - Business analyst view 

 
Data Analyst’s View 
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Following the outcome of the process modelling (previous view), Figure 38 depicts the view 
for the data analyst, that is the view in the Data Toolkit. As shown in the figure, the view is 
different with components that have been mapped automatically from the Process Mapping 
mechanism of BigDataStack (e.g. “CEP monitoring” to enable the “Rule-based alert” process). 
 
Overall the data analyst’s view is a set of system components, in-house or out-sourced 
processes and/or systems, actions and data required to perform RTSM. The Vessel data 
acquisition process is fed from an in-house database (DB) that contains vessel data (power 
consumption related and main engine data) along with Telegrams and past maintenance 
events. Given a total of 10 vessels, this requires up to 40 GB of hard disk storage. Weather 
data are imported from NOAA via FTP, by a weather service that loads hindcasts in GRIB 
format for the whole earth with a 3-hour granularity for every 30 minutes of a degree. GRIB 
files are parsed and stored in a database that requires up to 2.1 TB storage. Given that any 
trajectory of a vessel can by joined with weather data via a REST API that the weather service 
provides. Past this, given that there are plenty of attributes within both datasets, i.e., weather 
and vessel data, there has to be some attribute selection rule. For example, only 190 
approximately are required from both datasets, because these are the most reliable and 
important such as the consumed power (kW), the rotations per minute of the main shaft 
(RPM) etc. In order to avoid feeding the algorithmic components of this architecture with 
false or null data values, a filtering component is in charge of removing null values, preferably 
with average values, smoothing-out the effect of data-loss. Next, given a set of defined rules, 
such as “if the power consumption exceeds a limit and the fuel-oil inlet pressure drops below 
a threshold” the CEP component is in charge to produce an alert, close-to or in-real time. In 
parallel, a pattern recognition algorithm tries to identify patterns on the data that looks like 
a past case where a malfunction occurred in the main engine. If this happens, an alert is 
produced, and given the upcoming malfunction that has been identified a spare-part 
suggestion is made. Given the Danaos-ONE platform, where orders of spare parts are placed 
via a REST API, the order of the suggested spare-part is placed and is accessible from the 
suppliers that are preferred. So, once the order is made to a supplier, a suggested place and 
time are provided, and given this re-routing of the vessel takes place via an external REST 
service provided at a specific IP address and port.  
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Figure 38 - Data analyst’s view 

7.2. Realization & Deployment 

Application and Data Service Ranking 

Within the Realization module, there is a series of operationalizable tasks associated to 
Application Data Service Ranking (ADS-Ranking). The goal of these tasks is to enable the 
selection of a candidate deployment pattern (CDP) which represents a complete 
configuration of the application (which is needed for application deployment on the cloud). 
There are two main tasks of interest when realizing an application’s deployment: 

 First-Time Ranking of Candidate Deployment Patterns: This task aims to select the 
most suitable candidate deployment pattern from a set that has previously been 
generated when the user first requests deployment of their application. 

 Application Deployment: This task involves the practical deployment of the user 
application on the cloud through interaction with Openshift. 

Below we discuss each of these two tasks in more detail and provide an interaction sequence 
diagram for each. For legibility of the interaction diagrams, we use short names for each 
component. A mapping between components and their short names are shown in the 
following table.  

 
Full name Sub-component Short name  

(interaction diagrams) 
Application and Data Services Dimensioning N/A Dimensioning 
Application and Data Services Ranking Pod Feature Builder ADS-R Feature Builder 
Application and Data Services Ranking Pod Scoring ADS-R Scoring 
Application and Data Services Ranking Model ADS-R Model 
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Application and Data Services Ranking Pattern Selector ADS-R Pattern Selector 
Application and Data Services Deploy N/A ADS-Deploy 
Dynamic Orchestrator N/A Orchestrator 
Application and Data Services Global Decision 
Tracker 

N/A ADS-GDT 

BigDataStack Adaptive Visualisation 
Environment 

N/A BigDataStack UI 

Table 4 - Short-name Component Mapping Table 

First-Time Ranking of Candidate Deployment Patterns 

The first task is concerned with the ranking of candidate deployment patterns when the user 
first requests their application to be deployed. Candidate deployment patterns are generated 
by the Dimensioning component of BigDataStack. The output of this task is a selected 
deployment pattern, which can be passed to Application and Data Services Deployment for 
physical deployment. 

This task is triggered by the Dimensioning component once it has finished generating the 
different candidate deployment patterns (CDPs) and producing the quality of service 
estimations for each. The Dimensioning component sends a package of CDPs to the 
Application and Data Services Ranking (ADS-Ranking) component, or more specifically the 
Feature Builder sub-component of it. This component analyses and aggregates the different 
quality of service estimations into a form that can be used for ranking (referred to as features). 
Once this transformation is complete, the CDPs and aggregated features are sent to the 
Scoring sub-component, which uses a ranking model to score and hence rank each CDP based 
its suitability with respect to the user’s requirements. Once the CDPs have been ranked, that 
ranking is sent to the Pattern Selection sub-component, which selects the most suitable one. 
This selected CDP is then sent to the BigDataStack Adaptive Visualisation Environment 
component for the user to decide whether to deploy with this configuration. At the same 
time, a notification is sent to the Dynamic Orchestrator to specify that deployment is 
underway for the user’s application. Moreover, the selected CDP, other CDPs not selected 
and ranking information/features are sent to the Global Decision Tracker (ADS-GDT) for 
persistence. 

 

 
Figure 39 - Interaction Diagram for First-Time Ranking 

 
 



 
 Project No 779747 (BigDataStack) 

 D2.5 – Conceptual model and Reference architecture II 

 Date: 03.07.2019 

 Dissemination Level: PU 

 

 page 72 of 108 bigdatastack.eu 

 
Application Deployment 
 
The ADS-Deploy component interacts with Openshift through Kubernetes‘ OpenAPI v1 [1]. 
Once the candidate deployment pattern has been obtained, it is sent to the deployment 
component. This is parsed by the ADS-Deploy component, which extracts information on the 
three main objects of importance to the deployment process (Pods, Services and Routes). 
ADS-Deploy maps these into a series of independent Openshift-managed objects 
representing each, enabling incremental deployment and more fine-grained control. 
However, all those objects are grouped into a single logical application, in order to maintain 
the internal coherence and keep relations between the objects. These objects are: 

 Pods: A Pod represents an atomic object in Openshift, and includes one or more 
containers. Each pod can be replicated according to the configuration values or due 
to Quality-of-Service requirements. Pods have been represented as 
DeploymentConfig objects in BigDataStack. [11] 

 Services: A Service provides access to a pod from the outside, and is in charge of vital 
actions such as load balancing. Services can also be replicated, so that they are 
scaled in/out independently or together with the pods. ADS-Deploy, creates a 
configuration file for each service and sends it to Openshift. 

 Routes: A route gives a service a hostname that is reachable from outside the 
cluster. Routes are not replicable, but they are closely related with the services. In 
BigDataStack, a configuration file is created for each route, and information on the 
service and application to which they relate is contained in there. 

 

 
Figure 40 - Interaction Diagram for Application Deployment 

7.3. Data as a Service & Storage 
The Data as a Service and the Storage offerings of BigDataStack cover different cases. As base 
data stores, the LeanXcale data store and the Cloud Object Storage (COS) are considered as 
depicted in the following figure (Figure 31).  
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Figure 41 - Architecture of data stores 

 
From the above, it can be considered that the two components that are able to persistently 
store data are: LeanXcale’s relational data store, and IBM’s Cloud Object Store. The former is 
a fully transactional database which will serve operational workloads, while in the meantime 
can execute analytical operations on the runtime, providing a JDBC implementation, thus 
being able to execute SQL compliant queries. The latter is a cloud Object Store capable of 
storing numerous terabytes of data but lacking transactional nor SQL capabilities. Fresh data 
will be first inserted in the LeanXcale database (LXS) in order to benefit from its transactional 
capabilities. Once data is no longer considered as fresh, (e.g. several months have passed), 
data will be moved to the Cloud Object Store (COS) while analytical processing over COS is 
provided by Apache Spark. 
 
On top of the datastores the Seamless Storage Interface (SSI) provides an entry point for 
seamlessly executing queries over a logical dataset that can be distributed over different 
datastores which themselves may provide different interfaces. The SSI provides a common 
JDBC interface and is capable of executing standard SQL statements. The SQL queries will be 
pushed down to both stores, and retrieved intermediate results will be merged and returned. 
Offering a JDBC interface, SSI can be exploited by data scientists through the usage of well-
known analytical tools such as SparkSQL. As a result, the end-user can write SparkSQL queries 
and have the SSI locate the various parts of the dataset and retrieve the results. Direct 
execution of the queries to a specific data store is also permitted. As a result, we have the 
following five scenarios: 

 Direct access to the LeanXcale database 
 Direct access the Cloud Object Store (COS) 
 Request data using a simple SparkSQL query 
 Insert data to BigDataStack 
 Insert streaming data to BigDataStack 
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Direct access the LeanXcale (LXS) database 

 
Figure 42 - Direct access the LXS 

User executes an SQL query, requesting data directly from LXS using a standard JDBC 
interface, and the latter returns the resultSet as the response. 
 
Direct access the Cloud Object Store (COS) 

 
Figure 43 - Direct access the COS 

User executes a query from Apache Spark, requesting data directly from COS, using the 
stocator open source connector which permits the connection of Object stores to Spark, and 
the COS returns back the result as the response.  
  



 
 Project No 779747 (BigDataStack) 

 D2.5 – Conceptual model and Reference architecture II 

 Date: 03.07.2019 

 Dissemination Level: PU 

 

 page 75 of 108 bigdatastack.eu 

Request data using a simple SparkSQL query 

 
Figure 44 - Request data using a simple SparkSQL query  

 
User sends a request for executing an analytical task by writing a SparkSQL query. The SSI, 
which is an extension of the LXS Query Engine provides a JDCB functionality, and as a result, 
is already integrated with SparkSQL. Due to this, SparkSQL will pushdown all operations to be 
executed by the SSI itself. The SSI is aware of the location of the data over the distributed 
dataset that is split into the two different datastores and is integrated with both of them. As 
a result, it translates the query to each data store’s internal language and requests the data 
from both of them. It finally aggregates the results and returns the data back to SparkSQL, 
which returns the results to the user. It is important to notice that the SSI supports various 
query operations such as table scans, table selections, projections, ordered results, data 
aggregations (min, max, count, sum, avg) either grouping them by specific fields or not. From 
the above figure it can be also noticed that steps 4A and 4B might be in parallel according to 
the type of the query operators.  
 
 
The architecture of the seamless analytical framework and the main interactions between its 
components can be shown in Figure 45: 
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Figure 45 - Seamless Analytical Framework 

 
The Data Manager component, as shown in Figure 45, keeps track of the data ingested in the 
framework. For each dataset the data user can configure the period of time after which data 
can be considered as historical and can safely be moved to a data warehouse such as the 
Object Store. When a data movement action is triggered, it first informs the relational 
database that a data slice should be moved to the COS. LXS is getting prepared to drop that 
slice (internally it marks it as read-only and splits it to a data region that can be easily dropped 
later on). The Data Manager then informs the Data Mover to move the slice. The latter 
requests the data slice by executing one or many standard JDCB statements to LXS and then 
uploads the data slice as one or many objects into the objects store. When the whole slice is 
eventually persisted into the Object Store, it informs the Data Manager which forwards this 
acknowledgment to the data Federator. The data Federator internally keeps track of a 
timestamp which records the latest successful data movement. When a query is submitted 
for data retrieval, it creates the query tree and pushes down a selection based on this 
timestamp on each operation for a table scan. Then it rebuilds the query by interpreting it 
according to the target datastore and retrieves the results. Finally, in accordance with the 
query operation, it merges the results and builds the result set. When the Data Manager 
acknowledges a data movement and informs the Data Federator, the Data Federator will 
move accordingly the internal timestamp (the splitting point). At this point, the data 
corresponding to the moved data slice co-exists in both stores. However, the Data Federator 
thanks to the timestamp will hide the replicated data first at the Object Store and after the 
timestamp is updated at the relational store. When it receives the acknowledgement, it 
updates this timestamp (split point) so that the next transactions can scan the tables 
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accordingly. Pending transactions however will continue to scan the tables based on the value 
that they received when the transaction first started. The transactional semantics of LXS 
ensure the data consistency when the split point is updated. When this happens, the Data 
Federator can order the LXS to safely drop the data slice that has now been moved to the 
object store. However, it will wait until all pending transactions has been finished, and thus, 
no scan operation is performed on the data slice that is about to be dropped. By doing so, the 
Data Federator ensures data consistency and the validation of the results during the process 
of data movement: Data will exist either on LXS or the COS, or both, but they will be always 
scanned only once.  
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Instert data to BigDataStack 

 
Figure 46 - Inserting data 

 
An integrated application produces data to be stored in the BigDataStack platform. The data 
are being sent to the Gateway: the entry point of the platform. Its responsibility is to 
transform data coming from external sources in various formats, to the platform’s internal 
schema. Then, it forwards the data to the operational data store to permanently store them. 
The latter periodically moves data that has been inserted from more than a constant period 
of time, to the COS. 
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Insert streaming data to BigDataStack 

 

 
Figure 47 - Inserting streaming data 

In this specific use case, a ship from the DANAOS fleet streams data coming from one of its 
sensors. Data is being first sent to a local installation of the CEP which correlates them and 
identifies possible threats, producing alerts. Then, data is sent to the platform´s Gateway 
which is responsible of transforming the data to the platform’s internal format. A CEP cluster 
inside the platform receives data from the Gateway. It further analyses data to detect possible 
rules infringement. Data coming from all the fleet vessels is merged. This second CEP cluster 
processing involves querying LXS to retrieve data in rest that has been already been stored in 
the data store. Finally, it stores the incoming data to the relational datastore which eventually 
will move the data to the Object Store. 

7.4.  Monitoring & Runtime Adaptations  

When considering the process of monitoring and adapting user applications on the cloud, it 
is useful to divide the discussion into three parts: 1) the interactions required to perform the 
actual monitoring of a running application; 2) how this monitoring process can be used to 
track quality of service; and 3) the interactions needed to adapt the user’s application to some 
new configuration when a quality of service deficiency is identified or predicted. We 
summarize each below. 
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7.4.1. Triple Monitoring Engine 

The triple monitoring system provides APIs for receiving metrics from different sources and 
exposes them for consumption.  Metrics are obtained mainly by exporters and federation. In 
the case of the deployment of an exporter is impossible for some reason, the monitoring 
engine implements a system that can receives metrics by get and post methods and exposes 
them to Prometheus. This component of the triple monitoring is expected to behave as a REST 
API and Prometheus exporter. The following diagram describes its functionality. 
 

 
Figure 48 - Prometheus exporters 

An application provider sends its metrics in JSON format by http get or post, the API parses 
the json structure, sanitizes metrics to convert them to Prometheus’s format and saves them 
in a temporally list. A response is then returned to the application provider. The Prometheus 
engine scrapes the REST API by http get metrics, to get available metrics. This scraping 
operation is iteratively performed at intervals based on the amount of time specified in the 
Prometheus configuration. 
The triple monitoring engine implements two different exposition system methods. The first 
is a REST API where applications consumers ask for a metric, the REST API translates this 
request to an Elasticsearch query and returns a result. The following sequence describes this 
process. 
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Figure 49 - Prometheus REST API 
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The second output interface implemented in the triple monitoring system is the 
publish/subscription mechanism.  
 

 
Figure 50 - Publish/subscription mechanism  

An application that needs steaming data can through this component subscribe and receive 
metrics in real-time. Four different types of requests are available. 
  

 The first request type is the “subscription”, the consumer after having created his 
queue, it is going to send to the pub/sub system a subscription request that contains 
the name of its queue, its name (application name) and a list a metrics. The consumer 
sends its request in the “manager” queue so that to be consumed by the manager of 
the triple monitoring system. The manager receives the subscription request, creates 
a subscription object and adds it into the subscription list. A confirmation message is 
then returned to the consumer. The manager reads the subscription list each time it 
receives a metric from its queue, it redirects this metric to the declared queue.  

 The second request is the “add_metrics” request type, the consumer sends a message 
that contains its name, queue name and a metric to add to its subscription list, the 
manager verifies the request, updates the subscription and returns a message.  

 The third request type is “my_subscription”, the consumer sends its name and queue 
name. The manager returns the corresponding subscription list. 

 The last request is the heart_beat, the manager has no way to detect disconnection 
by a consumer. The consumer should confirm its presence each specific interval of 
time. The heart_beat interval is declared in the subscription request.  
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7.4.2. Quality of Service (QoS) Evaluation 

QoS properties (parameters) to be evaluated by the QoS Evaluation component should 
correspond to the kind of quality of service (QoS) requirements coming from the 
Application Dimensioning Workbench and defined within the BigDataStack Playbook.  

 An example of a QoS requirement is the “throughput.” 
 There should be a trivial mapping between Playbooks’ KPIs and the “guaranteed” of 

“agreements”. 

The QoS Evaluation component will be responsible for translating the Playbooks’ QoS 
requirements into SLOs (Service Level Objectives). 

 

Figure 51 - QoS Evaluation component 
 
The QoS Evaluation component will periodically query the Triple Monitoring Engine (based on 
Kubernetes) to recover the metrics related to the monitored QoS parameters. 

Once a violation of a given SLO is detected, a notification is sent to the Dynamic Orchestrator 
to trigger the data-driven orchestration of application components and data services. The 
standard sequence of interactions will be the following: 

 Evaluator calls the Adapter to recover a certain set of QoS metrics from Prometheus. 
 The Evaluator calls the Notifier when an SLO violation is detected. 
 Notifier calls the Dynamic Orchestrator passing a message describing the violation 

through publisher/subscriber mechanism implemented as a topic within the 
RabbitMQ service (which acts as the message broker between BigDataStack 
components) 

The Dynamic Orchestrator communicates with the ADS-Ranking component to trigger the 
dynamic adaptation (re-configuration) of the application or data service deployment 
patterns.  
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Adapting at Runtime 

If a user’s application is identified or predicted to have some deficiency with respect to the 
quality of service targets, then that application’s configuration needs to be altered to correct 
for this. For instance, this might involve moving data closer to the machines performing the 
computation to reduce IO latency, or in more extreme cases it might require the complete re-
deployment of the user’s application on new more suitable hardware.  BigDataStack supports 
a range of adaptations that might be performed , such as Pattern Re-Deployment, where the 
goal is to select an alternative candidate deployment pattern (hardware configuration) after 
the user’s application has been deployed. This is used in cases where the original deployment 
pattern was deemed unsuitable and this could not be rectified without changing the 
deployment infrastructure. In this case, a new candidate deployment pattern will be chosen, 
and the application services will be transitioned to this new configuration. This may result in 
application down-time as services are moved. 

The components involved for this adaptation are the Dynamic Orchestrator (DO) and the 
Triple Monitoring. When a new application is deployed, the Playbook is sent to the DO on the 
queue OrchestratorPlaybook. The DO reads the playbook and enriches it, adding more 
information about the SLOs: it splits the values of the metrics related to SLOs in different 
intervals that the QoS component will monitor, e.g. response time can be divided in the 
intervals 0.5-1s, 1-1.5s, etc. In addition, the DO subscribes to the Triple Monitoring Engine 
and creates a new queue, using which it will consume the metrics from the application. 
 
The Enriched Playbook is sent to the QoS Evaluator on the queue EnrichedPlaybook. The QoS 
registers this and will start monitoring the application to detect when an SLO is violated, and 
in this case, a message will be sent to the DO on the queue OrchestratorQOSFeed. The DO 
will read this message and based on the current state (as defined by the metrics consumed 
from the Triple Monitoring Engine, the QoS information and its experience), will decide what 
is the most likely action to resolve the violation is and subsequently send it to the ADS-Ranker 
on queue Lv3-ADSRanking-RR to start adaptation. 

In the remainder of this section we provide more detail on how Pattern Re-Deployment is 
operationalized within BigDataStack. 

 
Pattern Re-Deployment  

The aim of the pattern re-deployment task is to facilitate the selection of a new candidate 
deployment pattern (CDP) if a previously selected CDP is no longer considered viable. This 
might occur if a deployed application fails to meet minimum service requirements and this 
cannot be resolved through data service manipulation. In this case, we need to take into 
account why the current pattern is failing and based on that information, re-rank the CDPs 
for the user application and select a new alternative that will provide better performance. 
This new CDP can then be used to transition the user’s application to the new configuration 
by the Application and Data Services Deployment component. 

This task is triggered by the Dynamic Orchestrator when the orchestrator detects that an 
application deployment is failing. It sends a notification to the Application and Data Services 
Ranking component. More precisely, this notification is processed by the Failure Encoder sub-
component. This component first contacts the Global Decision Tracker to retrieve the other 
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CDPs that were not selected for the failing user’s application (as it is from these that a new 
pattern will be selected). These patterns are then sent into the same process pipeline as for 
first-time ranking (see Section 6.5), with the exception that the previously selected 
deployment is excluded (we know that it is insufficient) and the Pattern Selector sub-
component will also consider the reason that the previously selected CDP failed.  

When the ADS-Selector chooses the new CDP, this information is sent to the ADS-Deploy, 
together with the instruction to redeploy. Then, the deployment component translates the 
CDP, and communicates it to the container orchestrator using the same process as defined in 
Section 6.5. The orchestrator will then start a re-dimensioning process. If the process is 
successful, then the user’s process continues normally. However, if the re-dimensioning was 
unsuccessful, then the container orchestrator needs to destroy the current deployment, 
stopping the processes and starting a new deployment from scratch. This situation has the 
setback that users have their processes interrupted and/or restarted and ultimately impair 
the availability of application and data services (downtimes). 

 

 
Figure 52 - Interaction Diagram for CDP Re-Ranking 
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8. Conclusions 
This document refines the initial version of the BigDataStack architecture presented in 
deliverable D2.4 - Conceptual model and Reference architecture. It captures the updated 
version of the overall conceptual architecture in terms of information flows and capabilities 
provided by each one of the main building blocks. Additional refinements for each component 
are also detailed on the corresponding sections, as well as the changes in the main 
interactions between them.  

This report serves as a design documentation for the individual components of the 
architecture (which are further specified and detailed in the corresponding WP-level scientific 
reports) and presents the outcomes (in terms of design) of the initial integrated prototypes 
and the obtained experimentation and validation results. 
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Appendix 1 – Real-time Ship 
Management use case dataset 
structure and description 

It should be noted that given the data schemas described below, the DANAOS datasets do not 
have any GDPR-related aspect. 

      

TELEGRAMS table structure (14 attributes) 

id: Telegram id, 

vessel_code: The id of the vessel, 

telegram_date: Telegram timestamp (UTC), 

type: Telegram type: D:Departure, A:Arrival, N:Noon-telegram, 

total_teus: Total Twenty-foot Equivalent Unit (TEU) (# of containers) 

total_feus: Total Fourty-foot Equivalent Unit (FEU) (# of containers) 

cons_ifo_static_counter: sensor-based measurement TEUs 

cons_ifo_static1_counter: sensor-based measurement of FEUs, 

draft_aft: Vessel draft at stern (m), 

draft_fore: Vessel draft at fore (m), 

sea_temperature: Sea temperature (°C), 

port_name: Current port name, 

next_port: The name of the next port, 

eta_next_port: ETA to the next port 

 

VESSEL_DATA table structure (23 attributes) 

vessel_code: Vessel id, 

datetime: Timestamp of the measurement (UTC), 

power: Consumed power (kW), 

apparent_wind_speed: Wind-speed (kn), 

speed_overground: GPS speed (kn), 

stw_long double precision: Speed through water – longitudinal (kn), 

stw_trans double precision: Speed through water – transverse (kn), 

rpm: rotations per minute of the main shaft, 

apparent_wind_angle: Wind angle (0-359.99 degrees), 
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total_teus: Total Twenty-foot Equivalent Unit (TEU) (# of containers), 

total_feus: Total Fourty-foot Equivalent Unit (FEU) (# of containers), 

cons_ifo_static_counter: Low-sulfur fuel oil consumption (metric tones), 

cons_ifo_static1_counter: High-sulfur fuel oil consumption (metric tones), 

port_mid_draft: Vessel draft at port-side (left-side looking to the fore) (m), 

stbd_mid_draft: Vessel draft at starboard-side (right-side looking to the fore) (m), 

draft_aft: Vessel draft at stern (m), 

draft_fore: Vessel draft at fore (m), 

stw: Speed through water – calculated by stw_trans and stw_lon (kn), 

equivalent_teus: Total number of containers, 

mid_draft: Vessel draft at mid-line (m), 

trim: The trim of the vessel, calculated by draft_aft and draft_fore, 

latitude: The latitude of the vessel’s position, 

longitude:  The longitude of the vessel’s position, 

 

MAIN_ENGINE_DATA table structure (102 attributes) 

vessel_code: The id of the vessel, 

datetime: Timestamp of measurement in UTC, 

airCoolerCWInLETPress: Air Cooler Cooling Water Inlet Pressure (Pa) 

scavAirFireDetTempNo1: Cyllinder #1 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo2: Cyllinder #2 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo3: Cyllinder #3 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo4: Cyllinder #4 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo5: Cyllinder #5 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo6: Cyllinder #6 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo7: Cyllinder #7 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo8: Cyllinder #8 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo9: Cyllinder #9 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo10: Cyllinder #10 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo11: Cyllinder #11 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo12: Cyllinder #12 Scavenge Air Fire Detection Temperature (°C), 

coolerCWinTemp: Air Cooler Cooling Water Inlet Temperature (°C) 

cfWInPress: Cooling Fresh Water Inlet Pressure (Pa), 
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controlAirPress: Control Air Pressure (Pa), 

cylLoTemp: Cylinder Lube Oil Temperature (°C) 

exhVVSpringAirInPress: Exhaust Valve Spring Air Inlet Pressure (Pa) 

foFlow: Fuel Oil Flowrate (lt), 

foInPress: Fuel Oil Inlet Pressure (Pa), 

foInTemp: Fuel Oil Inlet Temperature (°C), 

hfoViscocityHighLow: Heavey Fuel Oil Viscosity High Low (mm2/s) 

hpsBearingTemp: HPS Bearing Temperature (°C), 

jcfWInTempLow: Jacket Cooling Fresh Water Inlet Temperature Low (°C) 

cylExhGasOutTempNo1: Cyllinder #1 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo2: Cyllinder #2 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo3: Cyllinder #3 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo4: Cyllinder #4 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo5: Cyllinder #5 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo6: Cyllinder #6 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo7: Cyllinder #7 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo8: Cyllinder #8 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo9: Cyllinder #9 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo10: Cyllinder #10 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo11: Cyllinder #11 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo12: Cyllinder #12 Exhaust Gas Out Temperature (°C), 

cylJCFWOutTempNo1: Cyllinder #1 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo2: Cyllinder #2 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo3: Cyllinder #3 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo4: Cyllinder #4 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo5: Cyllinder #5 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo6: Cyllinder #6 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo7: Cyllinder #7 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo8: Cyllinder #8 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo9: Cyllinder #9 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo10: Cyllinder #10 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo11: Cyllinder #11 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo12: Cyllinder #12 Jacket Cooling Fresh Water Outlet Temperature (°C), 
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cylPistonCOOutTempNo1: Cyllinder #1 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo2: Cyllinder #2 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo3: Cyllinder #3 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo4: Cyllinder #4 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo5: Cyllinder #5 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo6: Cyllinder #6 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo7: Cyllinder #7 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo8: Cyllinder #8 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo9: Cyllinder #9 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo10: Cyllinder #10 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo11: Cyllinder #11 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo12: Cyllinder #12 Piston Cooling Outlet Temperature (°C), 

tcExhGasInTempNo1: Turbo-Charger #1 Exhaust Gas Inlet Temperature (°C) 

tcExhGasInTempNo2: Turbo-Charger #2 Exhaust Gas Inlet Temperature (°C), 

tcExhGasInTempNo3: Turbo-Charger #3 Exhaust Gas Inlet Temperature (°C), 

tcExhGasInTempNo4: Turbo-Charger #4 Exhaust Gas Inlet Temperature (°C), 

tcExhGasOutTempNo1: Turbo-Charger #1 Exhaust Gas Outlet Temperature (°C), 

tcExhGasOutTempNo2: Turbo-Charger #2 Exhaust Gas Outlet Temperature (°C), 

tcExhGasOutTempNo3: : Turbo-Charger #3 Exhaust Gas Outlet Temperature (°C) 

tcExhGasOutTempNo4: Turbo-Charger #4 Exhaust Gas Outlet Temperature (°C) 

tcLOInLETPressNo1: Turbo-Charger #1 Lube Oil Inlet Pressure (Pa), 

tcLOInLETPressNo2: Turbo-Charger #2 Lube Oil Inlet Pressure (Pa), 

tcLOInLETPressNo3: Turbo-Charger #3 Lube Oil Inlet Pressure (Pa), 

tcLOInLETPressNo4: Turbo-Charger #4 Lube Oil Inlet Pressure (Pa), 

tcLOOutLETTempNo1: Turbo-Charger #1 Lube Oil Outlet Pressure (Pa), 

tcLOOutLETTempNo2: Turbo-Charger #2 Lube Oil Outlet Pressure (Pa), 

tcLOOutLETTempNo3: Turbo-Charger #3 Lube Oil Outlet Pressure (Pa), 

tcLOOutLETTempNo4: Turbo-Charger #4 Lube Oil Outlet Pressure (Pa), 

tcRPMNo1: Turbo-Charger #1 RPMs, 

tcRPMNo2: Turbo-Charger #2 RPMs, 

tcRPMNo3: Turbo-Charger #3 RPMs, 

tcRPMNo4: Turbo-Charger #4 RPMs, 

orderRPMBridgeLeverer: Order RPM (Bridge Lever) 
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rpm: Rotations per minute of the main shaft 

scavAirInLetPress: Scavenge Air Inlet Pressure (Pa), 

scavAirReceiverTemp: Scavenge Air Receiver Temperature (°C), 

startAirPress: Starting Air Pressure (Pa), 

thrustPadTemp: Thrust Pad Temperature (°C), 

mainLOInLetPress: Main Lube Oil Inlet Pressure (Pa), 

mainLOInTemp: Main Lube Oil Inlet Temperature (°C) 

foTemperature: Fuel Oil Temperature (°C) 

foTotVolume: Fuel Oil Total Volume (lt) 

power: Consumed power (kW), 

scavengeAirPressure: Scavenge Air Pressure (Pa) 

torque: Torque of the main shaft (N/m), 

coolingWOutLETTempNo1: Turbo-Charger #1 Air Cooler Cooling Water Outlet Temperature 
(°C), 

coolingWOutLETTempNo2: Turbo-Charger #2 Air Cooler Cooling Water Outlet Temperature 
(°C), 

coolingWOutLETTempNo3: Turbo-Charger #3 Air Cooler Cooling Water Outlet Temperature 
(°C), 

coolingWOutLETTempNo4: Turbo-Charger #4 Air Cooler Cooling Water Outlet Temperature 
(°C), 

foVolConsumption: Fuel Oil Consumption (lt/min) 

 

VESSEL_DAMAGES table structure (5 attributes) 

vessel_code: The id of the vessel, 

defect_type: Type of damage (Main Bearing, Crosshead Bearing, Crankpin Bearing) 

defect_details: Short description of damage 

date_of_damage: Date of damage 

cause_of_damage: Short description for cause of damage  
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   Appendix 2 – Connected Consumer 
use case dataset structure and 
description 

Introduction 

This document aims at describing the main entities to be used in the implementation of the 
recommender system that is going to be developed in the retailer use-case of the project 
BigDataStack. 

Having pre-analysed a sample of raw data coming from our partner Eroski, a selection of the 
most relevant attributes that are candidates to be used during the build of the predictive 
model has been done. These selected attributes are the ones contained in this document.  

CLIENTS
52 attributes

HEADERS
52 attributes

LINES
62 attributes

CENTERS
55 attributes

ORDERS

ARTICLES
76 attributes

CLIENTS
8 attributes

HEADERS
11 attributes

LINES
25 attributes

CENTERS
16 attributes

ORDERS

ARTICLES
16 attributes

RAW DATA
CANDIDATE 
ATTRIBUTES

CLIENTS
1 attribute

HEADERS
4 attributes

LINES
6 attributes

CENTERS
1 attributes

ORDERS

ARTICLES
12 attributes

ITERATION 1

 
Figure 53 - Dataset structure and description 

 
The dataset contains information about EROSKI clients. However, GDPR aspects have been 
taken into account before sharing the data with the consortium. Concretely: 

 The only data that could be used to uniquely identify a person related to the field 
“ID_CLIENTE”. 

 ID_CLIENTE is an internal identifier of the database of EROSKI that is not known by 
the customers. I.e. only a person with access to the database of EROSKI could identify 
the customer from ID_CLIENTE. 

 ID_CLIENTE has been encrypted by EROSKI with an SHA-1 algorithm. Encryption has 
been done before providing the dataset to BigDataStack consortium. A SHA-1 (168 
bits) algorithm has been used for encryption of ID_CLIENTE. 

 For each ID_CLIENTE, SHA-1 has been applied to “string_1”+ID_CLIENTE+”string_2”. 
String_1 and string_2 are alphanumeric that contain capital and non-capital letters, 
numbers and special characters. These 2 values are only known by EROSKI.  
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The attributes for each entity have been included in this section. 
 

CLIENTS table structure (21 attributes) 

ID_CLIENTE: Client id, 

TIPO_CLIENTE_ORO: Type of gold client 

FLG_CLIENTE_APP: Flag if the client is an app client or not, 

FLG_CLIENTE_WEB: Flag if the client is a web client or not, 

FLG_CLIENTE_NUTRICIONAL: Customer shows interest in healthy products 

FRANJA_GASTO_ORO_INICIAL: Initial Range of expenditure 

POSIBLE_VALOR_ORO: Percentage indicating the discount given to the customer for being a 
gold customer 

CLIENTE_1000_ORO: Flag indicating whether the client is 1000 Oro or not 

FRANJA_GASTO_ORO_ACTUAL: Current Range of expenditure 

TIPO_MADUREZ: Type of maturity of the client 

DESC_SEG_C_CLIENTE: Description of the type of maturity of the client 

DESC_SEG_G_FIDELIDAD: Segmentation of the customer according to his loyalty 

DESC_INTERES_AHORRO: Segmentation of the customer according to his interest in 
promotions 

DESC_INTERES_FRESCOS: Segmentation of the customer according to his interest in fresh 
food 

DESC_INTERES_LOCAL: Segmentation of the customer according to his interest in local food 

DESC_INTERES_SALUD: Segmentation of the customer according to his interest in healthy 
food 

DESC_INTERES_SALUD_DETALLE: additional detail on which type of healthy food the 
customer is interested in 

DESC_MISION_COMPRA: description of the purchase mission of the customer 

DESC_SEG_SEC: segment description  

DESC_SEG_SOCIODEMO: Socio-demographic segment of the client. 

COD_LOC: preferred store 
 

TICKETS (36 attributes)  

ID_CLIENTE: Client id, 

COD_LOC: Store’s localization id, 

DIA: Day, 

COD_CAJA: Till id, 
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NUM_TICKET: Ticket number (id), 

NUM_LINEA: Line number (id), 

COD_TIPO_MOVIM: Movement type, 

HORA_EMISION: Timestamp of tickets emission, 

COD_TIPOMARCA_HIST: Type of brand of the product 

COD_F_PAGO_DET -> M_FORMA_PAGO: Type of payment procedure, 

UNID_VENTA_TARIFA: Total amount of items sold in tariff’s type, 

UNID _VENTA_OFERTA: Total amount of items sold in offer’s type, 

UNID _VENTA_COMPETE: Total amount of items sold in competence’s type, 

UNID _VENTA_LIQUID: Total amount of items sold in liquidation’s type, 

UNID _VENTA_CAMPANA: Total amount of items sold in campaign’s type, 

IMP_VENTA_TARIFA: Total economic amount of the items sold by tariff’s type, 

IMP_VENTA_OFERTA: Total economic amount of the items sold by offer’s type, 

IMP_VENTA_COMPETE: Total economic amount of the items sold by competence’s type, 

IMP_VENTA_LIQUID: Total economic amount of the items sold by liquidation’s type, 

IMP_VENTA_CAMPANA:  Total economic amount of the items sold by campaign’s type,  

IMP_DTO_CONSUMER: Discount amount applied for using VISA Eroski, 

IMP_DTO_TRAVEL: Discount amount applied for using loyalty card Travel Club, 

IMP_DTO_COUPON: Discount amount applied for the usage of coupons, 

IMP_DTO_CUOTA: Discount amount applied for being member of EROSKI Club, 

IMP_DTO_ONSITE:  Discount amount applied after redemption of loyalty Travel points,  

IMP_DTO_OTROS: Other discounts, 

IMP_DTO_VALE: Amount of discounts coming from the redemption of a supplier coupon, 

IMP_CONSUMO_RAP: Special discount applied in the shop, 

COD_ART: Article’s id, 

FLG_TECLA: information about whether the product has been sold by a direct key or not 

ANO_OFERTA: year of the offers applied to the order 

COD_OFERTA: offer code 

COD_TIPO_CENTRO: type of shop (primary/secundary) 

FLG_SCANNER: has the product been scanned during the purchase (Y/N) 

IMP_PVP_TARIFA: amount of the order if all of the items had been charged to the customer 
with catalogue prices 
 

CENTERS structure (55 attributes) 
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COD_LOC: Store’s localization id, 

COD_PROVIN: Province id, 

DESC_LOC: Center’s description, 

DESC_PROVIN: Province’s name, 

FLG_PLATAF : Indicator of distribution platform, 

FEC_MODIF: Date of last modification,   

COD_ZONA: Zone id, 

DESC_ZONA: Zone description, 

COD_REGION: Region id, 

DESC_REGION: Region description, 

COD_AREA: Area id, 

DESC_AREA: Area’s description, 

COD_ENSENA: Type of center id, 

DESC_ENSENA: Type of center description (Eroski City, Eroski Center…), 

COD_NEGOCIO: Store’s id, 

DESC_NEGOCIO: Store’s type, 

COD_SOCIEDAD: Type of company, 

DESC_SOCIEDAD: Company’s description, 

COD_GAMA_OBLIG: Code of mandatory catalogue,  

COD_FINANZIA: financing code,  

DESC_DIRECCION: address,  

DESC_POBLACION: location,  

FLAG_CUOTA: quota flag,  

FEC_INI_LOC: opening date,  

FEC_FIN_LOC: closing date,  

NUM_CAJAS: number of boxes,  

NUM_M2: squared meters of the store,  

NUM_M_LINEA: linear meters,  

COD_LOC_AME: store code in AME system,  

COD_TP_LOC: type of location,  

DESC_TP_LOC: description of the type of location, 

COD_LOC_PADRE: father location code,  

COD_MUNICIPIO: location code,  
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COD_TP_POTENCIAL: type of potential code,  

FEC_ULT_APERTURA : last opening date,  

COD_POSTAL: zip code,  

COD_AGR_IMP: grouping code,  

FLG_CECO_MODELO_COSTES: cost model flag,  

LATITUD: latitude,  

LONGITUD: longitude,  

COD_ISLA: ISLA code,  

FLG_LEAN: lean flag,  

FLG_TRANSFORMADO: transformed flag,  

FLG_PUESTA_PUNTO_PLUS: tunning flag,  

COD_NIVEL_ESTR_LOC: code of local structure of sales of the center,  

COD_N1: code of the level 1 of the structure of sales of the center, 

DES_N1: description of the level 1 of the structure of sales of the center, 

COD_N2: code of the level 2 of the structure of sales of the center, 

DES_N2: description of the level 2 of the structure of sales of the center, 

COD_N3: code of the level 3 of the structure of sales of the center, 

DES_N3: description of the level 3 of the structure of sales of the center, 

COD_N4: code of the level 4 of the structure of sales of the center, 

DES_N4: description of the level 4 of the structure of sales of the center, 

COD_N5: code of the level 5 of the structure of sales of the center, 

DES_N5: description of the level 5 of the structure of sales of the center, 
 

PRODUCTS structure (79 attributes) 

COD_ART: product id, 

DESC_ART: product description, 

FLG_TECLA: exists a direct key to sell the product or not, 

COD_TIPOMARCA: type of brand code,  

DESC_TIPOMARCA: description of the type of brand code, 

COD_N1_PPAL: Area’s id, 

DESC_N1: Area’s description, 

COD_N2_PPAL: Section’s id, 

DESC_N2: Section’s description, 
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COD_N3_PPAL: Category’s id, 

DESC_N3: Category’s description, 

COD_N4_PPAL: Subcategory’s id, 

DESC_N4: Subcategory’s description, 

COD_N5_PPAL: Segment’s id, 

DESC_N5: Segment’s description, 

FEC_INI_ART: Article start time, 

FEC_FIN_ART: Article finishes time, 

COD_FORMATO: Format id (KG, Gr, Unities...), 

COD_MARCA: Brand’s id, 

COD_EAN: EAN code,  

COD_TALLA: Size code,  

DESC_TALLA: Size code description,  

COD_COLOR: Colour code,  

DESC_COLOR: Colour code description, 

COD_PACK : Number of items per pack,  

COD_BLOQUEO: has the product blocked for the sales?,  

COD_ENS_EROSKI: commercial codification in the Hypermarket,  

COD_ENS_CONSUM: commercial codification in the SUPERmarket, 

COD_TIPO_FORMATO: unit of measurement (related to COD_FORMATO),  

COD_ART_PRIM: father product code,  

COD_TIPO_MARCA2: code of EROSKI Brand (only for products belonging to a EROSKI brand)), 

DESC_TIPO_MARCA2: description of EROSKI Brand (only for products belonging to a EROSKI 
brand)), 

FEC_ULT_BLOQ: date on which the product was blocked for the sales,  

COD_PORCI_CONS: product has info for the consumer related to the number of portions, 

DESC_PORCI_CONS: indicator about whether the product has a description for the portions, 

CC_CAPRABO: Comercial code of CAPRABO,  

COD_CATEGORI_HIP: Category code hypermarket, 

DESC_CATEGORI_HIP: Description of the Hypermarket Category, 

COD_CATEGORI_SUP: Category code supermarket, 

DESC_CATEGORI_SUP: Description of the supermarket Category, 

COD_SENSIBI_HIP: SENSIBI code hypermarket, 
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DESC_ SENSIBI HIP: Description of the SENSIBIcode of the hypermarket, 

COD_ SENSIBI SUP: Category code supermarket, 

DESC_ SENSIBI SUP: Description of the SENSIBIcode of the supermarket, 

FLG_COMPRA: indicator about whether the product is for purchasing, 

FLG_VENTA: indicator about whether the product is for sales, 

COD_FAMILIA: family of the product,  

DESC_FAMILIA: description of the family of the product,  

COD_AMBITO_EROSKI: Scope code of the product in the hypermarkets,  

DESC_AMBITO_EROSKI: Description of the scope of the product in the hypermarkets,  

COD_AMBITO_CONSUM: Scope code of the product in the supermarkets,  

DESC_AMBITO_CONSUM: Description of the scope of the product in the supermarkets, 

COD_CODMARCA: brand code (related to COD_MARCA) 

FLG_MMPP: Does the product belong to a EROSKI brand?, 

COD_POSICION_MARCA: Maker brand / EROSKI Brand code, 

DESC_POSICION_MARCA: Description of the code of maker Brand / EROSKI Brand code, 

FLG_SALUD_BIENESTAR: health indicator,  

FLG_INNOVACION: innovation indicator,  

FLG_GAMA_TURISTICA: tourism product,  

FLG_PODER_ADQUISITIVO: indicator about product for customer with a high purchasing 
power,  

FLG_BLOQ_DEFINITIVO: Product definitely blocked,  

COD_SUBMARCA: sub-brand code,  

DESC_SUBMARCA: sub-brand description 

FLG_GAMA_LOCAL: local product,  

FLG_GAMA_REGIONAL: regional product,  

FLG_PESO_SGA: flag product by weight,  

FLG_LIQUIDABLE: flag payable,  

FLG_EXDEPRECIACION: depreciation flag, 

COD_TP_ART: product type,  

DESC TIPO_ARTICULO: description of the product type,  

CANTIDAD: number of ítems per lot,  

FEC_LANZAM: launch date, 

PORC_IVA: VAT rate,  
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COD_PROVR_GEN: code of generic supplier,  

COD_PROVR_TRABAJO: code of work supplier,  

NOMBRE: name of the work supplier, 

PESO: weight (in grams),  

PESO_NETO: net weight (in grams),  

VOLUMEN: volume (in cm3) 
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Appendix 3 – Smart Insurance use 
case dataset structure and 
description 

The datasets provided by the Insurance Company (customer of GFT) are described in the 
following in terms of tables and records structure and description. 

Following the GDPR directive, all sensitive information of the datasets have been anonymized. 
For the encryption, we used a cryptographic hash function, the MD5 algorithm. It is a 
unidirectional function different from coding and encryption because it is irreversible. The 
spread of this encryption algorithm is still widespread (just think that the most frequent 
integrity check on file is based on MD5). This function takes as input an arbitrary length string 
and outputs another 128 bit output. The process happens very quickly and the output (also 
known as "MD5 Checksum" or "MD5 Hash") returned is such that it is highly unlikely to obtain 
the same hash value in output with two different input strings. 

We have modeled the length of the encrypted string, based on the length of the field to be 
encrypted. For example, for the tax code the encrypted string is 16 characters, while for the 
license plate it is 8 characters. This eliminates the possibility of tracing back to the initial value. 
We have performed several decrypting tests present on numerous online sites and no one 
has been able to decrypt the string entered. 

Furthermore, we have carried out a univocal check of all the encrypted keys, so that the 
possibility of two different string yielding identical encrypted strings is excluded. 

In the following, the datasets tables and records are described. The fields highlighted in blue 
have been anonymized as explained above. 

 

ana 

************************************************************************ 

id_univoco_anagrafica string   Flow unique identifier: REGISTRY 

id_univoco_master     string                                    

codice_fiscale        string     Subject unique identifier                              

tipo_anagrafica       string   Registry type (P = person, N = company) 

cognome               string   Surname / company name                                

nome                  string   Name                             

sesso                  string   Gender (M=male, F=female, N=company) 

pubblica_amministrazione string                Public Administration  (YES/NO)                 
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ana_ptf 

************************************************************************ 

codice_fiscale       string   Subject unique identifier                                

idpolizza            string  Policy unique identifier                                 

ruolo                 string               Subject role                   

cognome              string  Surname / company name                                   

nome                 string  Name                                 

 

ana_sin 

************************************************************************ 

id_univoco_anagrafica string  Flow unique identifier: REGISTRY                                    

id_univoco_master     string                                    

codice_fiscale        string   Subject unique identifier                                 

idsinistro            string  Claim unique identifier                                  

ruolo                  string               Subject role                  

cognome               string  Surname / company name                                    

nome                  string  Name                                  

 

ana_vei 

************************************************************************ 

codice_fiscale       string        Subject unique identifier                              

targa                 string   License plate                             

cognome              string   Surname / company name                                    

nome                 string   Name                                   

 

anaage 

************************************************************************ 

codice_fiscale       string        Subject unique identifier                              

agenzia              string                Agency ID                 

descrizione          string                Description                   
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anaaia 

************************************************************************ 

codice_fiscale       string       Subject unique identifier                                      

codice_anomalia      string               Anomaly identifier                 

 

anabds 

************************************************************************ 

codice_fiscale       string  Subject unique identifier                                      

bds                   bigint                                    

p1                    bigint                                    

p2                    bigint                                    

p3                    bigint                                    

p4                    bigint                                    

p5                    bigint                                    

p6                    bigint                                    

 

anacci 

************************************************************************ 

codice_fiscale       string       Subject unique identifier                                      

tipo_assicurazione   string               Insurance type                 

ente_comunicante     string               Communicating entity                   

data_infortunio      string               Accident date                  

luogo_infortunio     string               Accident place                  

lesione_1            string               Injury nr 1                     

lesione_2            string               Injury nr 2                     

lesione_3            string               Injury nr 3                     

lesioni_ulteriori    string               Other Injuries                     

percentuale_inabilita double              Disability percentage                  

data_decesso         string               Date of death                  

 

anacnt 

************************************************************************ 

codice_fiscale       string       Subject unique identifier                                      
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tipo_contatto        string               Contact type                  

contatto             string               Contact                  

 

anacontatori 

************************************************************************ 

codice_fiscale       string       Subject unique identifier                                      

portafoglio          bigint               Total insurance policies number                   

portafoglio_auto     bigint               Auto insurance policies number                     

portafoglio_re       bigint               Elementary branches insurance policies number          

portafoglio_vita     bigint               Life insurance policies number                  

portafoglio_cauzioni bigint               Deposits policies number                   

sinistri_aperti      bigint               Open claims number                     

veicoli_attivi       bigint               Insured vehicles number                    

 

anafid 

************************************************************************ 

codice_fiscale       string       Subject unique identifier                                      

tipo_soggetto        string               Subject type                  

 

anaind 

************************************************************************ 

codice_fiscale       string       Subject unique identifier                                      

comune               string               Subject main address, city                     

provincia            string               Subject main address, province                    

nazione              string               Subject main address, country                    

flag_principale      string                                    

 

analnkcnt 

************************************************************************ 

tipo_contatto        string               Contact type                  

contatto             string               Contact                  

codice_fiscale_a     string               Subject unique identifier a                

codice_fiscale_b     string               Subject unique identifier b                    
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crvdlnk 

************************************************************************ 

partita_iva          string               VAT number                  

codice_fiscale       string       Subject unique identifier                                      

denominazione        string               Subject / company name                   

cognome              string  Surname / company name                                    

nome                 string  Name                                  

 

crvdsem 

************************************************************************ 

codice_fiscale       string       Subject unique identifier                                      

semaforo             string               Traffic light                     

 

ptf 

************************************************************************ 

idpolizza            string  Policy unique identifier                                    

agenzia              string               Agency ID                   

descrizione_agenzia  string               Agency description                   

provincia_agenzia    string               Province of the agency                   

ramo                  string               Policy branch                   

tipo_polizza         string               Policy type (Individual / Collective)                  

stato_polizza        string               Policy state (Active/ Canceled / Suspended)                  

stato_coass          string               No coinsurance / Our delegation / Delegation                 

codice_prodotto      string               Product Code-Product Description                   

prodotto             string               Product                   

data_effetto         string               Policy effective date                  

data_scadenza        string               Policy effective deadline                 

premio               double             Policy premium                   

 

sin 

************************************************************************ 

idsinistro           string  Claim unique identifier                                    

idpolizza            string  Policy unique identifier                                    
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data_sinistro        string               Claim occurrence date (Format: YYYY-MM-DD)               

ora_sinistro         string               Claim occurrence time (Format: HH: MM)                   

tipo_sinistro        string               Accident type (RCA / ARD / RE)                

tipo_danno           string               Damage reported type (1 = THINGS / 2 = PEOPLE / 3 = 
MIXED)                 

tipo_gestione        string               Claim management type                    

flag_autorita_presenti string               Authority flag present (S - Yes, N - No)                   

stato_sinistro        string               Accident status                    

data_definizione_sinistro string               Claim closing date (Format: YYYY-MM-DD)               

numero_veicoli        bigint               Vehicles involved number                    

comune                string               Claim occurrence address, city  

provincia             string               Claim occurrence address, province                   

pagato                double              Paid                   

riservato             double              Reserved                    

data_denuncia         string               Claim complaint date (YYYY-MM-DD) 

 

sinantifrode 

************************************************************************ 

idsinistro           string  Claim unique identifier                                    

semaforo             string               Traffic light                     

verifica              string               Verification                     

note_verifica        string               Verification notes                     

approfondimento      string               Deepening                     

note_approfondimento string   Deepening notes                     

antifrode             string   Anti fraud                     

 

sinantifrodectl 

************************************************************************ 

idsinistro           string  Claim unique identifier                                    

controllo            string               Check                     
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vei 

************************************************************************ 

targa                  string  License plate                                     

marca                 string               Vehicle brand                   

modello               string               vehicle model                   

tipo_veicolo          string               Vehicle type                   

tipo_targa            string               License plate type                 

data_immatricolazione string               Matriculation date                   

 

vei_ptf 

************************************************************************ 

targa                string   Vehicle identifier                                     

idpolizza           string   Policy unique identifier                                    

 

vei_sin 

************************************************************************ 

targa                string   Vehicle identifier                                     

idsinistro          string   Claim unique identifier                                    

  


