mBigDataStack

Holistic stack for big data applications and operations

Project Title High-performance data-centric stack for big data applications and
operations
Project Acronym BigDataStack

Grant Agreement No 779747

Instrument Research and Innovation action
Call Information and Communication Technologies Call (H2020-ICT-
2016-2017)

Start Date of Project 01/01/2018
Duration of Project 36 months

Project Website http://bigdatastack.eu/

D2.5 — Conceptual model and
Reference architecture - I

Work Package WP2 — Requirements, Architecture & Technical Coordination

Lead Author (Org) Dimosthenis Kyriazis (UPRC)

Mauricio Fadel Argerich (NEC), Orlando Avila-Garcia (ATOS), Ainhoa
Azqueta (UPM), Bin Cheng (NEC), Ismael Cuadrado-Cordero (ATOS),
Christos Doulkeridis (UPRC), Kostas Giannakopoulos (SILO), Gal
Hammer (RHT), Ricardo Jimenez (LXS), Konstantinos Kalaboukas
Contributing Author(s) | (SILO), Sophia Karagiorgou (UBI), Miki Kenneth (RHT), Pavlos Kranas
(Org) (LXS), Nikos Lykousas (UBI), Richard McCreadie (GLA), Stavroula
Meimetea (UPRC), Yosef Moatti (IBM), Konstantinos Papadimitriou
(SILO), Marta Patino (UPM), Stathis Plitsos (DANAQOS), Dimitrios
Poulopoulos (UPRC), Bernat Quesada Navidad (ATOS), Amaryllis
Raouzaiou (ATC), Marti Sanchez-Juanola (ATOS), Anestis Sidiropoulos
(ATC/BAC), Paula Ta-Shma (IBM), Giannis Tsantilis (UBI)

Due Date 01.07.2019
Date 03.07.2019 (Re-submission: 04.10.2019)
Version 2.1

Dissemination Level
m PU: Public (*on-line platform)
PP: Restricted to other programme participants (including the Commission)
RE: Restricted to a group specified by the consortium (including the Commission)
CO: Confidential, only for members of the consortium (including the Commission)
The work described in this document has been conducted within the project BigDataStack. This project has
received funding from the European Union’s Horizon 2020 (H2020) research and innovation programme under

the Grant Agreement no 779747. This document does not represent the opinion of the European Union, and the
European Union is not responsible for any use that might be made of such content.

Project No 779747 (BigDataStack)

D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019

Dissemination Level: PU

MBigDataStack

Holiti stack for big data appiications and operations

Versioning and contribution history

Version | Date Author Notes

0.1.0 20.05.2019 | Dimitris Poulopoulos (UPRC) Initiated document

0.2.0 03.06.2019 | Dimitris Poulopoulos (UPRC) Updated architecture section

0.3.0 05.06.2019 | George Kousiouris (UPRC) Updated ADW section

0.3.1 05.06.2019 | Maurizio Megliola (GFT) GFT data structure & description

0.3.2 10.06.2019 | Pavlos Kranas (LXS) Updated Seamless Analytics

0.3.3 17.06.2019 | UBI inputs Updated Data Toolkit

0.34 18.06.2019 | UPM inputs Updated CEP

0.3.5 18.06.2019 | Christos Doulkeridis (UPRC) Updated Process Mapping

0.4.0 24.06.2019 | Dimosthenis Kyriazis (UPRC) Updated several sections based on

overall updated architecture

0.4.1 24.06.2019 | Mauricio Fadel Argerich (NEC) Updated Dynamic Orchestrator

04.2 24.06.2019 | RHT inputs Updated Resources Management

04.3 24.06.2019 | Ismael Cuadrado Cordero, Updated QoS Evaluation
Orlando Avila-Garcia (ATOS)

04.4 24.06.2019 | Richard McCreadie (GLA) Updated ADS Ranking & Deployment

04.5 24.06.2019 | Jean-Didier Totow (UPRC) Updated Triple Monitoring

0.4.6 26.06.2019 | Orlando Avila-Garcia (ATOS) Updated QoS Evaluation

0.5.0 26.06.2019 | Amaryllis Raouzaiou (ATC) Updated Process Modelling and

Visualization Engine

0.5.1 30.06.2019 | Richard McCreadie (GLA) Review Part 1

0.6.0 03.07.2019 | Dimosthenis Kyriazis (UPRC) Pre-final version

1.0 03.07.2019 | Dimosthenis Kyriazis (UPRC) Final version

1.1 27.09.2019 | Stathis Plitsos (DANAOS), Updated version to address GDPR-
Bernat Quesada Navidad related comments (Appendix 1,
(ATOS Worldline), Maurizio Appendix 2 and Appendix 3)
Megliola (GFT)

2.0 01.10.2019 | Dimosthenis Kyriazis (UPRC) Candidate final version

21 03.10.2019 | Maurizio Megliola (GFT) Anonymization fix

Disclaimer

This document contains information that is proprietary to the BigDataStack Consortium. Neither this
document nor the information contained herein shall be used, duplicated or communicated by any
means to a third party, in whole or parts, except with the prior consent of the BigDataStack Consortium.

@OE0

BY NC ND

page 2 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holstic stk for i dataappiatons and peaions D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

Table of Contents roci30sss40

1. EXECULIVE SUMMIEIYttt et e s e es e s e e e s en s s nnnnenees 6
P 1170 o [§ Tex 1 o] o FO TP U TP 7
21. 1T 0 11 o oo VP 7
2.2. [o o101 0 1=T 0T S £ U o (1 = 8
3. BigDataStack Capabilitiesccoueiiiiiiiiii 9
3.1. KEY OffEIINGS ..ottt e e e e e e e e et e e e e e e aaeeeaens 9
3.2. Stakeholders addreSSed ..o 10
4. AN PRASES ...ttt ettt e et et e e et e e et e e e e aaaaaaaaaaaaaaas 12
4.1. [0 (Y o) =TT U 12
4.2. DimenSioNiNg PRASEuuuiiuiiiiiiiiiiiieie ettt 13
4.3. D =T o1 (0] 41T 0 Gl o] =T -, 14
44. Operations PhAaSsEoooiiiiiiiii e 14
5. ArCIITECIUNE ...t 16
6. Main architectural COMPONENESoooiiiiii i 19
6.1. Resources Management.............uuuiieiiiiiiiiiiiiiiii e 19
6.2. Data-Driven Network Management ..., 22
6.3. DynamicC OrCheStrator..............uuueiiiiiiiiiiiiie e 23
6.4. Triple Monitoring and QoS Evaluation.............cccccoiiiiiiiiii e 26
6.4.1. QLI o] (37 (o T a1 €4 1 T 26
6.4.2. QOS EVAlUBLION......ceiiiiiiiee e 30
6.5. Applications & Data Services Ranking / Deploymentccccocoiiiiiiiiiiiiinnennee. 34
6.6. Data Quality ASSESSMENT..........uiiiiiiiiiie e 39
6.7. REAI-IME CEP ... 41
6.8. Process mapping and ANAIYLICSuuuiuiiiiiiiiiiieeii e 43
6.8.1. Process Mapping......oooooioiiiii ettt a e e e e e e e aaaaaas 43
6.8.2. Process ANAlYtiCScooeiiiiiei e a e e e 49
6.9. Seamless Analytics Frameworkcccocooiiiiiiiiiieeeeee e 50
6.10. Application Dimensioning Workbench ..., 51
6.11. Big Data Layout and Data SKipPinNgcceeveiiiiiiiiiiieieeeeeeee e 56
6.12. Process modelling frameworkc.uuiiiiiiiiiiii 57
6.13. Data TOOIKIL ...ttt e e e e e e e e e e e e e e e e e 60
6.14. Adaptable Visualizations.............cueeiiiiiiiiiiiiii 62
7. KeY INTErACONS ...t e 64
71. L0 LT g1 =Y =Tz 1o o I = - 64
7.2 Realization & Deployment...........o.eii e 70
7.3. Data as @ ServiCe & StOrage........uuuuiuiiiiiiiiiiiiiieieieeee et 72
7.4. Monitoring & Runtime Adaptations...........cc e 79
7.41. Triple Monitoring ENGINE.........couiiviiiiiiiiee e 80
7.4.2. Quality of Service (Q0S) Evaluation.............cccueeviiiiiiiiiieee e 83
S T 7] o T 117 1o o 1 OO OPPPRTPR 86
9. REEIEINCES ...ttt 87
Appendix 1 — Real-time Ship Management use case dataset structure and description...... 89
Appendix 2 — Connected Consumer use case dataset structure and description 94
Appendix 3 — Smart Insurance use case dataset structure and description...................... 102
@ page 3 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Wl stac o g deta appcatonsandaperations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

List of tables

L= o] (T B 1= o 41T] oo) SR 8
Table 2 - Prometheus integrationueiiiiiiiiiii e 29
Table 3 - Main symbols used in Process Mappingccooooaiiiiiiniiiiii e 44
Table 4 - Short-name Component Mapping Table.............ccco e 71

List of figures

Figure 1 - Technical ChalleNgescoooiiiiiiii et a e e e e e e 7
Figure 2 - Key OfferiNgScccviii i ee e e 9
Figure 3 - BigDataStack Main Phases............cooooiiiiiiiiiiicc e 12
Figure 4 - DIMensioning Phasecoooiiiiiiiii oo 13
Figure 5 - Deployment Phase ... e 14
Figure 6 - Operations Phase....... ... e 15
Figure 7 - BigDataStack architecture model ... 16
Figure 8 - OKD architecture overview inside the DevOps operation [8]ccuevereeeeeeneen. 20
Figure 9 - OKD architecture overview in the users operations.............ccccccvvvveiiieriieiieeeeeenn.. 22
Figure 10 - Data-Driven Network Management components...........ccccuuvevevrirneeeneeenneeeeeeenen 23
Figure 11 - High-Level Interaction with other Components.............ccccccuviiiiiiiiiiiiiiieiiieeeeeee, 24
Figure 12 - Dynamic Orchestrator Detailed View.............coooiiiiiiiie e 25
Figure 13 - High-level class diagram of the Dynamic Orchestrator..............cccccvvviviviirnnennen. 26
Figure 14 - Triple Monitoring Engine architecture diagramcccccccuviiiiiiiiiiiiiiiiiieceeeee, 28
Figure 15 - Triple Monitoring Engine Federation Model.............cccccooiiiiiiiiiiiiiiiiiiieieeeeeee 30

Figure 16 - SLO guarantees thresholds shown over the Response Time (left) and
Throughput (right) metrics graphs: warning (lowest criticality) and error (highest

criticality) thresholds as orange and red lines, respectively.cccccccviiiiiiiiienennnnnn. 34
Figure 17 - Process Flow for ADS Ranking/Deploy during First Time Deployment.............. 36
Figure 18 - ADS-Ranking, First Time Deployment Internal Process Flow.............cccucevuuee.e. 37
Figure 19 - ADS-Ranking, Re-Ranking Internal Process FIow.............ccccuvviiiiiiiiiiiiiiiiiiene. 38
Figure 20 - Domain agnostic data cleaning model architectureccccuvveviiiiiiiiiiiennennn.. 40
Figure 21 - Data Cleaning Module Architecture.............oooiiiiiiiiee e 41
Figure 22 - CEP Components and Deployment............cooooiiiiiiiiiiiiieeeee e 43
Figure 23 - High-level architecture of Process Mapping sub-component..............ccccceeueneee. 44
Figure 24 - Learning phase of Process Mapping: Processing the first dataset D................. 46
Figure 25 - Learning phase of Process Mapping: Processing the second dataset D'........... 47
Figure 26 - The in-action phase of Process Mappingcccooocoiiiineiimiiiiiiieiiiieieievee e 48
Figure 27 - Internal architecture of Process Analytics sub-componenteuveeiiiieeeee. 50
Figure 28 - Seamless INterface ... 51
Figure 29 - Application dimensioning internal structure and link with external components . 56
Figure 30 - Process modeling framework ..o 59
Figure 31 - Application configuration per graph components............ccccccccvuiiiiriieiieeiieeeienne. 61
Figure 32 - Visualization framework building blocks ..o 63
Figure 33 - Information flows in Process Modellingccccoiiiioiiiiiiiiieeee e 64
Figure 34 - Example of a high level BRMN-like application graphcccccuveiiiiiiiiiieneneee. 65
Figure 35 - Information flows in Process Mapping.........coooooooiiiiiiiniiieieee e 66
@ page 4 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Wl stac o g deta appcatonsandaperations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

Figure 36 - User Interaction Layer Sequence Diagram...........cccccccuveureinimieriiiieeeeeeieieeeeeeeeens 67
Figure 37 - BUSINESS @nalyst VIEWcooiiiii i 68
Figure 38 - Data analyst's VIEWcooieiii it e s 70
Figure 39 - Interaction Diagram for First-Time Ranking...........cccccooiiiiiiiiiiiiiiiiieieeeeeeeee 71
Figure 40 - Interaction Diagram for Application Deployment..............cccocoiuiiiiiiiiiiiiiiiieieeee. 72
Figure 41 - Architecture of data stores ... 73
Figure 42 - Direct access the LXS e 74
Figure 43 - Direct access the COS ... e 74
Figure 44 - Request data using a simple SparkSQL qUerycccccouuuimrmiimiiiiiiieiiieieeeeeeeee 75
Figure 45 - Seamless Analytical Frameworkoooooiiiiiiiiiiici e 76
Figure 46 - Inserting data ... e 78
Figure 47 - Inserting streaming data............oooiiiiiiiiii 79
Figure 48 - Prometheus exporters. 80
Figure 49 - Prometheus REST APl ... 81
Figure 50 - Publish/subscription mechanismcooo e 82
Figure 51 - QoS Evaluation COMPONENToiiiiiiiiiiii e 83
Figure 52 - Interaction Diagram for CDP Re-Ranking...........coocoeiiiiniiiniiiiiiiiiiieeeeeeeeeeeee 85
Figure 53 - Dataset structure and description............ooooiiiiiiii e 94
@ page 5 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

1. Executive Summary

BigDataStack aims to deliver a complete stack including an infrastructure management
solution that drives decisions according to live and historical data, thus being fully scalable,
runtime adaptable and highly performant. The overall objective is for BigDataStack to address
the emerging needs of big data operations and data-intensive applications. The solution will
base all infrastructure management decisions on data aspects (for example the estimation
and provision of resources for each data service based on the corresponding data loads),
monitoring data from deployments and logic derived from data operations that govern and
affect storage, compute and network resources. On top of the infrastructure management
solution, “Data as a Service” will be offered to data providers, decision-makers, private and
public organisations. Approaches for data quality assessment, data skipping and efficient
storage, combined with seamless data analytics will be realised holistically across multiple
data stores and locations.

To provide the required information towards enhanced infrastructure management
BigDataStack will provide a range of services, such as the application dimensioning
workbench, which facilitates data-focused application analysis and dimensioning in terms of
predicting the required data services, their interdependencies with the application micro-
services and the necessary underlying resources. This will allow the identification of the
applications data-related properties and their data needs, thereby enabling BigDataStack to
provision deployment with specific performance and quality guarantees. Moreover, a data
toolkit will enable data scientists to ingest their data analytics functions and to specify their
preferences and constraints, which will be exploited by the infrastructure management
system for resources and data management. Finally, a process modelling framework will be
delivered, to enable functionality-based modelling of processes, which will be mapped in an
automated way to concrete technical-level data analytics tasks.

The key outcomes of BigDataStack are reflected in a set of main building blocks in the
corresponding overall architecture of the stack. This deliverable is a refinement of the key
functionalities of the overall architecture, the interactions between the main building blocks
and their components, as they were described in the previous version of the architecture
(Deliverable D2.4 - Conceptual model and Reference architecture). Comparing to the previous
version of the architecture, key changes refer to the interplay between the application and
data dimensioning and the components that manage the deployment lifecycle (i.e.
deployment patterns generation and ranking and deployment management), the dynamic
orchestrator and the overall quality and performance assessment during runtime.
Additionally, there are changes in the specifications of several components (reflecting their
latest implementation status) and as such their associated sections have received updates in
this document as well (e.g. seamless analytics framework). It should be noted that additional
design details and evaluation results for all components of the architecture will be delivered
in the corresponding follow-up (WP-specific) deliverables addressing the user interaction
block, the data as a service block and the infrastructure management block. It should be noted
that v2.0 of this deliverable has been released to include relevant GDPR-related information
(updates in Appendix 1, Appendix 2 and Appendix 3).

@0l

BY NC ND

page 6 of 108 bigdatastack.eu

"¢ ﬁaig DataStack Project No 779747 (BigDataStack)

-
=

2 1 ot stk for i deta aplcatonsad peatons D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

2.Introduction

The new data-driven industrial revolution highlights the need for big data technologies, to
unlock the potential in various application domains (e.g. transportation, healthcare, logistics,
etc). In this context, big data analytics frameworks exploit several underlying infrastructure
and cluster management systems. However, these systems have not been designed and
implemented in a “big data context”. Instead, they emphasise and address the computational
needs and aspects of applications and services to be deployed.

BigDataStack aims at addressing these challenges (depicted in Figure 1) through concrete
offerings, that range from a scalable, runtime-adaptable infrastructure management system
(that drives decisions according to data aspects), to techniques for dimensioning big data
applications, modelling and analysing of processes, as well as provisioning data-as-a-service
by exploiting a seamless analytics framework.

Challenge Means Primary Benefit

Application analysis &
Dimensioning & Automation PP 5 ¥
modelling workbench
End-to-end visibility in Process modelling Efficient processes through declarative
processes for adaptation & Agility & Efficiency framework, events & process modelling & obtained feedback
optimizati patterns mining from data mining
Programmers- & Data toolkit, process More pertinent & relevant solutions
practitioners- tailored tools Openness & Extensibility modelling framework & addressing the stakeholders evolving
& frameworks visualization environment preferences & needs
Data services integrated in . : Quality-ensured, ready-to-use data
" = 5 Data as a Service covering . ; »
the overall environment Automation & Quality s emerging from data functions provided
the complete data lifecycle i
stack on top of a data-optimized stack
Architecture blueprint for a S = s 2 il arar] 'stat':k percep'tlen
. : Optimization & Scalability implementation for data- through clear explication of building
holistic data-oriented stack 5 5 : e <
intensive applications blocks & their interactions
Efficient & runtime Runtime adaptations of the Increased speed of all data operations
adaptable management of Performance & Dynamicity data services & the cluster and the overall solution facilitating the
all services & resources management system real-world needs

Adaptable & distributed

Predictable assessments & deployment
patterns as the baseline for efficient &
adaptable management

processing, analysis &
visualizati

Figure 1 - Technical challenges

2.1. Terminology

The following table summarises a set of key terms used in BigDataStack, not regarding
acronyms but regarding actual usage, given the big number of concepts and technologies
addressed by the envisioned stack.

Term Description

Application services Components/micro-services of a user’s application

Data services “Generic” services such as cleaning, aggregation, etc.

Dimensioning Analysis of a user’s application services to identify the data and
resources needs/requirements

Toolkit Mechanism enabling ingest of data analytics tasks & setting of
requirements (from an end-user point of view)

Graph An overall graph including the application services and the data
services

Process modelling “Workflow” modelling regarding business processes

Process mining Analytics tasks per process of the “workflow”

Process mapping Mapping of business processes to analytics tasks to be executed

page 7 of 108 bigdatastack.eu

ﬁB i g DataStaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

Interdependencies between Data flows between application components and data services
application / data services

Table 1 - Terminology

2.2. Document structure

The document is structured as follows:

@

OO

BY NC ND

Section 3 provides an overview of the capabilities offered by the BigDataStack
environment, including the key offerings and the main stakeholders addressed by
each offering.

Section 4 introduces the identified main phases, to showcase the interactions
between different key blocks and offerings of the stack.

Section 5 presents the overall project architecture.
Section 6 provides descriptions of the main architecture components.

Finally, in Section 7, a detailed sequence of events depicting the information flows is
provided. It should be noted that these sequence diagrams capture the interactions
on the overall architecture level and are not supposed to provide details of the
interactions on lower levels given that these are provided by the corresponding design
and specification reports of the work package deliverables and will be refined in later
reports accordingly.

page 8 of 108 bigdatastack.eu

ﬁB i g DataStaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

3.BigDataStack Capabilities

This section provides an overview of the capabilities that will be offered by BigDataStack, in
terms of offerings towards an extensive set of stakeholders. The goal is to present a set of
“desired” capabilities as the key goals of BigDataStack. The components providing and
realising these capabilities are thereafter described in the overall architecture.

3.1. Key offerings

BigDataStack offerings are depicted through a full “stack”, that aims not only to facilitate the
needs of data operations and applications (all of which tend to be data-intensive), but also
promote these needs in an optimized way.

As depicted in Figure 2, BigDataStack will provide a complete infrastructure management
system, which will base the management and deployment decisions on data from current and
past application and infrastructure deployments. A representative example would be that of
a service-defined deployment decision by a human expert (current approach), where he
chooses to deploy VMs on the same physical host, to reduce data transfer latencies over the
network (e.g. for real-time stream processing). On the other hand, the BigDataStack approach
instead will base the decision making according to information from current and past
deployments (e.g. generation rates, transfer bottlenecks, etc.), which may result in a superior
deployment configuration. To this end, the BigDataStack infrastructure management system
would propose a data-driven deployment decision resulting in containers/VMs placed within
geographically distributed physical hosts. This simple case shows that the trade-off between
service and data-based decisions on the management layer should be re-examined nowadays,
due to the increasing volumes and complexity of data. The envisioned “stack” is depicted in
Figure 2, which captures the key offerings of BigDataStack.

Dimensioning Process Data Toolkit Data Visualization
Workbench Modelling Declarative analytics Adaptive and
Dimensioning of data- Declarative and flexible tasks and preferences incremental
intensive applications modelling framework specification visualizations

Data as a Service
Big data Layout and data skipping, data quality assessment, aggregation, seamless predictive and process
analytics, real-time cross-stream processing

Data-driven Infrastructure Management
Allocation, distribution, orchestration, monitoring and runtime adaptation of computing, storage and
network resources

Figure 2 - Key offerings

The first core offering of BigDataStack is efficient and optimised infrastructure management,
including all aspects of management for the computing, storage and networking resources,
as described before.

The second core offering of BigDataStack exploits the underlying data-driven infrastructure
management system, to provide Data as a Service in a performant, efficient and scalable way.
Data as a Service incorporates a set of technologies addressing the complete data path: data

@OE0

BY NC ND

page 9 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

quality assessment, aggregation, and data processing (including seamless analytics, real-time
Complex Event Processing - CEP, and process mining). Distributed storage is realised through
a layer, enabling data to be fragmented/stored according to different access patterns in
different underlying data stores. A big data layout and data skipping approach is used to
minimize the data that should be read from the underlying object store to perform the
corresponding analytics. The seamless data analytics framework analyses data in a holistic
fashion across multiple data stores and locations and operates on data irrespective of where
and when it arrives at the framework. A cross-stream processing engine is also included in the
architecture to enable distributed processing of data streams. The engine considers the
latencies across data centres, the locality of data sources and data sinks, and produces a
partitioned topology that will maximise the performance.

The third core offering of BigDataStack refers to Data Visualization, going beyond the
presentation of data and analytics outcomes to adaptable visualisations in an automated
way. Visualizations cover a wide range of aspects (interlinked if required) besides data
analytics, such as computing, storage and networking infrastructure data, data sources
information, and data operations outcomes (e.g. data quality assessment outcomes,
application analytics outcomes, etc.). Moreover, the BigDataStack visualisations will be
incremental, thus providing data analytics results as they are produced.

The fourth core offering of BigDataStack, the Data Toolkit, aims at openness and extensibility.
The toolkit allows the ingestion of data analytics functions and the definition of analytics,
providing at the same time “hints” towards the infrastructure/cluster management system for
the optimised management of these analytics tasks. Furthermore, the toolkit allows data
scientists to specify requirements and preferences as service level objectives (e.g. regarding
the response time of analytics tasks), which are considered by infrastructure management
both during deployment time and during runtime (i.e. triggering adaptations in an automated
way).

The Process Modelling offering provides a framework allowing for flexible modelling of
process analytics to enable their execution. Process chains (as workflows) can be specified
through the framework, along with overall workflow objectives (e.g. accuracy of predictions,
overall time for the whole workflow, etc) that are considered by mechanisms mapping the
aforementioned processes to data analytics that can be executed directly on the BigDataStack
infrastructure. Moreover, process mining tasks realize a feedback loop towards overall
process optimisation and adaptation.

Finally, the sixth offering of BigDataStack, the Dimensioning Workbench aims at enabling the
dimensioning of applications in terms of predicting the required data services, their
interdependencies with the application micro-services and the necessary underlying
resources.

3.2. Stakeholders addressed

BigDataStack provides a set of endpoints to address the needs of different stakeholders as
described below:

@ ®®@ page 10 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

Data Owners: BigDataStack offers a unified Gateway to obtain both streaming and
stored data from data owners and record them in its underlying storage infrastructure
that supports SQL and NoSQL data stores.

Data Scientists: BigDataStack offers the Data Toolkit to enable data scientists both to
easily ingest their analytics tasks and to specify their preferences and constraints to
be exploited during the dimensioning phase regarding the data services that will be
used (for example response time of a specific analytics task).

Business Analysts: BigDataStack offers the Process Modelling Framework allowing
business users to define their functionality-based business processes and optimise
them based on the outcomes of process analytics that will be triggered by
BigDataStack. Mapping to specific process analytics tasks will be performed in an
automated way.

Application Engineers and Developers: BigDataStack offers the Application
Dimensioning Workbench to enable application owners and engineers to experiment
with their application and obtain dimensioning outcomes regarding the required
resources for specific data needs and data-related properties.

These actors interact with the corresponding offerings and provide information that is
exploited thereafter by the infrastructure/cluster management system of BigDataStack. It
should be noted that on top of these offerings, the Visualization Environment is also an
interaction point with end users, providing the outcomes of analytics as well as the monitoring
results of all infrastructure and data-related operations.

@

OOE

BY NC ND page 11 of 108 bigdatastack.eu

ﬁigDataStack Project No 779747 (BigDataStack)

5 Hosic Sk i ol it s D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

4. Main phases

The envisioned operation of BigDataStack is reflected in four main phases as depicted in
Figure 3 (and further detailed in the following sub-sections): Entry, Dimensioning,
Deployment and Operation.

Entry Dimensioning Deployment

Data import through the Cluster resources & data
gateway sources abstraction
Playbook generation
Modelled processes (potential enrichment of Interdependencies
through the framework data services) through the identification
toolkit
- -
Preferences & constraints
through the toolkit

During the entry phase, data owners ingest their data through a unified gateway. Analysts
design business processes by utilising the functionalities of the Process Modelling framework
in order to describe the overall business workflows, while data scientists can specify their
preferences and pose their constraints through the Data Toolkit.

m’;@mw) Cluster management
+Compute resources
+Storage resources

+Networking resources

= = Runtime adaptations

“ N Combined application & *Resources re-allocation

o deployment patterns +Storage & analytics re-distribution
compilation *Dynamic orchestration

+Live migration

Figure 3 - BigDataStack Main Phases

During the dimensioning phase, the individual processes / steps of the overall process model
(i.e. workflow) are mapped to analytics tasks, and the graph is concretized (including specific
analytics tasks and application services to be deployed). The whole workflow is modelled as
a playbook descriptor and is passed to the Dimensioning Workbench. In turn, the
Dimensioning Workbench provides insights regarding the required infrastructure resources,
for the data services and application components, through an envisioned elasticity model that
includes estimates for different Quality of Service (QoS) requirements and Key Performance
Indicators (KPIs).

The goal of the deployment phase is to deliver the optimum deployment patterns for the data
and application services, by considering the resources and the interdependencies between

application components and data services (based on the dimensioning phase outcomes).

Finally, the operation phase facilitates the provision of data services including technologies
for resource management, monitoring and evaluation towards runtime adaptations.

4.1. Entry phase

During the entry phase, data is introduced into the system, the Business Analysts design and
evaluate their business processes, and the Data Scientists specify their preferences and
constraints through the Data Toolkit. Thus, the Entry Phase consists of three discrete steps:

e Data owners ingest their data in the BigDataStack-supported data stores, through a
unified gateway. They can directly choose if they want to store (non-) relational data
or use the BigDataStack’s object storage offering. The seamless analytics framework
brings together the LeanXcale database and the Object Store into a new entity,
permitting the definition of rules for automatic balancing of datasets between these
two basic data storage components (e.g. data older than 3 months should be moved

@ ®@@ page 12 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

to the object store), as well as to describe and use a dataset, which may be spread
over the two data storage components seamlessly. Streaming data can also be
processed, leveraging the BigDataStack’s CEP implementation.

e Given the stored data, Business Analysts can design processes utilising the intuitive
graphical user interface provided by the Process Modelling framework, and the
available list of “generic” processes (e.g. customer segmentation process). Overall,
they compile a business workflow, ready to be mapped to concrete executable tasks.
These mappings are performed by a mechanism incorporated in the Process
Modelling framework, the Process Mapping component.

e Based on the outcomes of process mapping, the graph of services (representing the
corresponding business workflow) is made available to the Data Scientists through the
Toolkit. The scientists can specify preferences for specific tasks, for example, what the
response time of a recommendation algorithm should be or ingest a new executable
in case a task has not been successfully mapped by the Process Mapping mechanism.

The output of the Entry Phase is a Kubernetes-like configuration template file describing the
graph/workflow (which includes all relevant information for the application graph with
concrete “executable” services). We refer to this as a BigDataStack Playbook. This is passed
to the dimensioning phase in order to identify the resource needs for the identified services.

4.2. Dimensioning phase

The dimensioning phase of BigDataStack aims to optimize the provision of data services and
data-intensive applications, by understanding not only their data-related requirements (e.g.
related data sources, storage needs, etc.) but also the data services requirements across the
data path (e.g. the resources needed for effective data storage, analytics, etc.), and the
interdependencies when moving from an atomic / single service to an application graph. In
this context, dimensioning includes a two-step approach that is realised through the
BigDataStack Application Dimensioning Workbench:

e In the first step, the input from the Data Toolkit is used to define the composite
application (consisting of a set of micro-services) needs with relation to the required
data services. The example illustrated in Figure 4 shows that 3 out of the 5 application
components require specific data services for aggregation and analytics.

e The second step is to dimension these identified/required data services, as well as all
the application components, regarding their infrastructure resource needs. That is
achieved by exploiting load injectors generating different loads, to benchmark the
services and analyse their resources and data requirements (e.g. volume, generation
rate, legal constraints, etc.).

@ Identify required data services @ Dimension application & required data services

Data Aggregation

Data Analytics

Data-intensive Composite Application Data Analytics Data Analytics
App Component o
App Component App Component

App Component
App Component App Component 14 ° @ @ Anp t
omponen

Figure 4 - Dimensioning phase

@ ®®@ page 13 of 108 bigdatastack.eu

BY NC ND

App Component

Data Analytics
App Component @ @ Data @
Aggregation
— App Component @ I — App Component

App Component @

App Component

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holstic i or i ot aplcaons and operatons D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

The output of the dimensioning phase is an elasticity model, i.e., a mathematical function that
describes the mapping of the input parameters (such as workload and Quality of Service -
QoS) to needed resource parameters (such as the bandwidth, latency etc.).

4.3. Deployment phase

The deployment phase of BigDataStack aims at determining the optimum deployment
configuration and deployment resources for the application and data services in terms of
cluster resources. The need for such configuration emerges from the fact that to deploy the
application and data services in a way such that it will meet the user’s needs, BigDataStack
needs to account for the application and data services complexity/efficiency, the workload
(e.g. requests per second) and the user-defined quality of service requirements/preferences
(e.g. <100ms response time).

To this end, the deployment phase of BigDataStack includes a four-step process:

e Inafirst step of the deployment phase, the application and data services compositions
(as represented by a BigDataStack playbook) is analysed, and the independent sub-
structures comprised of application and data services (referred to as “pods”) are
identified.

e Second, a set of resource templates are used to convert each pod into a series of
candidate deployment patterns (CDPs), where each CDP is comprised of a pod and
resource template.

e Third, for each CDP, performance estimations are obtained from the Dimensioning
phase (based on prior application benchmarking and analysis) given expected data
and application workload or workloads.

e Finally, each CDP is scored with respect to the user’s quality of service requirements
and/or preferences to determine the suitability of each. The best configuration for
each pod is then selected, either for immediate deployment or to be shown to the
user for prior approval.

Identify Application / Data Produce Candidate Deployment i i Identify Optimal Deployment
o Service Deployment Pods 9 Patterns (CDPs) 9 Obtain Performance Estimates e Pattern

=)

5

Pod1,COP3 Pod1,COP2 Pod1,CDP1

Dimensioning

Figure 5 - Deployment phase

4.4. Operations phase

The operation phase of BigDataStack is realised through different components of the
BigDataStack infrastructure management system and aims at the management of the

@0l

BY NC ND page 14 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

complete physical infrastructure resources, in an optimised way for data-intensive
applications.

The operation phase includes a seven-step process as depicted in Figure 6:

©)

Based on the deployment phase, outcomes regarding the optimised deployment
pattern, computing resources are reserved and allocated.

According to the allocated computing resources, storage resources are also reserved
and allocated. It should be noted that storage resources are distributed.

Data-driven networking functions are compiled and deployed to facilitate the diverse
networking needs between different computing and storage resources.

The application components and data services are deployed and orchestrated based
on “combined” data and application-aware deployment patterns. An envisioned
orchestrator mechanism compiles the corresponding orchestration rules according to
the deployment patterns and the reserved computing, storage and network
resources.

Data analytics tasks will be distributed across the different data stores to perform the
corresponding analytics, while analytics on top of these stores is performed through
the seamless analytics framework.

Monitoring data is collected and evaluated for the resources (computing, storage and
network), application components and data services and functions (e.g. query
execution status).

Runtime adaptations take place for all elements of the environment, to address
possible QoS violations. These include resource re-allocation, storage and analytics re-
distribution, re-compilation of network functions and deployment patterns.

Resources identification @ Data-driven networking @Ccmbined app & data services orchestration

Computing resources Storage resources Computing resources Storage resources Computing resources Storage resources

O™ e _~ @ ®
@ ®5 @ /a/®|
W G W é

1 \] |
N 1
1 1
@ Storage & computation distribution ®, \\®I @ | @ Analytics distribution
1

@@ @ -
&% % B H' & B& N

@ Triple monitoring

)\ I\ J

I I

Network resources Application components Data services & functions

@ Runtime adaptations

i) i)) i) i)

Resources re-allocation Storage re-distribution Network functions re-compilation Dynamic orchestration Analytics re-distribution

@

OOE

BY NC ND

Figure 6 - Operations phase

page 15 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

5. Architecture

The following figure presents the overall conceptual architecture of BigDataStack, including
the main information flows and interactions between the key components.

i 3 " g L - 1 = H
i User | Dimensioning | ! Data toolkit i1 Process modeling 1) !
i i ! 1 1
i interaction | Mapped workbench ' | Mapped i Declarative analytics | ! Mabged Model & 1 i !
i layer | Processmodel i | process model ie“e‘:i'ﬁec':tei:: Sp:('iﬁcaﬁm:" 11 processmodel | progess | overalloblectives | proess 1 Adaptive | |
' VELED, = @ = Graph level 1] Playbook Y i — 1 ® mapping modeling |1 Visualization | |
' ' direndioning ! 142" Process model | Requirements & preferences | @ T i b |
i] i@ | con on |

: T i 1
i ! Node level Affiity] i

' dimensioning| impact| v

Application& data | 1 Data as a Available

analytics

1(7) Reairements
I\ & preferences services

1
1
s Data quality assessment

.@ #vaiiabie”>L__dimensioning i

A Resources 1

e e e e e e e e e e

E Setof deployment Elasticity

4 patterns rules &

! predictions

1 e [e S R e e S S ey

: : Realization engine : Ut e i e e e] H

' | A Deployment ! i i

i i 1 | i

1 i | :

Playbook | e P pattern:

H ® > Application& [—————— ke H Dataskippingindex | (Non)relational 1

! i | dataservices » !

H | e Selected pattern i H :

H i H 1 i

4 ! Bl i Assesseddata ! g

! : generator Deployment Manager | d :

i i 1 [©) Evaluated | Data i o

! e e e e) T monitoring 1 slices ! o

! Requestfor new Requirements & preferences data i 1 2

i deployment pattern QoS evaluation > 1 : H

e b el L) - :

i H i Data objects =

| ! | = | = T c

h | Application & Network g Storage and i Real-time monitoring data H 1 £}

! 1| dataservices re- functionsre- | Ea analytics ' ! ' g

; : iacion || 41 [re-atbution || , : S

! |) | Violations per unit of time ' ' =
| & | i :

' i 3 f (ot e ' i

g Playbook ! £ 1 Il - i N Streaming data| i

! L : ——— esbarere|IE2 1 Cluster ! ' Application Data& Cluster 5 ! Real-time CEP '

' ® il L = ==t scalability f 1 | components services resources o i

i | | orchestration allocation {2y illoa o b s P :

i ! management | i 8 i { i

i] e L h

L 1 = = 1 1 s . . - 1 . [

: ! Resource management & adaptation engine | ! Triple monitoring engine | ! Storage engine . 1

1| Global ks (®) | Realtime monitoring data

i| decson [—/—iiDZ]iee’"° M e ;

1_tracker Data-driven infrastructure management |

Figure 7 - BigDataStack architecture model

First, raw data are ingested through the Gateway & Unified APl component to the Storage
engine of BigDataStack, which enables storage and data migration across different resources.
The engine offers solutions both for relational and non-relational data, an Object Store to
manage data as objects, and a CEP engine to deal with streaming data processing. The raw
data are then processed by the Data Quality Assessment component, which enhances the
data schema in terms of accuracy and veracity and provides an estimation for the
corresponding datasets in terms of their quality. Data stored in Object Store are also enhanced
with relevant metadata, to track information about objects and their dataset columns. Those
metadata can be used to show that an object is not relevant to a query, and therefore does
not need to be accessed from storage or sent through the network. The defined metadata are
also indexed, so that during query execution objects that are irrelevant to the query can be
quickly filtered out from the list of objects to be retrieved for the query processing. This
functionality is achieved through the Data skipping component of BigDataStack. Moreover,
slices of historical data are periodically transferred from the LeanXcale database to the Object
Store, to free-up space for fresh tuples.

Given the stored data, decision-makers can model their business workflows through the
Process Modelling framework that incorporates two main components: the first component
is Process modelling, which provides an interface for business process modelling and the
specification of an end-to-end optimisation goals for the overall process (e.g. accuracy, overall
completion time, etc). The second component refers to Process Mapping. Based on the
analytics tasks available in the Catalogue of Predictive and Process Analytics and the specified
overall goals, the mapping component identifies analytics algorithms that can realise the

@ ®®@ page 16 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

corresponding business processes. The outcome of the component is a model in a structural
representation e.g. a JSON file that includes the overall workflow, and the mapped business
processes to specific analytics tasks.

Following, through the Data Toolkit, data scientists design, develop and ingest analytic
processes/tasks to the Catalogue of Predictive and Process Analytics. This is achieved by
combining a set of available or under development analytic functions into a high-level
definition of the user’s application. For instance, they define executables/scripts to run, as
well as the execution endpoints per workflow step. Data scientists can also declare
input/output data parameters, analysis configuration hyper-parameters (e.g. the k in a k-
means algorithm), execution substrate requirements (e.g. CPU, memory limits etc.) as service
level objectives (SLOs), as well as potential software packages / dependencies (e.g. Apache
Spark, Flink etc.). The output of the Data Toolkit component enriches the output of the
previous step (i.e. Process Modelling) and defines a BigDataStack Playbook.

The generated playbook is utilized by the Application and Data Services Deployment Patterns
Generator. The component creates different arrangements (i.e. patterns / configurations) of
deployment resources for each application and data service Pod. These candidate
deployment patterns (CDPs) are passed to the Application Dimensioning Workbench, along
with an end-to-end optimization objective and the information on the available resources, in
order to estimate resource usage and QoS performance prior to actual deployment. The
primary output of the Application Dimensioning Workbench is an elasticity model, which
defines the mapping of the input QoS parameters to the concrete resource needed (such as
the number of VMs, bandwidth, latency etc.). These decisions are depended on data-defined
models. Thus, based on the obtained dimensioning outcomes, deployment patterns are
ranked by the Deployment Patterns Ranker and the optimum pattern is selected for
deployment, making the concluding arrangement of services data-centric. The Deployment
Manager administers the setup of the application and data services on the allocated
resources.

During runtime, the Triple Monitoring engine collects data regarding resources, application
components (e.g. application metrics, data flows across application components, etc.) and
data operations (e.g. analytics / query progress, storage distribution, etc.). The collected data
are evaluated through the QoS Evaluation component to identify events / facts that affect the
overall quality of service (in comparison with the SLOs set in the toolkit). The evaluation
outcomes are utilised by the Runtime adaptation engine, which includes a set of components
(i.e. cluster resources re-allocation, storage and analytics re-distribution, network functions
re-compilation, application and data services re-deployment, and dynamic orchestration
patterns), to trigger the corresponding runtime adaptations needed for all infrastructure
elements to maintain QoS.

Moreover, the architecture includes the Global decision tracker, which aims at storing all the
decisions taken by the various components. The overall BigDataStack system takes advantage
of this recorded historical information to perform future optimisations. The key rationale for
the introduction of this component is the fact that decisions have a cascading effect in the
proposed architecture. For example, a dimensioning decision affects the deployment patterns
compilation, the distribution of storage and analytics, etc. The information about whether

@ ®®@ page 17 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

these decisions are altered during runtime will be exploited for optimised future choices
across all components through the decision tracker. Moreover, the tracker holds additional
information such as application logging data, Candidate Deployment Patterns, QoS failures,
etc. Thus, as a global state tracker, provides the ground for cross-component optimisation, as
well as tracking the state and history of BigDataStack applications.

Finally, the architecture includes the Adaptive Visualisation environment, which provides a
complete view of all information, including raw monitoring data (for resource, application and
data operations) and evaluated data (in terms of SLOs, thresholds and the evaluation of
monitoring in relation to these thresholds). Moreover, the visualization environment acts as
a unique point for BigDataStack for different stakeholders, actors, thus, incorporating the
process modelling environment, the data toolkit and the dimensioning workbench. These
accompany the views for infrastructure operators (e.g. regarding deployment patterns).

@0l

BY NC ND page 18 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

6. Main architectural components

Based on the overall architecture presented in the previous chapter, this chapter provides
additional information regarding the individual components of the BigDataStack architecture.

6.1. Resources Management

The Resource Management sub-system provides an Enterprise grade platform which
manages Container-based and Virtual Machine-based applications consistently on cloud and
on-premise infrastructures. This sub-system makes the physical resources (e.g. CPUs, NICs
and Storage devices) transparent to the applications. The application’s requirements will be
computed based on the input from the Realisation Engine and by a constant monitoring using
the Triple Monitor. The applications’ required resources are automatically allocated from the
available existing infrastructures and will be dismissed upon execution completion. Thus, the
Resource Management sub-system serves as an abstraction layer over today’s
infrastructures, physical hardware, virtual hardware, private and public clouds. This
abstraction allows the developing of compute, networking and storage management
algorithms which can work on a unified system, rather than dealing with the complexity of a
distributed system.

BigDataStack will build on top of the open source OpenShift Kubernetes Distribution (OKD)
project [1] for its Resource Management sub-system. The OKD project is an upstream project
used in Red Hat’s various OpenShift products. It is based and build around Kubernetes and
operators and is enhanced with features requested by commercial customers and Enterprise
level requirements. According to Duncan et al. [2] ODK is “an application platform that uses
containers to build, deploy, serve, and orchestrate the applications running inside it”. OKD
simplifies the whole process [3] of the deployment of a “fine-grained management over
common user applications” and management of the containerized software (the lifecycle of
the applications). Since its initial release in 2011, it has been adopted by multiple
organizations and has grown to represent a large percentage of the market. According to IDC
[4], OKD aims at accelerating the application delivery with “agile and DevOps methodologies”;
moving the application architectures toward micro-services; and adopting a consistent
application platform for hybrid cloud deployments.

As a base technology, OKD uses Docker and/or CRI-O for containerization and Kubernetes [5]
for their orchestration, including packaging, instantiation and running the containerized
applications. It also implements “geard” or “gear daemon” [6], a command-line client for the
management of containers and its linkage to systems across multiple hosts, used for the
installation and management of application components [7]. On top of the above described
technologies, OKD adds [8]:

e Source code management, builds, and deployments for developers

e Managing and promoting images at scale as they flow through your system

e Application management at scale

e Team and user tracking for organizing a large developer organization

e Networking infrastructure that supports the cluster

@ ®®@ page 19 of 108 bigdatastack.eu

BY NC ND

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

OKD integrates in the DevOps and users’ operation following a hierarchical structure, as
shown in Figure 8. A master node centralizes the APl/authentication, data storage,
scheduling, and management/replication operations, while applications are run on Pods
(following the Kubernetes philosophy).

ROUTING LAYER

MASTER NODE .
APTY Data Stare Scheduler M,;:;ﬂ:';gf" ™ ==

SCM (Git/Svn) Authentication
Gluster

Storage

@)
[o)

o
s I

Developer

RED HAT ENTERPRISE LINUX OR ATOMIC HOST

v
clyco
NODE INFRA NODE —
Existing = - B =
Autamation FOD1 a POD1 a Ceph
Toolsets & i Sl
POD 2 app POD 2 App
O = :
—— POD N App POD N App
[y o)
=0 —
Y ——

Operations RHEL OR ATOMIC HOST RHEL OR ATOMIC HOST —

Other Storage
Vendors

OPENSHIFT

SERVICE LAYER

CERTIFIED HARDWARE / CLOUD PROVIDER
Figure 8 - OKD architecture overview inside the DevOps operation [8]

Following this layered architecture, users access the API, web-services and command line
directly from the master node, while the applications and data services are accessed through
the routing layer where the services are located, that is, in the physical machine the pod was
deployed. Finally, the integrated container registry includes the set of container images which
can be deployed in the system.

Another important point for the project is the protection of security and privacy of the user.
On top of the security provided by Kubernetes, OKD also offers granular control on the
security of the cluster. As shown in [4], users can choose a whitelist of cipher suites to meet
security policies; and share PID between containers to control the cooperation of containers.

By building on top of OKD, we ensure that BigDataStack components are easily portable to
different cloud offerings, such as Amazon, Google Compute Engine, Azure, or any On-Premise
deployment based on OpenStack.

To ensure a more transparent and simple resource management we are working on several
fronts that will be present on our architecture:

e Kuryr: Network speed up by better integrating OKD on top of OpenStack cloud

deployments. Working on Kuryr OpenStack upstream project to integrate OpenShift

SDN networking into OpenStack SDN networking, simplifying the operations, as well

@ ®®@ page 20 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

as achieving remarkable performance boost (up to 9x better). By using Kuryr at the
OKD level we connect the containers directly into the OpenStack networks, instead of
having 2 different SDNs and the performance problem of double encapsulation.
Kernel Driver: New (NVMe) Kernel driver that speeds up access to NVMe devices from
VMs without guest image modification, achieving up to 95% of native performance —
compare to standard 30% with existing VirtlO drivers.

Network Policies: Network Management through declarative API. As part of the Kuryr
upstream work, we have also extended its functionality to support Kubernetes
Network Policies, which allows user to define the access control to the different
components of their applications in a fine grained manner. These policies are defined
in a declarative way, i.e., by stating the desired status, rather than the steps to
accomplish it. Then Kuryr will make sure that the isolation level desired at the OKD
(containers) level is translated and enforced through OpenStack Security Group rules.
Operators: Development of operators for easy life cycle management of infrastructure
and applications. In addition to the performance improvements, we are also pursuing
the use of the operators design pattern. This entails the use and development of
certain operators (containers) which have their business logic integrated and react to
the current status of the system/applications until they match the desired status. This
helps to install the applications in an easy/reproducible manners, as well as to deal
with day two operations, such as scaling or upgrades. In this regard we are working on
a Kuryr SDN operator that allows easy installation and scaling of OKD cluster on top of
OpenStack environments. This network operator takes care of creating everything
needed on the OpenStack side, as well as installing anything required by Kuryr both at
the initial deployment time and upon OKD cluster scaling actions. Another example of
operators being used are the Spark Operator and the Cluster Monitoring Operator
Infrastructure API: Unified API for infrastructure resources to make infrastructure
management easy, and abstracted from the real infrastructure. To achieve this, the
upstream community created the Kubernetes Cluster APl project. We have been
working on the support for the OpenStack abstraction together with its
operator/actuator: Cluster AP| Provider OpenStack. This allows us to automate the
creation/scaling actions regarding OKD nodes when running on top of OpenStack too.
Thus, we can easily extend an OKD cluster as needed, just by modifying an object in
Kubernetes/OKD: Similarly, this give us further advantages regarding resource
management, e.g., if any of the VMs where our OKD is running dies (or the physical
server that has it dies), the developed operator/actuator will automatically recreate
the needed VMs in a different compute node, automatically recovering the system
until it maps the desired status.

Note that while the first two points are related to infrastructure performance, the later 3 are
key points for managing infrastructure as code, as well as to enable easy
configuration/adaptation by upper layers, such as the Data-Driver Network Management or
the Deployment Orchestration components.

@

®®@ page 21 of 108

BY NC ND

bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holstic i or i ot aplcaons and operatons D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

Users access the API, web interface, Users access applications
and command line tools through through the routing layer.
the master server.

Routing layer provides easy

Master server manages b) DNS access and a consistent
all actions inside A endpoint for all applications
the cluster. in OpenShift. —
‘ v
L |
Li
OpenShift master server OpenShift node »

Routing
fayer
[Comannr‘l I Container 2 ICmmmerS]
T T
i OpenShift node
Application containers can / e "
be scaled across multiple — £ i ™
nodes to provide scalable /
and highly available
applications.
i Imegrated
All communications inside [E— conainer
the cluster are encrypted registry
using TLS.
Container 1 I Cartainar ZI Conltainer 3
[|
J
r‘ .‘
OpenShift nodes run the application — Integrated registry provides —
workloads as directed by the master container images to build and
SErver. deploy applications on the

nodes.

Figure 9 - OKD architecture overview in the users operations

6.2. Data-Driven Network Management

The Data-Driven Network Management component will efficiently handle network
management and routing introspection, computing and storage resources, by collectively
building intelligence through analytics capabilities. The motivation is to optimise computing
and storage mechanisms to improve network performance. This component can obtain data
from different BigDataStack layers (i.e. from storage layer to applications layer) and will be
used to extract knowledge out of the large volumes of data to facilitate intelligent decision
making and what-if analysis. For example, with big data analysis, the data-driven network
management will know which storage or computing resource has high popularity. Based on
the analysis result, the component will be able to produce insights on how to redistribute
storage and/or computing resources to reduce network latency, improve throughput and
satisfy access load and thus response time.

Monitoring mechanisms over the storage layer will provide information to adjust the network
parameters (e.g. by enforcing policies to achieve a significant reduction in data retrieval and
response time). Also, monitoring mechanisms over the computing layer will enable the
development of functionalities and trigger policies that will satisfy users’ requirements
regarding runtime and performance.

To serve data-driven network management, we will analyse the data coming from storage
and computing resources within a workflow which is depicted in Figure 10. The workflow is

@ ®®@ page 22 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

composed of three components namely: ingest, which consumes network data, process,
which computes network metrics and analyse, which produces network insights. The lifecycle
of the analysis task includes a set of algorithms which enable computational analytics over
the data, conduct a set of control mechanisms and infer knowledge related to resources
optimisation. Taking advantage of data-driven network management, big data applications
will be able to access the global network view and programmatically implement strategies to
leverage the full potential of the physical storage and computing resources.

| ANALYSE l—hl CONTROL l

INGEST PROCESS ANALYSE

Consumption of network data Computation of network metrics Analysis of network metrics

Figure 10 - Data-Driven Network Management components

6.3. Dynamic Orchestrator

The Dynamic Orchestrator (DO) assures that scheduled applications conform to their Service
Level Objectives (SLOs). Such SLOs reflect Quality of Service (QoS) parameters and might be
related to throughput, latency, cost or accuracy targets of the application. For example, to
generate recommendations for online customers of an e-commerce website, the
recommender has to analyse the customer profile and provide the recommendation in a
limited amount of time (e.g., 1 sec.), otherwise, the page load will be too slow and customers
might leave the website. If the number of online customers increases, then the recommender
will need to improve its recommendations throughput in order to keep up serving the
recommendations in less than 1 second. The DO will then modify the deployment in order to
improve throughput, so that the recommender does not violate the corresponding SLO.

The DO assures conformation to SLOs by applying various dynamic optimisation techniques
throughout the runtime of an application at multiple layers across various components of the
data-driven infrastructure management system. As such, the DO knows about the adaptation
actions that can be carried out for an application and when these actions should be carried
out, i.e. what actions will affect each SLO.

Figure 11 depicts the high-level interactions of the dynamic orchestrator with other
components. Newly scheduled applications are deployed through the Application and Data
Service Ranking component (ADS-Ranking).! The ADS-Ranking scores possible deployment
patterns/configurations (CDPs) and selects the one which it predicts to best satisfy the SLOs.
After an application is deployed, the DO monitors its performance through the triple
monitoring engine. In case there are SLO violations, the QoS component sends a message
with the violation to the DO, which has two choices: (i) Initiate a re-deployment of the
application through ADS (this choice will be made when SLOs can only be reached with major

1 ADS-Ranking is also sometimes referred to as the Deployment Recommender, as in many
scenarios its practical application is to recommend a deployment configuration for the user.

@ ®®@ page 23 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

deployment changes, e.g., selecting another ADS ranking option), (ii) Performing more fine-
grained adaptations at different components of the system (e.g., the DO might perform

“small” changes in the deployment configuration such as the number of replicas).
Playbook Triple Monitoring Engine
(Prometheus)
Metrics, SLO
violations, QoS,
KPls, etc.
rFo T T T T T T E ST TS ST EEEEE S ST ~ \
1 y Initiate Re-Deploy |
i ADS Ranking -
1 1 New CPDs Dynamic Orchestrator 1
Realization 1 1
Engine : ADS Deploy :
- ___Jd-ccC e /
-lDeF)'OY Dynamic Adaptations

Runtime (Kubernetes, Network, Storage)

Figure 11 - High-Level Interaction with other Components

Note, that each of the other components also have their internal control loop and their
internal logic for performing (high-responsive) actions, independently of the orchestrator or
any of the other components. The primary challenge of the dynamic orchestrator is to reach
a (close-to) optimal adaptation decision quickly, i.e., with a small overhead. This is a difficult
goal, because application tasks will be distributed and adaptation can be achieved at different
components (application, platform, network). The relationship between an adaptation
technique and how it affects an SLO is not clear in advance and two adaptation techniques at
different components might lead both to conformation of an SLO. Likewise, two adaptations
at two components, might also conflict with each other. As such, the main challenges of the
dynamic orchestrator are:
e Conflicting adaptations in different components

e Overhead for adaptation decisions
e Optimal adaptation

The orchestration logic itself is not implemented using hardcoded rules, but instead, uses
Reinforcement Learning (RL). RL allows the DO to dynamically change its adaptation logic over
time based on the outcome (feedback) from previous decisions. In RL, this means that the
orchestration problem is broken down into:

e States: These are system and application metrics (e.g. CPU usage and throughput) and
the current and past SLOs fulfillment.

e Actions: These change in deployment (e.g. add/remove a replica).

e Reward: The reward value is positive and proportional to resource utilization (to avoid
underutilization) if SLOs are met, negative otherwise.

Figure 12 depicts a more detailed view of the dynamic orchestrator. Each application has its
own BigDataStack application, RL Agent and RL Environment; while the Manager is unique for

@ ®®@ page 24 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

all applications. The Manager is in charge of the communication with the other components,
receiving the Playbook, receiving the metrics and passing them to the corresponding
BigDataStack application, and receiving the action to be taken from the RL Agent, and sending
it to the ADS-Ranking or the platform for performing dynamic adaptations.

Re-ranking trigger
Vi ~ .
/ \
! 1
L 1
I Monitorin
Playbook : Manager e trios g
| I ~\ |
| RL 1 |
1 Envi 1
l : nvironment BigData | | :
i Iy Stack
Dynamic 1 Application 1 :
Orchestrator | |
1
' RL Agent ' Il
\\\\ _____________ 4 7
Dynamic
Adaptations
o WD SN W SN GNN SN GND SR WSS S NS WS VS GmN S SN Smn Smm === - — SR
1
{ Application Layer 1
Runtime : 1
Adaptations | Platform Network (e.g., EeE !
1 (Kubernetes) Network functions) 8 ,l

Figure 12 - Dynamic Orchestrator Detailed View

Moreover, Figure 13 depicts the different classes of the DO. Their inner working, step by step,
is the following:

1.

@

OOE

BY NC ND

The Manager handles the communication with all the other components, using
RabbitMQ and creates one instance of BigDataStackApplication for each application
to be monitored.

The BigDataStackApplication creates the RLEnvironment, with its actions and state
spaces, and the RLAgent that will be in charge of learning and deciding the best
adaptation actions to take when an SLO is violated.

Each time a new message comes in, the Manager sends the information to the
corresponding BigDataStackApplication, which updates the RLEnvironment state.

If a message with an SLO violation comes in, the Manager triggers the RLAgent, to
decide which action should be taken according to the current RLEnvironment state.

Then, the Manager sends a message to the ADS-Ranking requesting the identification
of a new deployment configuration or to ADS-Deploy to directly change the
deployment.

page 25 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

DOMetricType DOMetric
A T
RLEnvironment RLAgent

BigDataStackApplication

1

Manager DOLogger

Figure 13 - High-level class diagram of the Dynamic Orchestrator

6.4. Triple Monitoring and QoS Evaluation

The Triple Monitoring and QoS Evaluation are two closely related components with clearly
separated responsibilities:

e The objective of the Triple Monitoring is to collect, store and serve metrics at three

levels of the platform: application, data services and infrastructure (cluster) resources.

e The goal of the QoS Evaluation is to continuously evaluate those metrics against

constraints (thresholds) or objectives imposed by certain BigDataStack platform users.

6.4.1. Triple Monitoring

The monitoring engine manages and correlates/aggregates monitoring data from different
levels to provide a better analysis of the environment, the application and data; allowing the
orchestrator to take informed decisions in the adaptation engine. The engine collects data
from three different sources:

e Infrastructure resources of the compute clusters such as resource utilisation (CPU,
RAM, services and nodes), availability of the hosts, data sources generation rates and
windows. This information allows the taking of decisions at a low level. These metrics
are directly provided by the infrastructure owner or through specific probes, which
track the quality of the available infrastructures. In the context of bigdatastack, the
infrastructure’s metrics are collected by Kubernetes. Those metrics will be ingested to
the triple monitoring engine by federating Prometheus instances.

@ ®®@ page 26 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

Prometheus-ks8

Prometheus
(Federator)

Optimizer Elasticsearch

Grafana

Application components such as application metrics, data flows across application
components, availability of the applications etc. This information is related directly to
the data-driven services, which are deployed in the infrastructure. These metrics are
associated with each application, and they should be provided by those applications.
For application related to BigDataStack infrastructure, the most suitable method is to
embed Prometheus exporter to each of those applications. Use case application will
be sending metrics via a http method for flexibility reason.

Triple monitoring engine

Data functions/operations such as data analytics, query progress tracking, storage
distribution, etc. This is a mix of data and storage infrastructure information providing
additional information for the “data-oriented” infrastructure resources.

The component will cover both raw metrics (direct measurements provided by the
infrastructure deployed sensors or external measurement systems like the status of
infrastructure) and aggregated metrics (formulas to exploit metrics already collected and
produce the respective aggregated measurements that can be more easily used for QoS
tracking). The collection of metrics will be based on both solutions: the direct probes in the
system that should be monitored and the direct collection of the data from the monitoring

engine.

The probe approach will cover the information systems, where the platform will be
able to deploy and collect direct information. In this case, the orchestration engine
must manage the deployment of the necessary probes. This approach can cover other
cases, where the probe is included directly in the application, and the orchestration
only needs to deploy the associated application, which can provide the metric
information to the monitoring engine.

The direct collection will cover the scenarios where the platform cannot deploy any
probe, but the infrastructures or the applications expose some information regarding
these metrics. In this case, the monitoring engine will be responsible for collecting the
metrics data that are exposed by a third party via a REST_API (Exporter).

@0l

BY NC ND page 27 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

After collecting and processing the data, the monitoring engine will be responsible for
notifying other components when an event happens based on the metrics that it is tracking
and specific attributes such as computing, network, storage or application level. Moreover, it
will expose an interface to manage and query the content. This functionality is implemented
in the QoS Evaluator (SLA Manager). Figure 14 depicts the Triple Monitoring Engine and their
components.

Batch job metrics App. metrics
7 3
—
Exparter
Pushgateway § I (REST-API) §
F F “‘ g I
Grafana] SLAManager é (Rggt.ﬁi:jl) ¢
Y L 1
s - d
Prometheus MongoDB]i ElasticSearch]
J— I O
PrometheusBeat] & (F?Eg?lf\?ﬁr[) é—’ Logstash]
y
Logstash } > RabbitMQ]~—> Manager ¢

. Prometheus metrics exporter

Figure 14 - Triple Monitoring Engine architecture diagram

The Triple Monitoring Engine will be based on the Prometheus monitoring solution (see [9]
for more details) and is composed of the following components:

e Monitoring Interface: This is responsible for exposing the interface to allow other
components to communicate. The interface will manage two ways of interaction with
other components: i) exposing a REST API (outAPI, Figure 14) that will enable other
components to know specific information, for example, if another component wants
to know more details about one violation, to take the correct decision, or if they need
to configure new metrics to collect directly by the monitoring engine. Therefore, the
interface will consist of both a REST interface and a publish/subscribe notification
interface. The publish/subscribe mechanism is implemented with RabbitMQ. This
allows any components to consume in real-time information.

e Monitoring Manager: This component handles subscriptions by storing the queue, the
list of metrics and metadata related to the subscription. The manager consumes all
metrics collected by Prometheus. Based on the subscriptions list, they are redirected
to the component subscribed by the queue declared.

e Monitoring Databases: ElasticSearch is currently used as the metrics database.
MongoDB is also used to store all metrics requested via the outAPI in order to keep a
track of metrics’ utilization.

@ ®®@ page 28 of 108 bigdatastack.eu

BY NC ND

ﬁB i g DataStaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

e PrometheusBeat: Since Prometheus has a small retention period, BigDataStack
optimization loops in various components (e.g. deployment patterns generation)
raised the need for a solution that would allow accessing and holding the collected
metrics. To this end, this component receives the metrics collected by Prometheus,
and ingests them to a pipeline (Logstash) for being stored.

e Optimizer: Since the Triple Monitoring Engine of BigDataStack collects monitoring
data from different sources and all those data are utilized at specific time periods by
different BigDataStack architecture components, storage optimization is required.
Based on the information stored in the MongoDB (metrics utilization) this component
decides about the time period for which the monitoring data should be kept.

e Push gateway: The push gateway is a Prometheus exporter. It is used in BigDataStack
specially for collecting monitoring data obtained after each Spark driver execution.

e Collector Layer: This component is responsible for obtaining the data to be moved to
the Monitoring manager. There are two ways to collect the data, either through a
probe or through direct collection:

o Probe API exposes an interface to allow different kinds of probes to send the
monitoring data to the monitoring engine.

o Direct collection is realized through a component that collects directly the
monitoring data, by invoking other systems or components. For example, it
receives the data directly from the Resource management engine or invoke
the third-party libraries to obtain the state of the application and data services.

Integration with resource management engines
The Triple Monitoring Engine provides APls for receiving metrics from different sources

(infrastructure, application and data services) and expose them for consumption. Although
different APIs will be available due to the great diversity of monitoring data sources, the
recommended API is the “Prometheus exporters” model. Some of the technologies that are
being considered for BigDataStack are already integrated within Prometheus, as shown in
Table 2.

Technology component Monitoring aspect Prometheus Method
exporter availability

Kubernetes Computing infrastructure Yes Federation

OpenStack Computing infrastructure Yes Exporter

Spark/Spark SQL Data Yes Exporter
functions/operations (SparkMeasure)

IBM COS (Cloud Object Data infrastructure No

Store)

LeanXcale database Data infrastructure For some metrics Federation

CEP Data Infrastructure Yes Federation

Table 2 - Prometheus integration

Federation of Prometheus instances

Federation is used to pull monitoring data from another Prometheus instance. This model is
introduced in the BigDataStack Triple Monitoring Engine for two main reasons. Firstly, the
platform uses Kubernetes as containers orchestrator, which embedded by default a

@ ®®@ page 29 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

Prometheus (prometheus-ks8) instance. This instance collects monitoring data related to the
cluster, nodes and services running. For security reasons it is not efficient to use prometheus-
k8s for collecting application- and data- related monitoring data. Secondly, the LeanXcale
database and the CEP are independent systems and have their own Prometheus instances.
For reusability reason and improvement (collect only monitoring data directly used by
BigDataStack components) the proposed federation model is the most suitable method to
achieve this requirement.

In the federation mode, the master instance should be configured appropriately by specifying
the interval of time where metrics will be collected, the source job also if needed, the metrics
to collect can be specified.

Prometheus-k8s

Y

Prometheus-Ixs ;(l Prometheus M]li Prometheus-cep

Triple monitoring engine

Figure 15 - Triple Monitoring Engine Federation Model

6.4.2. QoS Evaluation

The Quality of Service (QoS) Evaluation component is directly connected with the Triple
Monitoring Engine to evaluate the quality of the application and data services deployed on
the platform. To do so, it compares service metrics (key performance indicators) with the
objectives set by the owner of the service and thus imposed over the BigDataStack platform
when the service was deployed. The QoS Evaluation component is also responsible for
notifying if the quality objectives are not met by the running the service. Therefore, the
component is not responsible for obtaining the metrics (delegated to the monitoring engine)
but to apply evaluation rules upon those metrics and notify when quality failures occur.

The main entities within the QoS Evaluation are the following:

e Agreement: it is a description of the QoS evaluation task to be carried out by the QoS
Evaluation. It describes the creation and expiration time of the task, the provider and
consumer of the application or service whose quality needs to be guaranteed, and the
list of QoS constraints or guarantees to be evaluated.

e SLO (Service Level Objective) or QoS guarantee: it is a set of thresholds for the value
of a given metric, representing increasing levels of criticality. The last threshold is
always the last limit or final objective to be meet. The other thresholds are used as
checkpoints to better understand and control the dynamics of the indicator. The SLO
belongs to the agreement.

@ ®®@ page 30 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

e Violation: it is generated when the value of a the QoS metric trespasses any of the SLO
thresholds. The QoS Evaluation component notifies each violation to other
components of the platform subscribed to the event; perhaps the most important of
the subscribers is the Dynamic Orchestrator, which is responsible for the service
deployment adaptation decisions.

The QoS Evaluation is made of the following components:

e Interface component (REST API): through this interface the consumers of the QoS
evaluation service can start/stop the evaluation of certain application metrics.

e QoS database: it is responsible for storing all the content agreements, violation,
service level objectives. This will be stored in the Global Decision Tracker.

e Evaluator: itis responsible for performing QoS evaluation. A periodic thread is started
to check the expiration date of agreements. For each enabled agreement, it starts a
task to check agreement evaluation by getting needed metrics from the adapter. The
task is also started when metrics are received from the Notifier.

e Adapter: itis responsible for calling the monitoring system to obtain the metrics data.
It will be different for each monitoring system, so it will be accountable for building
the specific request to the Triple Monitoring System to gather and transform metrics
to have them ready to compare with SLOs by the Evaluator.

e Notifier: It is responsible for notifying to third parties that want to be alerted if
something happens in the defined agreements, such that corrective actions can be
taken.

In the BigDataStack platform, application and data services QoS constraints (objectives are
specified by the Data Scientist trough the Data Toolkit (see Section 6.13) together with the
rest of information describing the application to be deployed. This is compiled in the so-called
application playbook, which serves as the specification for the BigDataStack platform to
deploy and operate the application. The following table shows and example of QoS
constraints imposed over the response time of an online service called “recommendation-
provider”. Notice the Data Scientist can specify not only required response times but also
recommended response time?:

- name: recommendation-provider

metadata:
gosRequirements:

- name: "response_time"
type: "maximum"
typelimit: null
value: 900

higherIsBetter: false
unit: "miliseconds"
gosPreferences:
- name: " response_time"
type: "maximum"
typelLimit: null

value: 300
higherIsBetter: false
unit: "miliseconds"

2 Notice this is an extract of the playbook showing just one of the QoS constraints imposed on one service.

@ ®®@ page 31 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holstic i or i ot aplcaons and operatons D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

When a service deployment is requested, The Dynamic Orchestrator (i.e. the component in
charge of making deployment adaptation decisions to satisfy QoS constraints) breaks down
the QoS obijective into thresholds of increasing levels of criticality. Depending on the nature
of the QoS metric (indicator) to control and both the recommended and required values, the
Dynamic Orchestrator may produce an arbitrary number of thresholds between the fist
(related to recommended value) and last (related to the required value) thresholds.

With every deployment, the Dynamic Orchestrator will request the QoS Evaluation
component to create/start a task to continuously compare the service performance metric
against those thresholds. This request is made asynchronously through a messages queue.
This is implemented as topic within the RabbitMQ service (which acts as the message broker
between BigDataStack components). In the previous example, the Dynamic Orchestrator may
send the following message to the QoS Evaluation3:

"gosIntervals": {
"reponse time": [
Il>300ll,
">500",
">700",
">900"

The QoS Evaluation component incorporates the thresholds or intervals to be monitored
(requested by the Dynamic Orchestrator) as a guarantee object in the agreement for the
actual service deployment. In that way, all QoS constraints to be evaluated and guaranteed
for the same service deployment are maintained together. In the previous example, the
agreement and guarantee created from the Dynamic Orchestrator request may be like the
following:

{
"id": "TEST-ATOSWL-NormServ-19022019-1",
"name": "TEST-ATOSWL-NormServ-19022019-1 agreement",
"details": {
"id": "TEST-ATOSWL-NormServ-19022019-1",
"type": "agreement",
"name": "TEST-ATOSWL-NormServ-19022019-1 agreement",
"provider": {
"id": "a-provider-01",
"name": "ATOS Wordline"
by
"client": {
"id": "a-client-01",
"name": "Eroski"
br
"creation": "2019-05-30T07:59:27z",
"expiration": "2020-01-17T17:09:45z2",
"guarantees": [
{

3 Notice this is an extract of the enhanced playbook showing the QoS thresholds (intervals) for the evaluation
of just one of the metrics (indicators) of one service.

@ ®®@ page 32 of 108 bigdatastack.eu

BY NC ND

MBigDataStack

Holitic stack for big data applications and operations

Project No 779747 (BigDataStack)

D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019

Dissemination Level: PU

"name": "response time",
"constraint": "[response time>50]",
"importance": [
{
"Name": "O0",
"Type": "warning",
"Constraint": ">300"
br
{
"Name": "1",
"Type": "warning 2",
"Constraint": ">500"
br
{
"Name": "2",
"Type": "warning 3",
"Constraint": ">700"
}I
{
"Name": "3",
"Type": "error",
"Constraint": ">900"
}
11}
1}
}

The QoS Evaluation will continuously assess the value of all guaranteed QoS attributes
(metrics or indicators) and detect violations, that is, when the value trespasses the different
thresholds that have been specified. QoS violations are notified to any interested component
of the BigDataStack platform through a publisher/subscriber mechanism implemented as
topic within the RabbitMQ service (which acts as the message broker between BigDataStack
components). Following the previous example, the following violation notifications may be

published*:
{
"Application": "TEST-ATOSWL-NormServ",
"Message: "QoS Violation",
"Fields": {
"IdAggrement": "TEST-ATOSWL-NormServ-19022019-1",
"Guarantee": "response time",
"Value": "351",
"ViolationType: {
"Type": "warning",
"Interval”: "O"
by
"ViolationTime": {
"ViolationDetected": "2019-06-30T07:59:272",
"AppExpiration": "2020-01-17T17:09:45Z"
}
}
}
{
"Application": "TEST-ATOSWL-NormServ",

4 Notice that the first violation notification example is that of the lowest level of criticality (meaning a simple

warning) while the second example if that of the highest criticality (meaning an error).

@0l

BY NC ND

page 33 of 108

bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

"Message: "QoS Violation",
"Fields": {
"IdAggrement": "TEST-ATOSWL-NormServ-19022019-1",
"Guarantee": "response time",
"Value": "920",
"ViolationType: {
"Type": "error",
"Interval": "3"
}I
"ViolationTime": {
"ViolationDetected": "2019-06-30T09:34:212",
"AppExpiration": "2020-01-17T17:09:452"
}

Perhaps the most important of the subscribers is the Dynamic Orchestrator itself, which will
respond to different violation alerts depending on the criticality of the threshold trespassed.

The QoS Evaluation displays the warning (lowest criticality) and error (highest criticality)
thresholds on the interface of the Triple Monitoring Engine, superimposed to the metrics
evolution graphs to which apply. The following figure is an example of the Response Time
evolution graph on the Triple Monitoring Engine.

Figure 16 - SLO guarantees thresholds shown over the Response Time (left) and Throughput (right)
metrics graphs: warning (lowest criticality) and error (highest criticality) thresholds as orange and red
lines, respectively.

6.5. Applications & Data Services Ranking / Deployment

Application and Data Services Ranking/Deployment is a top-level component of the
BigDataStack platform, as defined in the central architecture diagram (see Section 5). It
belongs within the realisation engine of the platform and is concerned with how best to
deploy the user’s application to the cloud, based on information about the application and
cluster characteristics. From a practical perspective, its role is to identify which - of a range of
potential deployment options - is the best for the current user, given their stated (hard)
requirements and other desirable characteristics (e.g. low cost or high throughput), as well as
operationalize the deployment of the user’s application based on the selected option.

@ ®®@ page 34 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

In practice, the Application and Data Services Ranking/Deployment is divided into three main
sub-components, namely: the main component ADS-Ranking; and two support components
ADS-Deploy and ADS-GDT, which we describe in more detail below:

e Application and Data Services Ranking (ADS-Ranking): This is dedicated to the
selection of the best deployment option. Note that this component is sometimes
referred to as the ‘deployment recommender service’, as from the perspective of a
BigDataStack Application Engineer, it produces a recommended deployment for them
on-demand.

e Application and Data Services Deployment (ADS-Deploy): This is concerned with the
physical scheduling/deployment of the application for the selected deployment
option via Openshift.

o Application and Data Services Global Decision Tracker (ADS-GDT): This stores
information about the state of different applications and decision made about them.

Application and Data Services Ranking (ADS-Ranking)

ADS-Ranking is tightly coupled to the Application & Data Services Dimensioning (ADS-
Dimensioning) component of BigDataStack that sits above it. The main output of ADS-
Dimensioning is a series of candidate deployment patterns (ways that the user’s application
might be deployed) including resource usage and quality of service predictions. It is these
deployment patterns that ADS-Ranking takes as input (see REQ-ADSR-01 [10]) and
subsequently selects one or more ‘good’ options for the Application Engineer. Each candidate
deployment pattern represents a possible configuration for one ‘Pod’ in the user’s application
(a logical grouping of containers, forming a micro-service) [11]. User applications may contain
multiple pods.

Communication to and from ADS-Ranking is handled via the Publisher-Subscriber design
pattern. In this case, ‘messages’ are sent between components, which trigger processing on
the receiving component. More precisely, ADS-Ranking subscribes to the ADS-Dimensioning
component to receive packages of pod-level candidate deployment patterns (CDPs), one
package per-pod in the application to deploy. On-receive, this triggers the ranking of the
provided deployment patterns, as well as the filtering out of patterns that either do not meet
the user’s requirements, or that are otherwise predicted to provide unacceptable
performance. After ranking/filtering is complete, ADS-Ranking will select a single deployment
pattern per-pod to send to the BigDataStack Adaptive Visualisation Environment. Within this
environment, the user can either choose to deploy their application using the recommended
patterns directly, customise the patterns and then deploy, or otherwise cancel the
deployment process. Upon choosing to deploy with a set of patterns, those patterns are sent
to ADS-Deploy for physical scheduling on the available hardware.

Figure 17 illustrates the data flow between the components around ADS-Ranking. As we can
see, ADS-Dimensioning first gets information about the user’s application and preferences
from a BigDataStack Playbook and uses it to produce packages of candidate deployment
patterns (CDPs). Each CDP represents a deployment configuration that we could use to deploy
the user’s application pod (where some CDPs will produce more efficient or effective
deployments than others). These pattern packages are sent as messages to ADS-Ranking,
which ranks and filters those patterns, finally selecting one per-pod, which is predicted to

@0l

BY NC ND

page 35 of 108 bigdatastack.eu

>,

S ﬁs i g DataStack Project No 779747 (BigDataStack)

2 1 ot stk for i deta aplcatonsad peatons D2.5 — Conceptual model and Reference architecture Il

Date: 03.07.2019
Dissemination Level: PU

efficiently and effectively satisfy the user’s requirements. These top patterns are aggregated,
then placed in a message envelope and sent back to the BigDataStack Adaptive Visualisation
Environment, where the application engineer can accept those patterns and use them directly
for deployment, or otherwise customise them first. Once the application engineer is happy
with the deployment, they can then send the final patterns via the visualisation environment
to ADS-Deploy, which will schedule deployment on OpenShift.

a Application Engineer]

ADS-Dimensioning

Sends Pattern

Uploads Big Data

o Stack Playbook For Deployment

Big Data Stack Visualisation Interface

Sends Recommended g

Deployment Pattern
ADS-Deploy
1 9 Schedules
Subscriber
ADS-GDT (Global Decision Tracker)

Figure 17 - Process Flow for ADS Ranking/Deploy during First Time Deployment

ADS-Ranking

Publisher
Subscriber

Publisher
X
()

Subscriber

Internally, ADS-Ranking supports two central operations: 1) the first-time ranking/filtering of
CDPs; and 2) re-ranking of CDPs in scenarios where the previous deployment is deemed
unsuitable. The first operation (CDP ranking and filtering) is comprised of three main
processes. These three processes are:

Pod Feature Builder: This takes as input a set of CDPs, and for each CDP in that
package, it builds a single vector representation of that CDP, which combines all the
information provided by dimensioning. It can also filter out CDPs that do not meet
minimal Quality of Service (QoS) requirements, saving computation time later in the
process. The output of this component is the (filtered) list of CDPs along with their
new vector representations. This process targets REQ-ADSR-02 [10].

Pod Scoring: This process takes the CDPs and vector representations as input and ranks
those CDPs based on their predicted suitability, with respect to the user’s desired
quality of service. To achieve this, it uses either a rule-based model or a supervised
model [12] trained on previous CDP deployments and their observed fitness. The
output of this process is a ranking of scored CDPs. This process targets REQ-ADSR-03
and 04 [10].

Pod Selection: This process takes as input the ranking of CDPs and selects one of these
CDPs. This may be a simple process that takes the top CDP and filters out the rest.
However, it may include more advanced techniques to better fit with user needs, such
as making sure the selected CDP will provide sufficient extra processing capacity, in
the case of applications that process data streams with fluctuating data rates. The

page 36 of 108 bigdatastack.eu

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

output of this process is a single CDP (per-pod), which is the recommended
deployment that is shown to the user. This process targets REQ-ADSR-05 [10].

If the user’s application is comprised of multiple pods, then the recommended CDP for each
pod are then collected and aggregated together to form a recommendation for the entire
application. The aforementioned processes are implemented using Apache Flink [13] to
facilitate low-latency real-time processing. The overall flow for first-time ranking/filtering of
CDPs is shown in Figure 18. In this simplified example, three CDPs are used as input for a single
application (A1), which is comprised of two pods (P1 and P2). Pod 1 has two CDPs (A1-P1-1
and A1-P1-2), while Pod 2 has one CDP (A1-P2-1). As we can see from Figure 18, these CDPs
are first grouped by pod, to create parallel processing streams for each. For each CDP, these
are then subject to feature extraction, to create the representation vectors. In this case,
features from the overall pod (e.g. total cost) and features from each container (e.g. container
latency) are extracted here. These CDPs and feature vectors are sent to pod scoring, to
produce a numerical estimate of overall suitability of the CDP. The best CDP per-pod (A1-P2-
2 and A1-P2-1 here) are then grouped by application (A1) and then output (to the visualisation
environment for viewing by the application engineer).

AL-P1-1
PCEIPS | % AL-P2-1
(Podlevel) | P avp12

4 L - e)
ADS-Ranking ‘ ‘
[First Time Ranking R e TP o [ApseDT |
X A1-p11 -p2-
X Al-Pl-Zl l Beg Aoz

Apache Flink

Pod Feature Builder

B apes [fe A1-p21
[api2 i

Pod Scoring Model
i)
0s [arp11 l l or [ALP21
08 [If AL-p12 N

08 [Ife A1-P1-2
07 588 AL-P21

Figure 18 - ADS-Ranking, First Time Deployment Internal Process Flow
The second function (CDP Re-Ranking) is similar to the primary function, with the exception
that it takes in a CDP that has been deemed to have failed the user in terms of quality of
service along with context about that CDP (e.g. why it failed), and it introduces an additional
‘Failure Encoding’ process:

e Failure Encoding: This process examines the context of a failed CDP and encodes that
failure into the CDP structure as features, such that they can be used by the Pod
Feature Builder when generating the CDP vectors. In this way, properties that promote

@ ®®@ page 37 of 108 bigdatastack.eu

BY NC ND

ﬁB i g DataStaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

other CDPs that will not suffer from the same issues as the failed CDP can be
upweighted during ranking. This process targets REQ-ADSR-07 [10].

Figure 19 illustrates the main processes and data flow within ADS-Ranking. In this case, re-
ranking is triggered by sending a set of CDPs representing a quality of service (QoS) failing
user application deployment to ADS-Ranking. For this example, the application has two pods
and hence two CDPs (A1-P2-2 and A1-P1-1), where a QoS failure has been detected for Al-
P1-2 (denoted by X). The first step that ADS-Ranking takes is to collect all the alternative
CDPs that were not selected from the user’s application. These were stored in ADS-GDT
(Global Decision Tracker), which will be described later. Once these CDPs have been
collected, any CDPs for pods that were not subject to QoS failures are discarded, as these do
not need to be considered for re-deployment (A1-P2-1). The remaining CDPs are then
subject to failure encoding, which converts the failure information into a feature vector that
can be used during ranking (<x>). The CDPs are then sent to the Pod Feature Builderin a
similar manner to first-time ranking, where the normal process is followed, with the
exception that the additional features obtained from the failure encoding are used to
enhance ranking effectiveness.

7
ADS-Ranking
- Re-Ranking Danarecd e
S Get:ross
o8 [AL-PL12 X l or [AvP21
‘ X A1-p11 l'
Apache Flink i _ Podlevel S
Pod Feature Builder ™ — Failure Encoding
Past Failures 05 B AL-P1-2<x> X
[Arp12oo X 05 B A1-P1-1<x>
[A1-P1-1<x>
Pod Scoring Model
0s [arer200 X
o7 [fe ALPLice W
07 [AL-P1-1<>
_ P

Figure 19 - ADS-Ranking, Re-Ranking Internal Process Flow

Application and Data Services Deployment (ADS-Deploy)

This process is triggered by the BigDataStack Adaptive Visualisation Environment and takes
as an input the selected CDP(s). The aim of this component is two-fold. First, to use the given
CDP(s) to launch the user’s application pods on the cloud infrastructure. Second, to notify
relevant BigDataStack components of the deployment status, such that follow-on processes
(such as monitoring) can commence. To achieve this, the ADS-Deploy component interacts
with a container orchestration service (e.g. OpenShift), translating the CDP into a sequence
of deployment instructions.

This task is divided into the following steps:

@ ®®@ page 38 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

1. Receive and check CDP. The component checks that the CDP triggering the
deployment process is structurally correct.

2. Translate CDP. The CDP is translated to an ontology that the orchestrator will
understand.

3. Interpretation and deployment. The orchestrator interprets the file received and starts
the containers and rules.

4. Communication with the user. The result of the process (either success or fail) is
communicated to the rest of the architecture (and ultimately, to the user) as an event
by means of a publisher-subscriber model. The main subscribers to this event will be
the Dynamic Orchestrator, ADS-GDT components, along with the BigDataStack
Adaptive Visualisation Environment.

Application and Data Services Global Decision Tracker (ADS-GDT)

The role of the Global Decision Tracker is (as its name suggests) to keep track of any state or
decisions made about a user’s application related to its deployment or run-time performance.
In effect, it is a data store that holds both the current configuration (BigDataStack Playbook
and associated CDPs) for each deployed user application, along with relevant events
generated by other components (e.g. ADS-Deploy reporting a successful deployment or the
dynamic orchestrator reporting a quality of service failure).

Like the other ADS-* components, ADS-GDT uses the publisher-subscriber pattern to enable
asynchronous one-to-many communication flows in a standardised and reliable manner. In
this case, it subscribes to all the message queues that are relevant to deployment or
application run-time activities and saves them within a local database. It also hosts a RESTful
APl service that provides bespoke access to the collected data for both BigDataStack
services (e.g. ADS-Ranking during re-ranking) but also to the BigDataStack Adaptive
Visualisation Environment, where application state information is needed for visualisation.

6.6. Data Quality Assessment

The data quality assessment mechanism aims at evaluating the quality of the data prior to
any analysis on them to ensure that analytics outcomes are based on datasets of specific
quality. To this end, BigDataStack architecture includes a component to assess the data
quality. The component incorporates a set of algorithms to enable domain-agnostic error
detection, in a given dataset. The domain-agnostic approach followed aims at facilitating the
goals of data quality assessment without prior knowledge of the application domain / context,
thus making it “generalised” and applicable to different application domains and as a result
to different datasets. While current solutions in data cleaning are quite efficient when
considering domain knowledge (for example in eHealth regarding the correlation between
different measurements of different health parameters), they provide limited results
regarding data volatility, if such knowledge is not utilised. BigDataStack will provide a data
quality assessment service that exploits Artificial Neural Networks (ANN) and Deep Learning
(DL) techniques, to extract latent features that correlate pairs of attributes of a given dataset
and identify possible defects in it.

The key issues that need to be handled by the Data Quality Assessment service are:

@ ®®@ page 39 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataS’[aCk Project No 779747 (BigDataStack)

Holtic stk o g Gt spicstions and st D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

e Work in a context-aware but domain-agnostic fashion. The process should be
adaptable to any dataset, learn the relationships between the data points and
discover possible inconsistencies.

e Model the relationships between data points and reuse the learned patterns. The
system should store the models learned by the machine learning algorithms, and
reuse them through an optimisation component, which checks if the raw data have
similar patterns, dataset structure or sources. In that case, already existing models
should be activated, to complete the process in an efficient manner.

The way to learn and predict the relationships between data points, to discover possible
deviations, is to exploit the recent breakthroughs in Deep Learning, and the idea of an
embedding space. Figure 20 depicts a serial architecture, which tries to predict if two entities
are related to each other.

Figure 20 - Domain agnostic data cleaning model architecture

Given the learned distributed encodings of each entity x, y or, in our case any data point, we
can discover if these two candidate entities or data points are related. Thus, considering the
DANAOS use case, if the temperature sensor emits a value that is illogical given other rpm
sensor readings, the relationship between these two data points would be associated with a
low score (or probability). This could provide significant improvements in the results of an
analytical task that the data scientist wants to execute, and is part of a general business
process.

To optimize the data quality assessment process, we introduce a subcomponent that
retrieves previously learned models, when a similar dataset structure arrives in the system,
or the same data source sends new data.

Data quality assessment component inputs:
e The raw data ingested by the data owner through the Gateway & Unified API
e The data model provided by the optimizer if exists

@0l

BY NC ND page 40 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

e User preferences and specifications, ingested through the Data Toolkit

Data cleaning component outputs:
e Assessed data, establishing data veracity
o A probability score for each tuple in the database column
e Trained, reusable ML models, stored in a repository for later use

The main structure of the Data Quality Assessment component is depicted in Figure 21.
Based on this figure the flow is as follows:
e The Data Pre-processing unit takes raw data and converts them in a form that the
machine learning algorithms can work with
e The main pillar of the service is the data cleaning component, which takes the pre-
processed data as input, trains a new model and stores it in the model repository
e During the assessment phase, a scheduler pulls newly ingested data to be assessed
e The data quality assessment module retrieves the learned model from the repository
and makes the necessary predictions
e The assessed data are updated into the distributed storage

4

Monitoring | Data
information | snapshot

(Re)trained

Processed data model
> <+ —

del
‘ '7'”‘ | 7J i’\:sotaice

= |

New data

Assessed data
Raw data

Figure 21 - Data Cleaning Module Architecture

6.7. Real-time CEP

Streaming engines are used for real-time analysis of data collected from heterogeneous data
sources with very high rates. Given the amount of data to be processed in real-time (from
thousands to millions of events per second), scalability is a fundamental feature for data
streaming technologies. In the last decade, several data streaming systems have been
released. StreamCloud [14], was the first system addressing the scalability problem allowing
a parallel distributed processing of massive amount of collected data. Apache Storm [15] and
later Apache Flink [13] followed the same path providing commercial solutions able to
distribute and parallelise the data processing over several machines to increase the system
throughput in terms of number of events processed per second. Apache Spark [16] added
streaming capability onto their product later. Spark’s approach is not purely streamed, it
divides the data stream into a set of micro-batches and repeats the processing of these
batches in a loop.

@ ®®@ page 41 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

The complex event processing for the BigDataStack platform will be a scalable complex event
processing (CEP) engine able to run in federated environments with heterogeneous devices
with different capabilities and aggregate and correlate real-time events with structured and
non-structured information stored in the BigDataStack data stores. The CEP will take into
account the features of the hardware, the amount of data being produced and the bandwidth
in order to deploy queries. The CEP will also consider redeploy and migrate queries if there
are changes in the configuration, increase/decrease of data, changes in the number of queries
running or failures.

Data enters the CEP engine as a continuous stream of events, and is processed by continuous
queries. Continuous queries are modeled as an acyclic graph where nodes are streaming
operators and edges are data streams connecting them. Streaming operators are
computational units that perform operations over events from input streams and outputs
resulting events over its outgoing streams. Streaming operators are similar to relational
algebra operators, and they are classified into three categories according with their nature,
namely: stateless, stateful and data store.

e Stateless operators are used to filter and transform individual events. Output events,
if any, only depend on the data contained in the current event.

e Stateful operators produce results based on state kept in a memory structure named
sliding window. Sliding windows store tuples according to spatial or temporal
conditions. The CEP provides aggregates and joins based on time windows (e.g.,
events received during the 20 seconds) and size windows (e.g. the last 20 events).

e User defined operators. They implement other user defined functions on streams of
data.

e Data store operators are used to integrate the CEP with the BigDataStack data stores.
These operators allow to perform correlation among real time streaming data and
data at rest.

The main components of BigDataStack CEP are:

e Orchestrator: It oversees the CEP. It registers and deploys the continuous queries in
the engine. It monitors the performance metrics and decides reconfiguration actions.

e Instance Manager (IM): It is the component that runs a continuous query or a piece of
it. They are single threaded and run in one core.

e Reliable Registry: It stores information related to query deployments and components
status. It is implemented by Zookeeper.

e Metric Server: It handles all performance metrics of the CEP. The collected metrics are
load, throughput, latency of queries, subqueries and operators, CPU, memory and 10
usage of IMs. These metrics are handled by Prometheus time series database.

e Driver: The interface between the CEP and other applications. Applications use the
CEP driver to register/unregister or deploy/undeploy a continuous query, subscribe
with the output streams of the queries to consume results and mainly to send events
to the engine.

Figure 22 shows the different components of the CEP and their deployment in several nodes.
Each node can run several Instance Managers (one per core). The registry and metric server
are deployed in different nodes although they can be collocated in the same node. The client

@ ®®@ page 42 of 108 bigdatastack.eu

BY NC ND

ﬁB i g DataStaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

and receiver applications are the ones producing and consuming the CEP data (shown as
dashed black lines). The rest of the communication is internal to the CEP. The Orchestrator
communicates with the IMs to deploy queries (configuration messages) and registers this
information in Zookeeper (Zookeeper communication). All components send performance
metrics to the metric server (yellow dashed lines).

MNode X { MNode 2 . €———> Zookeeper Communication
——> CEP Configuration Messages
""" i €----2> CEPData

CEP Metrics

b
/™ Client, Receiver App
5

Figure 22 - CEP Components and Deployment

6.8. Process mapping and Analytics

The Process mapping and analytics component of the BigDataStack architecture consists of
two separate sub-components: Process Mapping and Process Analytics.
e The objective of the Process Mapping sub-component is to predict the best algorithm
from a set of algorithms available in the Predictive and Process Analytics Catalogue,
given a specific dataset D and a specific analysis task T.
e The goal of the Process Analytics sub-component is to discover Processes from event
logs and apply Process Analytics techniques to the discovered process models in order
to optimize overall processes (i.e., workflows).

6.8.1. Process Mapping

The inputs of the Process Mapping sub-component consist of:
e The analysis task T (e.g., Regression, Classification, Clustering, Association Rule
Learning, Reinforcement Learning, etc.) that the user wished to perform

@OE0

BY NC ND

page 43 of 108 bigdatastack.eu

:’ﬁBig DataStack Project No 779747 (BigDataStack)

s Vol stk g gt ppcaions andoperatons D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

e Additional information that is dependent on the analysis task T (e.g., the response —
predictor variables in the case of Supervised Learning, the desired number of clusters

in the case of Clustering, etc.).
e Adataset D thatis subject to the analysis task T

Table 3 provides an overview of the main symbols used in the presentation of the Process

Mapping sub-component.

Symbol Description

T An analysis task (e.g., clustering, classification...)

D A dataset

T(D) The analysis task T applied on dataset D

A(T) An algorithm that solves the analysis task T (e.g., A(T)=K-means for T=Clustering)

A(T,D) An algorithm applied on D to solve the task T

M(D) A model describing a dataset D

T An analysis task (e.g., clustering, classification...)
D A dataset
T(D) The analysis task T applied on dataset D

Table 3 - Main symbols used in Process Mapping

The output of the Process Mapping sub-component is an algorithm A(T) that is automatically
selected as the best for executing the data analysis task T at hand. The best algorithm can be
based on various quantitative criteria, including result quality or execution time, and

combinations thereof.

Algorithms + Analvtics
Evaluator B = Vt
Descriptive Model + Repository
Ranking
Analysis Type + .
Algorithms + Slmtltar.
Descriptive Model Analytics
Data Descriptive Descriptive Model

Analytics Engine
Model Generator ¥ 8

m
=
[}
a
=
@
£
=]

Results

Analysis Type
+
Algorithms

Seamless Data Analyties
Framework

Catalogue of Predictive & Process
Analytics

Figure 23 - High-level architecture of Process Mapping sub-component

High-level Architecture

Figure 23 provides an overview of the different modules and their interactions. The Process

Mapping sub-component comprises the following four main modules:

page 44 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

e Data Descriptive Model: This module takes as input a dataset in a given input form and
performs automatically various types of data analysis tests and computation of
different statistical properties, in order to derive a model M(D) that describes the
dataset D. Based on the relevant research literature, examples of information that is
typically captured by the model M(D) include: dimensionality and the intrinsic (fractal)

dimensionality, set of attributes, types of attributes, statistical distribution per
numerical attribute (mean, median, standard deviation, quantiles), cardinality for
categorical attributes, statistics indicating sparsity, correlation between dimensions,
outliers, etc. The exact representation of the model M(D) is going to be presented in
the following more concretely, but it can be considered as a feature vector. Thus, in
the following, the terms model and feature vector are used interchangeably.
Subsequently, the produced feature vector M(D) is going to be used in order to
identify previously analysed datasets that have similarities with the given dataset. This
is achieved by defining a similarity function sim(M(D1),M(D;)) that operates at the
level of feature vectors M(D1) and M(D2).

e Analytics Engine: The main role of this module is to provide an execution environment
for analysis algorithms. Given a specific dataset D and a task T, the Analytics Engine
can execute the available algorithms A(T) on the specific dataset, and obtain its result
A(D,T). The available algorithms are retrieved from the Predictive and Process
Analytics Catalogue for algorithms available in BigDataStack. In this way, evaluated
results of analysis algorithms executed on datasets are kept along with the model
description of the dataset. Separately, we implement in the analytics engine the
functionality of computing similarities between models of datasets, thereby enabling
the retrieval of the most similar datasets to the dataset at hand.

e Analytics Repository: The purpose of this repository is to store a history (log) of
previous evaluated results of data analysis tasks on various datasets. Each record in
this repository corresponds to one previous execution of a specific algorithm on a
given dataset. It contains the model of dataset that has been analysed in the past,
along with the algorithm executed, and its associated parameters. In addition, the
record keeps one or more quality indicators, which are numerical quantities
(evaluation metrics) that evaluate the performance of the specific algorithm when
applied to the specific dataset.

e FEvaluator: Its primary role is to evaluate the results of an algorithm that has been
executed, and provide some numerical evaluations indicating how well the algorithm
performed. For example, for clustering algorithms, several implementations of

clustering validity measures can be used to evaluate the goodness of derived clusters.
For classification algorithms, the accuracy of the algorithm can be computed. For
regression algorithms, R-Squared, p-values, adjusted R-Squared and other metrics will
be computed to evaluate the quality of the result. Apart from these quality metrics,
performance-related metrics are also recorded, with execution time being the most
representative such metric.

Once the Process Mapping sub-component has received the required inputs, the data is
ingested into the Data Descriptive Model where characteristics and morphology aspects of

@0l

BY NC ND

page 45 of 108 bigdatastack.eu

iﬁBig DataStack Project No 779747 (BigDataStack)

> st stk o g dta appicatons and perations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

the dataset D are analysed, in order to produce the model M(D). Then, together with user
requirements are forwarded to the Analytics Engine. At this point a query is made from the
Analytics Engine to the Analytics Repository, a storage of previously executed analysis models
and the final algorithms that were executed in each case. We distinguish two cases:

e No similar models can be found: In this case, the available algorithms from the
Predictive and Process Analytics Catalogue that match the user requirements are
executed, and the results are returned and evaluated in the Evaluator (where quality
metrics are computed for each run depending on its performance). The results are
stored in the Analytics Repository.

e A similar model can be found: In this case, the corresponding algorithm (that
performed well in the past on a similar dataset) is executed on the dataset at hand,
and the results are again analysed in the Evaluator. The results are again stored in the
Analytics Repository. In case the result is not satisfactory, the process can be repeated
for the second most similar model, etc.

Example of Operation

The operation of Process Mapping entails two discrete phases: (a) the learning phase, and (b)
the in-action phase.

In the learning phase, the system executes algorithms on datasets and records the evaluations
of the results in the analytics repository. Essentially, the system learns from executions of
algorithms of different datasets.

Input dataset D

Analytics Repository

Figure 24 - Learning phase of Process Mapping: Processing the first dataset D

The learning phase starts without any evaluated results in the analytics repository. As shown
in Figure 24, when the first dataset D is given as input, the Descriptive Model Generator
produces the model M(D). In parallel, the available algorithms Ai, A, ..., Anare executed on D
and their result is given to the Evaluator, which computes the available metrics M1 and M.
Examples of metrics could be accuracy and execution time. Then, this information is stored in

@ ®@@ page 46 of 108 bigdatastack.eu

BY NC ND

> ﬁB i g DataStack Project No 779747 (BigDataStack)

s o Holstic s for it aplcaons nd operations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

the analytics repository: the model M(D), the algorithm A;, and the values of metrics M1 and
Mz. Notice that the actual dataset is not stored, however it is shown in the figure just for
illustration purposes.

M,

Descriptive

i d Model Generator
MI

M,

Analyti
B "V B fluator fmd
Input dataset D’ M,

000 00 .

M,

Analytics Repository

Figure 25 - Learning phase of Process Mapping: Processing the second dataset D'

Figure 25 shows the processing of a second dataset D’, still in the learning phase. The same
procedure as described above is repeated, and the results are added to the Analytics
Repository.

The in-action phase corresponds to the typical operation of Process Mapping in the context
of BigDataStack, namely to perform the actual mapping from an abstract task T (which is
present as a step of a process designed in the process modelling framework) to a concrete
algorithm A(T) that can be executed on the dataset D at hand, i.e., A(T,D). The following
example aims at clarifying the detailed operation.

Figure 26 shows a new dataset which is going to be processed based on the specification
received from the process modelling framework. Next, the Process Mapping automatically
suggests the best algorithm (A+) from the pool of available algorithms A;, Ay, ..., An.

page 47 of 108 bigdatastack.eu

ﬁB i g DataStaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

Best performing
Most similar algorithm
dataset

Descriptive
b Model Generator

New dataset ° —] ,

Output of
Process
Mapping

M,

Analytics Repository

Figure 26 - The in-action phase of Process Mapping

As depicted in the figure above, the Descriptive Model Generator produces the model for the
new dataset, and then this model is compared against all available models in the analytics
repository in order to identify the most similar dataset. In this example, M(D) is the most
similar model. Then, the best performing algorithm is selected from the results kept for M(D).
The values of available metrics (M1 and M) are used to identify the best algorithm based on
an optimization goal, which could rely to one metric or a combination of metrics, according
the needs of the application. In the example, the output of Process Mapping is depicted as
algorithm Aj.

Technical Aspects of Prototype Implementation

At the time of this writing, which corresponds to the first half of the project, we have a
prototype implementation of Process Mapping in place. The prototype targets a specific class
of analysis algorithms, namely Clustering algorithms, in order to be focused. In the second
half of the project, this functionality is going to be extended. Below, we provide the technical
details and individual techniques used by Process Mapping.

First, the Descriptive Model Generator follows two alternative approaches for model
generation (i.e., feature extraction) from the underlying dataset, based on the state-of-the-
art methods for automatic clustering algorithm selection. The first approach, called attribute-
based, generated eight (8) features from the dataset: logarithm of number of objects,
logarithm of number of attributes, percentage of discrete attributes, percentage of outliers,
mean entropy of discrete attributes, mean concentration between discrete attributes, mean
absolute correlation between continuous attributes, mean skewness of continuous
attributes, and mean kurtosis of continuous attributes. The second approach, called distance-
based, computes the vector of pairwise distances d of all pairs of objects in the dataset. Then,
it generates nineteen (19) features from d. The first five (5) features are the mean, variance,
standard deviation, skewness and kurtosis of d. The next ten (10) features are the ten
percentiles of distance values in d. The last four (4) features are based on the normalized Z-
score, namely they correspond to the percentage of normalized Z-score values in the range:

@ ®®@ page 48 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

[0,1), [1,2), [2,3), [3,infinity). Determining the best approach between attribute-based and
distance-based is a subject of experimental evaluation in the context of BigDataStack. A
recent paper reports that distance-based approach is better for clustering tasks.

Second, the Analytics Engine is implemented as a wrapper around WEKA, a library for machine
learning tasks. In the current implementation three clustering algorithms are used (Kmeans,
FarthestFirst, and EM) for the proof-of-concept prototype. In the second half of the project,
we are going to replace WEKA with Spark’s MLlib. Also, we are going to extend the
functionality to other machine learning and analysis tasks, other than clustering.

Last, but not least, the Evaluator uses metrics both for the quality of data analysis as well as
for performance. The result quality for clustering is evaluated using Silhouette coefficient, a
metric for clustering quality assessment that is based on intra-cluster distances and inter-
cluster distances. In terms of performance, the Evaluator records the execution time needed
by the algorithm to produce the results. The application that runs in BigDataStack can select
whether algorithm selection will be based on optimizing result quality, performance, or an
arbitrary (application-defined) combination of these two.

6.8.2. Process Analytics

The Process Analytics sub-component comprises the following four main modules:

e Discovery: The main objective of this component is via a given event log to create
a process model.

e Conformance Checking/Enhancement: This component’s role is dual. Firstly, in the
Conformance Checking Stage a process model is evaluated against an event log for
missing steps, unnecessary steps, and many more (process model replay).
Secondly, in the Enhancement Stage user input is considered (e.g. cost-
effectiveness or time effectiveness of a process) to create an according model of
a process. Also, in this stage dependency graphs will be created and through
metrics, such as direct succession and dependency measures to be utilized by the
Predictions component.

e Log Repository: A repository consisting of any changes to a model during
Conformance Checking/Enhancement stage.

e Prediction: Dependency graphs and weighted graphs of process models, created
in the Enhancement phase will be used in collaboration with an active event log to
predict behaviour of an active process.

e Model Repository: A storage unit of all process models, user-defined or created in
the Discovery stage.

The input variables of this mechanism are:
e Event logs.
e Process models (not obligatory).

The output of the mechanism is as follows:
e Discovered process models.
e Enhanced process models.
e Diagnostics on process models.

@ ®®@ page 49 of 108 bigdatastack.eu

BY NC ND

:’ﬁsigﬂataStack Project No 779747 (BigDataStack)

s s stk g gt appcaons ndperatons D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

e Predictions - Recommendations on events occurring in process models.

The main structure of the predictive component is depicted in Figure 27:

Logs Repository Process Prediction

Process Model +
Data Process Model

Repository

Process
Model

Process Modelling

Conformance
Checking -
Enhancement

Discovered
Process
Model

Process Model
Discovery

Event Log Data

Seamless Data Analytics
Framework

Figure 27 - Internal architecture of Process Analytics sub-component

6.9. Seamless Analytics Framework

A single logical dataset can be stored physically in many different data stores and locations.
For example, an loT data pipeline may involve an ingestion phase from devices via a message
bus to a database and after several months the data may be moved to object storage to
achieve higher capacity and lower cost. Moreover, within each lifecycle phase, we may find
multiple stores or locations for reasons such as compliance, disaster recovery, capacity or
bandwidth limitations etc. Our goal is to enable seamless analytics over all data in a single
logical dataset, no matter what the physical storage organization details are.

In the context of BigDataStack, we could imagine a scenario where data would stream from
loT devices such as DANAOS ship devices, via a CEP message bus, to a LeanXcale data base
and eventually, under certain conditions be migrated to the IBM COS Object Store. This flow
makes sense since LeanXcale provides transactional support and low latency but has capacity
limits. Therefore, once the data is no longer fresh it could be moved to object storage to
vacate space for newer incoming data. This approach is desirable when managing Big Data.

The seamless analytics framework aims to provide tools to analyse a logical dataset which
may be stored in one or more underlying physical data stores, without requiring deep
knowledge of the intricacies of each of the specific data stores, nor even awareness of where
the data is exactly stored. Moreover, the framework provides the tools to automatically

page 50 of 108 bigdatastack.eu

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

migrate data from the relational datastore to the object store, without the interference of a
database administrator, with no downtime or expensive ETLs, ensuring data consistency
during the migration process at the same time.

A given dataset may be stored within multiple data stores and the seamless analytics
framework will permit analytics over it in a unified manner. LXS Query Engine is extended in
order to support queries over a logical database that might be split across different and
heterogeneous datastores. This extended query engine will serve as the federator of the
different datastores and will a) push down incoming queries to each datastore b) retrieve the
intermediate results and merge them in order to return the unified answer to the caller.
Therefore, the data user will have the impression of executing a query against a single
datastore which hosts the logical dataset, without having to know how the dataset is
fragmented and split within the different stores. Finally, the federator will provide a standard
mechanism for retrieving data: JDBC, thus allowing for a variety of analytical frameworks such
as Apache Spark to make use of the Seamless Analytical Framework to perform such tasks.

The data lifecycle is highlighted in the following figure:

Spark File System API

(ot LeanXscale
devices - cE

Figure 28 - Seamless Interface

Data is continuously produced in various loT devices and forwarded to the CEP engine for an
initial real-time analysis. This analysis might identify potential alerts or challenges which are
triggered by submitting specific rules which use data coming from a combination of sources
and are relevant under a specific time window. CEP later ingests data to the LeanXcale
relational datastore, which is the first storage point due to its transactional semantics that
ensure data consistency. After a period, data can be considered historical and are of no use
for an application. However, they are still invaluable as they can participate in analytical
queries that can reveal trends or customer behaviours. As a result, data are transferred to the
Object Store that is the best candidate for such type of queries. Due to this, data is
continuously migrating between stores, and the seamless interface provides the user with a
holistic view, without needing to keep track of what was migrated when.

6.10. Application Dimensioning Workbench

The goal of the dimensioning phase is to provide insights regarding the required infrastructure
resources primarily for the data services components, linking the used resources with load
and expected QoS levels. To this end, it needs to link between the application/service-related
information (such as KPIs and workload, parameters of the data service etc.) and the used

@ ®®@ page 51 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

resources to be able to provide recommendations towards the deployment mechanisms,
through e.g. prediction and correlation models. Benchmarking against these services is
necessary in order to concentrate the original dataset that is needed in a variety of business
scenarios, such as sizing the required infrastructure for private deployments of the data
services or consulting deployment mechanisms in a shared multitenant environment where
multiple instances of a data service offering may reside.

The main issues that need to be handled by the Dimensioning Workbench are:

The target trade-off that needs to be achieved between a generic functionality and an
adapted operation. For example, benchmarking for each individual application
request would lead to very high and intolerable delays during the deployment process.
Thus, one would need to abstract from the specifics of an application instance through
the usage of suitable workload features, benchmark in advance for a variety of these
workload features and thus only need to query for the most suitable results during the
deployment stage.

The achieved abstraction and automation for easily launching highly scalable and
multi-parameter benchmarks against the data services, with minimal user interaction
and need for involvement. This would require the rationale of a benchmarking
framework inside ADW that will be able to capture the needed variations between the
configuration parameters (workload, resource etc), adapt to the needed client types
per data service as well as the target execution environment of the tests (e.g. different
execution platforms such as OpenShift, Docker Swarm, external public Cloud offerings
such as AWS etc).

The workflow/graph-based nature of the application, which implies that application
(and data service) structure should be known and taken under consideration by the
analysis. To this end, needed annotations are required so that the generic structure
which is provided as input to the Workbench through the Data Toolkit contains all the
necessary information such as expected QoS levels (potentially for different metrics),
links between the service components etc. On top of this structure, the workbench
can quantify the expected QoS per component and then propagate through the
declared dependencies.

While application structure is provided to the workbench, this will often not imply a
particular deployment configuration for the application (e.g. what node types will be
suitable for the user’s application). Multiple trade-offs in this domain could also be
given to the users, enabling them to make a more informed final decision based on
cost or other parameters. For this reason, the dimensioning workbench needs to
receive this input of available deployment patterns from the Pattern Generation in
order to populate them with the expected QoS, information that is taken under
consideration in the process for final ranking and selection.

Adaptation of benchmarking tests in a dockerized manner in order to be launched
through the framework in a coordinated and functional manner, based on each test’s
requirements and needed sequences.

Dependencies of the dimensioning component especially in the form of anticipated exchange
of information (in type and form) are presented in the following bullets. Inputs include:

@

OOE

BY NC ND

page 52 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

Structure of the application along with the used data services is considered an input,
as concretized by the Data Toolkit component (in the form of a playbook file, the
BigDataStack Playbook) and passed on to the Dimensioning component, following its
enrichment with various used resource types from the Pattern Generator, and
including expected workload levels inserted by the user in the Data toolkit phase. This
is the structure upon which the Dimensioning workbench needs to append
information regarding expected QoS per component.

Types of infrastructure resources available in terms of size, type, etc (referred to as
resource templates). This information is necessary at the Pattern Generator side in
order to create candidate deployments.

Different types of Data Services will be provided by BigDataStack to the end users.
Each of these services may have different characteristics and functionalities, affected
in a different manner and quantity by the application input (such as the data schema
used). Consideration of these features should be included in the benchmarking
workload modelling of the specific service (e.g. number of columns in the schema
tables, types of operations, frequency of them etc.), as well as inputs that may be
received by the application developer/data scientist, such as needed quality
parameters of the service (such as latency, throughput needed etc.) or other
preferences declared through the Data Toolkit.

Application related current workload and QoS values should be available to enable the
final creation of the performance dataset, upon which any queries or modelling will
be performed. This implies a collaboration and adaptation with the used benchmark
tests and/or infrastructure monitoring components such as the Triple Monitoring
Engine, in case the used benchmarks do not report on the needed metrics.

Language and specification used by the Deployment component, or any other
provisioned execution environment, given that ADW needs to submit such descriptors
for launching the benchmarking tests.

Exposure of the necessary information, such as endpoints, configuration, results etc
to the Visualization components of the project, in order to be embedded and
controlled from that side as well. Thus relevant APIs and JSON schemas need to be
agreed and implemented based on this feature.

Necessary outputs:

@

OOE

BY NC ND

The most prominent output of the Dimensioning phase is the concretized (in terms of
expected QoS) playbook for a candidate deployment structure for the used data
services in the format needed by the ADS-Ranking component that utilizes the
dimensioning outcomes. This implies that the format used by Dimensioning to
describe these aspects should be understood by the respective components and thus
was agreed in collaboration, defined currently as a Kubernetes configuration template
type of file structure called a BigDataStack Playbook. More concretely, this is
operationalized as a series of candidate deployment patterns (CDPs), which describe
the different ways that the user’s application might be deployed along with the
expected QoS levels per defined metric. CDPs are provided in the respective file
format, such that they can be easily used to perform subsequent application

page 53 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

deployment. The Dimensioning phase will augment each CDP with estimated
performance metrics and/or quality of service metrics, providing a series of indicators
that can be used to judge the potential suitability of each CDP. These estimates are
used later to select the CDP that will best satisfy the user’s deployment
requirements/preferences.

Intermediate results include the benchmarking results that are obtained through the
benchmarking framework of ADW. These need to be exposed either to internal ADW
components for subsequent stages (e.g. modelling or population of the playbook) or
external such as Visualization panels towards the users for informative purposes.

The main structure of the Dimensioning is depicted in Figure 29. The component list is as
follows:

Pattern Generation: The role of pattern generation is to define the different ways that
a user’s application might be deployed. In particular, given the broad structure of a
user’s application provided by the Data Toolkit, there are typically many ways that
this application might be deployed, e.g. using different node types or utilizing
different replication levels. We refer to these different ways that a user’s application
might be deployed as ‘candidate deployment patterns’ (CDPs). CDPs are generated
automatically through analysis of the user’s application structure provided in the form
of a ‘BigDataStack Playbook’ file from the Data Toolkit, as well as the available cloud
infrastructure. Some CDPs will be more suitable than others once we consider the
user’s requirements and preferences, such as desired throughput or maximum cost.
Hence, different CDPs will encode various performance/cost trade-offs. These CDPs
define the configurations that are used as filters for retrieving the most relevant
benchmarking results during the Dimensioning phase, producing predicted
performance and quality of service estimations for each. Even though Pattern
Generation is part of Dimensioning, it is portrayed as an external component given
that for each CDP the core Dimensioning block will be invoked.

ADW Core: The ADW Core is the overall component that is responsible for the main
functionalities of Dimensioning. It is split into two main parts, the ADW Core
Benchmarking, which is responsible for implementing and storing benchmarking runs
with various setups, and the ADW Core Runtime that is used during the assisted
deployment phase of BigDataStack in order to populate the produced CDPs with the
predicted QoS levels. Following, a highlight of the various functionalities of each
element is described, split into more fine-grained parts.

Bench Ul: The Bench Ul is used by the Data Service owner in order to define the
parameters of the benchmarking process, which is performed “offline”, thus not in
direct relationship to a given application deployment during runtime. It is necessary
for this user to investigate the performance considerations of their service and
proceed with this stage, during the incorporation of their data service in the
BigDataStack ecosystem, in order to have gathered the necessary data a priori and
not need to benchmark during the actual application deployment. The latter would
create serious timing considerations and limitations that would not be tolerated by
the end users. Through the Bench Ul, multiple parameters can be defined, leading to
a type of parameter sweep execution of a test, in order to automate and enable an

@ ®®@ page 54 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

@

OOE

BY NC ND

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

easier result gathering process. The Ul includes a visual element for selection of the
parameters, as well as a relevant REST endpoint in which the user can submit a JSON
description of the test (thus enabling further automation through multiple REST
submissions). It can also be used to monitor the progress of the test. Result viewing
and relevant queries can also be performed via the central visualization component
of BigDataStack, while a workload definition tab is expected to be supported also in
Y3 of the project.

Test Control: Test control is used in order to prepare, synchronize and configure test
execution. A number of steps are needed for this process based on the user’s selected
options, such as running tests in a serial or parallel manner, preparing shared volumes
and networks and so on.

Deployment Description Adapter: In order to enable launching of the defined tests in
an execution platform (such as Openshift, Docker Swarm, external Clouds etc),
relevant deployment descriptors should be created. For example, for Openshift a
relevant playbook file needs to be created and populated with the parameters
selected for the benchmark tests, such as input arguments, selected resources etc
and then forwarded to ADS Deploy. A playbook template structure is created
beforehand for each bench test type based on the execution needs of each test (e.g.
number and type of containers, needed shared volumes and networks etc), necessary
included data service etc, that is then populated with the specific instantiation’s
details. Different execution platforms can be supported through the inclusion of
relevant plugins that implement the according formats of that platform or the
relevant APl calls to setup the environment (a Docker Swarm version is already
supported at this time). Through this setup the system under stress (data service) is
automatically deployed, as well as the necessary number of bench test clientsin order
to cover the desired load levels.

Image repository: While this refers to the main image repository across the project,
its inclusion here is used to indicate the necessary inclusion of the bench tests images,
appropriately adapted based on the benchmarking framework’s needs, in terms of
execution, configuration and result storing.

Results/Model repository: This component is intended to hold the benchmarking
results obtained through the test execution process as well as hold the created
regression models used during the Result Retrieval queries in the Runtime phase (Y3).
Structure Translator: This component acts as an abstraction layer and is responsible
for obtaining the output of the Data Toolkit containing the application structure in the
format this is expressed (e.g. playbook service structure) and extracting the
parameters that are needed in order to instantiate the query towards the result
retrieval phase. Furthermore, in cases of multi-level applications, it is responsible for
propagating the process across the service graph.

Result Retrieval: This component is responsible for obtaining the specified
deployment options from the CDPs, the anticipated workload and produce the
predicted QoS levels of the service. This may happen either through direct querying
of the stored benchmarked results (y2) or through the creation and training of
predictive regression models (Y3) that will also be able to interpolate for cases that

page 55 of 108 bigdatastack.eu

iﬁBig DataStack Project No 779747 (BigDataStack)

> st stk o g dta appicatons and perations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

have not been investigated, based on the training of the regressor and the depiction
of the outputs (QoS) dependency from the predictor inputs (workload and h/w-s/w
configuration used).

e OQOutput Adaptor: This component acts as an abstraction layer and is responsible for
generating the output format needed for the communication with ADS Ranking (in
the particular case enriching the inputed playbook file with the extra QoS metrics).

U 5 Business Data
SErs: Analysts Scientists

Playbook/Preferencs from Data Toolkit
o
E ADS-Pattern
2 Generator
u:) PlaybookfPreferences with candidate
£ resourcejpatterns
=
. %)
Users: Data Service <D(ADS-ADW Core
Owner
J
Define 1
Bench Test Setup { \

- \
CDPs : ADS-
With expected .
QoSoutputsT Ranklng
Structure Output
Translation Adaptor

Test Control

Deployment Model/Results
Description Adapter

Image Repository

Repository

Bench Data ! . —
Tests services JJ | ADS Dimensioning Core

Figure 29 - Application dimensioning internal structure and link with external components

6.11. Big Data Layout and Data Skipping

Here we focus on how to best run analytics on Big Data in the cloud. Today’s best practices to
deploy and manage cloud compute and storage services independently leaves us with a
problem: it means that potentially huge datasets need to be shipped from the storage service
to the micro-service to analyse data. If this data needs to be sent across the WAN then this is
even more critical. Therefore, it becomes of ultimate importance to minimize the amount of
data sent across the network, since this is the key factor affecting cost and performance in
this context.

We refer the reader to the BigData Layout section (8.10) of the D2.1 BigDataStack deliverable
which surveys the main three approaches to minimize data read from Object Storage and sent
across the network. We augmented these approaches with a technique called Data Skipping,
which allows the platform to avoid reading unnecessary objects from Object Storage as well
as avoiding sending them across the network (also described in D2.1). As explained there, in
order to get good data skipping it is necessary to pay attention to the Data Layout.

In BigDataStack data skipping provides the following added-value functionalities:
1. Handle a wider variety of datasets, go beyond geospatial data
2. Allow developers to define their own data skipping metadata types using a flexible
API.

@ ®@@ page 56 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

3. Natively support arbitrary data types and data skipping for queries with UDFs (User
Defined Functions)

4. Handle continuous streaming data that is appended to an existing logical dataset.

5. Continuously assess the properties of the streaming data to possibly adapt the
partitioning scheme as needed

6. Handle general query workloads. This is significant because often different queries
have different, even conflicting, requirements for data layout.

7. Handle query workloads which change over time.

8. Build a benefit/cost model to evaluate whether parts of the dataset should be
partitioned anew (thus rewritten) to adapt to significant workload changes.

Previous research focused on the HDFS, whereas we plan to focus on Object Storage, which
is of critical importance in an industrial context. Object Storage adds constraints of its own:
once an object has been putin the Object Store, it cannot be modified, where even appending
to an existing object is not possible, neither can it be renamed. This means that it is important
to get the layout right as soon as possible and avoid unnecessary changes. Moreover, it is
important for objects to have roughly equal sizes (see our recent blog on best practices [17]),
and we are researching the optimal object size and how it depends on other factors such as
data format. Moreover, the cost model for reorganizing the data layout is likely to be different
for Object Storage than for other storage systems such as HDFS.

6.12. Process modelling framework

Process modelling provides an interface to business users to model their business processes
and workflows as well as to obtain recommendations for their optimization following the
execution of process mining tasks on the BigDataStack analytics framework. The outcome of
the component is a model in a structural representation — a JSON formatted file. The latter is
actually a descriptor of the overall graph reflecting the application and data services mapped
to specific executables that will be deployed to the BigDataStack infrastructure. To this end,
the descriptor is passed to the Data Toolkit component and then to the Application
Dimensioning Workbench to identify their resource requirements prior to execution.

The main issues that need to be handled by the Process modeling framework are:

e Declarative process modelling approach: Processes may be distinguished in Routine
(Strict) and Agile. Routine processes are modelled with the imperative method that
corresponds to imperative or procedural programming, where every possible path
must be foreseen at design time and encoded explicitly. If a path is missing, then it is
considered not allowed. Classic approaches like the BPEL or BPMN follow the
imperative style and are therefore limited to the automation type of processes. The
metaphor employed is the flow chart. Agile processes are modeled with the
declarative method according to which declarative models concentrate on describing
what must be done and the exact step-by-step execution order is not directly
prescribed; only the undesired paths and constellations are excluded so that all
remaining paths are potentially allowed and do not have to be foreseen individually.
The metaphor employed is rules/constraints. Agility at the process level, entails “the
ability to redesign and reconfigure Individual business process components,
combining individual tasks and capabilities in response to the environment” [18].

@ ®®@ page 57 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

Declarative process modeling or a mixed approach seems to fit well in our
environment providing the necessary flexibility in process modelling, mapping and
optimization.

Structure to output to the Data Toolkit and subsequently to the application
dimensioning framework, workflow/reference to executables/execution logic: The
output of the process modeling framework should be a structure to feed the Data
Toolkit and later on the dimensioning framework. The structure should provide for
reproducing the process graph, the tasks mapping to executables and the logic in
terms of rules/constraints that govern the execution flow and the execution of the
process tasks. Process Modelling outputs the structure of the developed process
model to Data Toolkit component.

The main structure of the Process modelling framework is described below. The component
list is as follows:

Modeling toolkit: This component provides the interface for business analysts to
design their processes in a non-expert way, the interface for developers to provide in
an easy way predefined tasks and relationship types as selectable and configurable
tools for business analysts and the core engine to communicate with all the involved
components towards design, concretization, evaluation, simulation, output and
optimization of a business process.

Rules engine: The engine provides all the logic for defining rules and constraints,
evaluating and executing them. The aim is the business analyst to be provided with a
predefined set of rules offered as a choice through the tasks and relations toolbox.
ProcessModel2Structure Translator: This component generates the structure from the
developed model that will feed the Data Toolkit and subsequently the dimensioning
framework. This structure must be able to instantiate and run as an application. It will
include the workflow, the logic in terms of relationships and rules regarding the
execution of process tasks, reference and configuration of the involved analytics tasks
(contained in the catalogue) and reference to other application tasks and services
(which are not contained in any catalogue) (i.e. a task that generates a report from
collected values, a task that finds the maximum value of a set of values, or a task that
when triggered communicates using an APl and turns off a machine, if we consider a
process that controls the operation of machines).

Process Modelling Framework Capabilities

@

OOE

BY NC ND

page 58 of 108 bigdatastack.eu

Project No 779747 (BigDataStack)

D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019

Dissemination Level: PU

mBigDataStack

Holistic stack for big data applications and operations

Overall Objective Choose File | No file chosen

data load

clean data

transform data

classification

regression

clustering

frequent pattern mining

mode! evaluation

data filter

model evaluation

Node 4

model evaluation

Radio Button Options

Binary Classification

© Binary Classification

@ Multiclass Classification

® Regression Model Evaluation
® Multiiabel Classification

® Ranking Systems

feedback collector
recommendations calculation

collaborative filtering

Figure 30 - Process modeling framework

The Process Modeler component is the first link in the chain. The Business Analysts have the
ability to design their processes in a straightforward graphical way by using a visual editor.
The user can create a graph containing nodes from a list provided and assign options to each
node. In detail these nodes and their respective options are:

Data Load
o Distributed Store
o Object Store
e C(Clean Data
o Yes
o No
e Transform Data
o Normalizer
o Standard Scaller
o Imputer
e (lassification
o Binomial Logistic Regression
o Multinomial Logistic Regression
o Random Forest Regression
e Regression
o Linear Regression
o Generalized Linear Regression
o Random Forest Regression
e Clustering

o K Means
o LDA
o GMM

e Frequent Pattern Mining
o FP Growth
e Model Evaluation

@OE0

BY NC ND

page 59 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

o Binary Classification
o Multiclass Classification
o Regression Model Evaluation
o Multilabel Classification
o Ranking Systems
e Data Filter
o Yes
o No

e Feedback Collector (External Service)
e Recommendations Calculation (External Service)
e Collaborative Filtering

o ALS

Additionally, the business analyst can define the overall objective of the graph which can be:
e Analytics Algorithm Accuracy
e Analytics Algorithm Time Performance
e Save Computing Resources
e Overall Time Efficiency
e Overall Cost Efficiency
e Decrease Average Throughput
e Decrease Average Latency

Finally, the Process Modeller Component provides the capability to import, export, save and
edit the generated graphs.

6.13. Data Toolkit

The main objective of the data toolkit is to design and support data analysis workflows. An
analysis workflow consists of a set of data mining and analysis processes, interconnected
among each other in terms of input/output data streams or batch objects. The objective is to
support data analysts and/or data scientists to concretize the business process workflows
created through the process modelling framework. This can be done by considering the
outputs of the process mapping component or choosing among a set of available or under
development analytic functions, while parametrizing them with respect to the service-level
objectives defined in the corresponding process. A strict requirement regards the capacity to
support various technologies/programming languages for development of analytic processes,
given the existence and dominance of set of them (e.g. R, Python, Java, etc).

Towards this direction, the data toolkit is going to be modelled in a way that will enable data
scientists to declare and parametrize the data mining/analytics algorithms, as well as the
required runtime adaptations (CPUs, RAM, etc.), data curation operations associated with the
high-level workflow steps of the business process model.

At its core, the data toolkit will incorporate an environment which supports the design of
graph-based workflows, and the ability to annotate/enrich each workflow step with algorithm
or processes specific parameters and metadata, while respecting a predefined set of rules to
which workflows must conform on in order to guarantee their validity.

@ ®®@ page 60 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

There is a wide range of versatile flow-based programming tools that fit well the requirements
for constituting the basis for the data toolkit, such as Node-Red [19]. Also a custom workflow-
design environment tailored for the specific needs of the data toolkit could be developed,
supported by libraries such as D3.js [20] and NoFlo [21], which will allow for fine-grained
control over all the elements associated with the data analytics workflow.

Figure 31 depicts the core configuration user interface per functional component and/or
service in the BigDataStack context. Therefore, the Data Scientist can parameterise her
components providing details on the elasticity profile, the Docker images, the minimum
execution requirements, the required environmental variables, the exposed interfaces and
required interfaces (if any), existing attributes (i.e. lambda functions, etc.) and the
corresponding health checks regarding the services.

Hame * Architecture *
Elasticity Profile *

Digtribution Parameters

Dacker Image *

Waould you like to change your Docker credentizls? (required Registry, Userrame, Fassword fields)

Docker Registry
Docker Usemame Dacker Password
= et T
wCPLs * RAM (b * Storage (GE) Hypervisor Tyne®
¥ GPU-Enabled

HTTR = Command ¥

Tirne Interval in s=conds) *

Container Execution

Command

Valuz
Figure 31 - Application configuration per graph components

@ AT page 61 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

6.14. Adaptable Visualizations

The adaptable visualization layer has multiple purposes: (i) to support the visualization of data
analytics for the applications deployed in BigDataStack, (ii) to provide a visual application
performance monitoring dashboard of the data operations and the applications during
benchmarking, dimensioning workbench and during operation and (iii) to integrate and
facilitate various components such us Process Modeller, Data Toolkit, Benchmarking,
Dimensioning Workbench, Triple Monitoring Engine, Data Quality Assesment and Predictive
Maintenance. Importantly, the dashboard will be able to monitor the application deployed
over the infrastructure. For the visualization of data analytics, it will provide a reporting tool
that will enable to build visual analytical reports. The reporting will be produced from
analytical queries and will include summary tables as well as graphical charts.

The main issues that need to be handled by the adaptable visualizations framework are:

e User authentication

e KPIs definition and integration: Definition of a KPl must be possible through the
framework if not supported elsewhere in the architecture

e Triggering of events and production of visual notifications. Event handling and
triggering of alarms or responses to the event must be supported.

e Different views of the Ul platform depending on the user role. 4 roles are defined:

o Administrator (full Ul View)

o Business Analyst (Process Modeller View)

o Data Analyst (Data Toolkit View)

o Application Owner/Engineer (BenchMarking, Dimensioning Workbench,
Analytics View)

e Integration of Process Modeller, Data Toolkit and Benchmarking Components.

e Deployment of playbooks towards the Dimensioning Workbench Component,
visualization of the configurations recommended and deployment of the selected
application.

e Management of the Deployed Applications and handling of the Deployment
Adaptation Decisions. Decisions are consumed from the Global Decision Tracker.

e Ability to redeploy applications when QoS Warnings are received and Deployment
Alterations are considered.

e Visualisation of the Predictive maintenance for both cases of full datasets and
exclusively quality assessed data.

e Visualisation of the Data Quality Assessments in summary customizable tables.

The foreseen /O and the structure of the visualization framework in terms of definition of
the subcomponents and their interactions are listed in the following bullets.

Necessary inputs:
e Analytic outcomes as input from the seamless data analytics framework
e Real-time monitoring data as input from the triple monitoring engine. Data will refer
Application components monitoring, to Data & Services monitoring and to Cluster
resources monitoring
e CEP outcomes as input from the real-time CEP of the Storage engine

@ ®®@ page 62 of 108 bigdatastack.eu

BY NC ND

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

e Input from exposed data sources to facilitate KPIs definitions and event triggering
rules.

Necessary Outputs:
e OQutput of visual reports

The main structure of the Adaptable visualizations framework is depicted in Figure 32. The
component list is as follows:

e Visualization toolkit: this component connects all the components (Process Modeller,
Data Toolkit, BenchMarking, Dimensioning Workbench) and makes available a tool set
of offered capabilities (e.g. types of graphs, reports, tables)

e Rights management module (Admin Panel): this component handles the permissions
to modify views to components, editors and event triggers

e Data connector: this component makes possible to retrieve data schemas and data
from the exposed data sources to assist in defining KPls and set event triggers.
Furthermore, it could provide the same way access to historical data or reports

e Events processing: this component makes possible to define event triggers that will
produce visual notifications, warnings or generation of specific reports

Visualization

I
|
I
: toolkit
: . Event
: | processing :
I
i r L :
; Rights :
. | management :
|
I module Data | Exposed
I Connector i data sources
! I
! I
: .

Triple Monitoring Engine framework -
Seamless data Storage engine

Application Data_! & Cluster analytics]
components Services resources Real-time CEP

o i gy framework
monitoring monitoring monitoring |

|
Figure 32 - Visualization framework building blocks
@ AT page 63 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

7.Key interactions

7.1. User Interaction Layer

User Interaction within the BigDataStack ecosystem plays an important role in the entire
lifecycle of a big data application / operation. There exist the following user roles: Business
Analysts, Data Analysts and/or Data Scientists.

First, the Business Analyst uses the Process Modelling Framework to define the business
processes and associated objectives and accordingly design a BPMN-like workflow for the
actualization of the business-oriented objectives and the required analytic tasks to
accomplish. The analyst is able to design, model and characterize each step in the workflow
according to a list of predefined rules encapsulated by a rules engine component of the
modelling framework. The output of this process is a graph-like output (i.e. in JSON format)
with a high-level description of the workflow from the business analyst’s perspective along
with the related end-to-end business objectives. The sequence diagram of Process Modelling

is depicted in Figure 33.

Business Analyst

O—p

()

Figure&3‘3 - Information flows in Process Modelling
Figure 34 depicts a high-level application graph designed by the Business Analyst by
indicatively incorporating within the data workflow four (4) processing steps with editable
fields by means of drop-down lists, namely data load, data clean, perform analytic task and
evaluate result.

@ ®®@ page 64 of 108 bigdatastack.eu

BY NC ND

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

Figure 34 - Example of a high level BRMN-like application graph

Next, the Process Mapping component provides an association of the process steps modeled
by the Business Analyst with specific analytic tasks, following a set of criteria related to each
process task, while considering any constraints defined in the business objectives. These
criteria may contain the characterization of required data, time, resources and/or
performance parameters need to be concretized to perform the analytic tasks. The output of
this step is a workflow graph (i.e. in JSON format) enriched with the mappings of the business
process steps grounded to algorithms, runtime and performance parameters.

Then, the Data Analyst and/or the Data Scientist uses the Data Toolkit, to perform a series of
tasks related to the concretization of the analytics process workflow graph produced in the
process mapping step, as depicted in Figure 35, such as:

e Concretizing the business objectives in terms of selecting lower bounds for hardware,
runtime adaptations, performance for which the selected algorithms perform
sufficiently well.

e Defining the data source bindings from where the datasets related to the task will be
ingested.

e Defining any data curation tasks (i.e. data cleaning, feature extraction, data
enrichment, data sampling, data aggregation, Extract-Transform-Load (ETL)
operations) necessary for the algorithms and the related steps.

e Configuring and parametrizing the data analytics tasks returned (i.e. selected) by the
Processes Mapping component, and additionally providing the functionality to design
and tune new algorithms and analysis tasks, which are then stored to the Catalogue
of Predictive and Process Analytics and can be re-used in the future.

e Selecting and defining performance metrics for the algorithms, along with the
acceptable ranges with respect to the business objectives and service-level objectives,
used to evaluate the algorithm/model and resources configurations.

At the end, a Playbook (i.e. in YAML format) representing the grounded workflow for each
business process will be generated, in the format that further feeds the Dimensioning
workbench in order to provide the corresponding resource estimates for each node of the
graph.

@ ®®@ page 65 of 108 bigdatastack.eu

BY NC ND

_:sﬁs ig DataStack Project No 779747 (BigDataStack)

i o ot stk o g dta apications and aperaons D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

X

Data Analyst)
H Analytics workfiow
(& graph with grounded

- Objectives
- Data Sources
|- Data Curation Tasks

Figure 35 - Information flows in Process Mapping

The following figure (Figure 36) presents the sequence diagram, which depicts the main
information flows for the User Interaction Layer of the BigDataStack architecture.

page 66 of 108 bigdatastack.eu

:’ﬁ3| DataStack Project No 779747 (BigDataStack)

ne® anmmrk'nvhvgﬂa'aaunlmnnnmﬂmraﬂnns D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

User P Modeling Process Mapping Data Toolkit

Business Analyst

Constraints

Analytics workflow graph
—with grounded Validation
Rules

X

Data Analyst

User Interaction Layer

v
Definition of

v
Definition of
Data Curation Tasks

Playbook O

A4
-
A4

-

Figure 36 - User Interaction Layer Sequence Diagram

page 67 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

Example Use Case: Predictive Maintenance
Regarding the entry phase described above, an example is presented in the following sections
to link the functionalities of different components to an actual use case.

Business Analyst’s View

The following figure (Figure 37) shows the perspective of a business analyst in terms of
Process Modelling, which treats Real-time ship monitoring (RTSM) as a whole. This is expected
to be the view (not in terms of user interface but in terms of processes and abstraction of
information) of the Process Modelling Framework. Moreover, through the framework, the
business analyst will be able to specify constraints (as noted with red fonts in the figure).
Overall, separate processes, actions and data required to perform RTSM. As shown, the first
step is the vessel and weather data acquisition. That includes a dataset with granularity down
to a minute and 2 years timespan for vessel data, along with weather data as provided by the
National Oceanic and Atmospheric Administration (NOAA), i.e., granularity of weather reports
up to 3 hours for every 30 minutes of a degree. Past this, given that there are plenty of
attributes within both datasets, there has to be some attribute selection rule. For example,
only 190 approximately are required from both datasets, because these are the most reliable
and important. Following this, the data are imported into two different components. The first
is the monitoring tool, which simulates and enhances the on-board tools of the Alarm
Monitoring System (AMS). Given that, if an anomaly occurs a rule-based alert has to be
produced close-to or in real time. The second component is the Predictive Maintenance Alert.
This informs the end user that the current data under examination pinpoint a malfunction
that has occurred in the past. Again, this should work close-to or even better in real-time.
Consecutively, given that identifying an upcoming malfunction is achieved, spare part
ordering follows. The ordered spare part has to be delivered at least 1 day before the
estimated time of arrival, while ordering of spare parts should be performed only by suppliers
that are to be trusted. Quality of service should not be neglected while cost criteria are also
taken into account. Finally, given the delivery port of the spare part, re-routing of the vessel
takes place, where the estimated time of arrival to the closest port is less than 12 hours.

2-years dataset

minute granularity
Vessel Data aprox. 190 attributes
Acquisition
- Attribute
Selection
2-years dataset
3-hours granularity
every 30 minutes of a degree
Weather Dat close-to or in real-time
'eather Data
Acquisition
Rule-based
Monitoring —'_> Alert
Y
Predictive
5 Part
close-to orin real-time Mamtlenance > p(a]rr:era P Re-routing
Alert
Spare-part delivery = 1 day before ETA ETA lag == 12 hrs
Order from listed suppliers
Figure 37 - Business analyst view
) .
Data Analyst’s View
c BY NC ND page 68 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

Following the outcome of the process modelling (previous view), Figure 38 depicts the view
for the data analyst, that is the view in the Data Toolkit. As shown in the figure, the view is
different with components that have been mapped automatically from the Process Mapping
mechanism of BigDataStack (e.g. “CEP monitoring” to enable the “Rule-based alert” process).

Overall the data analyst’s view is a set of system components, in-house or out-sourced
processes and/or systems, actions and data required to perform RTSM. The Vessel data
acquisition process is fed from an in-house database (DB) that contains vessel data (power
consumption related and main engine data) along with Telegrams and past maintenance
events. Given a total of 10 vessels, this requires up to 40 GB of hard disk storage. Weather
data are imported from NOAA via FTP, by a weather service that loads hindcasts in GRIB
format for the whole earth with a 3-hour granularity for every 30 minutes of a degree. GRIB
files are parsed and stored in a database that requires up to 2.1 TB storage. Given that any
trajectory of a vessel can by joined with weather data via a REST API that the weather service
provides. Past this, given that there are plenty of attributes within both datasets, i.e., weather
and vessel data, there has to be some attribute selection rule. For example, only 190
approximately are required from both datasets, because these are the most reliable and
important such as the consumed power (kW), the rotations per minute of the main shaft
(RPM) etc. In order to avoid feeding the algorithmic components of this architecture with
false or null data values, a filtering component is in charge of removing null values, preferably
with average values, smoothing-out the effect of data-loss. Next, given a set of defined rules,
such as “if the power consumption exceeds a limit and the fuel-oil inlet pressure drops below
a threshold” the CEP component is in charge to produce an alert, close-to or in-real time. In
parallel, a pattern recognition algorithm tries to identify patterns on the data that looks like
a past case where a malfunction occurred in the main engine. If this happens, an alert is
produced, and given the upcoming malfunction that has been identified a spare-part
suggestion is made. Given the Danaos-ONE platform, where orders of spare parts are placed
via a REST API, the order of the suggested spare-part is placed and is accessible from the
suppliers that are preferred. So, once the order is made to a supplier, a suggested place and
time are provided, and given this re-routing of the vessel takes place via an external REST
service provided at a specific IP address and port.

@ ®®@ page 69 of 108 bigdatastack.eu

BY NC ND

& ﬁBig DataStack Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

Maintenance Events Data storage

Telegrams more than
Vessel 40GE) e.g., power, rpm, torque,
In-hou Data |— > Attribute fuel-ail-inlet-pressure,
DB Acquisition Selection fuel-oil-inlet-temperature
FTP @ 3 Weather REST &
NOAA 10.3.0.4 Sepvice no nuli-values,
Data filtering preferably averages

if null

Data storage
more than
2.1TB

set of rules,
e.g., if power=x kW
&& fuel-oil-inlet-pressure<b P

CEP Monitoring
A 4
Pattern :
Recognition Alart

Y

REST
Predictive Spare-part
Maintenance Order
Alert time, Voyage
location estimator
|T extermnal servicce @
10.3.0.2:8080
el DANAOS
Spare-part ONE
suggestion

external servicce @
10.3.0.3:9090

Figure 38 - Data analyst’s view

7.2. Realization & Deployment

Application and Data Service Ranking

Within the Realization module, there is a series of operationalizable tasks associated to
Application Data Service Ranking (ADS-Ranking). The goal of these tasks is to enable the
selection of a candidate deployment pattern (CDP) which represents a complete
configuration of the application (which is needed for application deployment on the cloud).
There are two main tasks of interest when realizing an application’s deployment:

o First-Time Ranking of Candidate Deployment Patterns: This task aims to select the
most suitable candidate deployment pattern from a set that has previously been
generated when the user first requests deployment of their application.

e Application Deployment: This task involves the practical deployment of the user
application on the cloud through interaction with Openshift.

Below we discuss each of these two tasks in more detail and provide an interaction sequence
diagram for each. For legibility of the interaction diagrams, we use short names for each
component. A mapping between components and their short names are shown in the
following table.

Full name Sub-component Short name
(interaction diagrams)
Application and Data Services Dimensioning N/A Dimensioning
Application and Data Services Ranking Pod Feature Builder ~ADS-R Feature Builder
Application and Data Services Ranking Pod Scoring ADS-R Scoring
Application and Data Services Ranking Model ADS-R Model

@ ®®@ page 70 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holstic i or i ot aplcaons and operatons D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

Application and Data Services Ranking Pattern Selector ADS-R Pattern Selector
Application and Data Services Deploy N/A ADS-Deploy

Dynamic Orchestrator N/A Orchestrator
Application and Data Services Global Decision N/A ADS-GDT

Tracker

BigDataStack Adaptive Visualisation N/A BigDataStack Ul
Environment

Table 4 - Short-name Component Mapping Table
First-Time Ranking of Candidate Deployment Patterns

The first task is concerned with the ranking of candidate deployment patterns when the user
first requests their application to be deployed. Candidate deployment patterns are generated
by the Dimensioning component of BigDataStack. The output of this task is a selected
deployment pattern, which can be passed to Application and Data Services Deployment for
physical deployment.

This task is triggered by the Dimensioning component once it has finished generating the
different candidate deployment patterns (CDPs) and producing the quality of service
estimations for each. The Dimensioning component sends a package of CDPs to the
Application and Data Services Ranking (ADS-Ranking) component, or more specifically the
Feature Builder sub-component of it. This component analyses and aggregates the different
quality of service estimations into a form that can be used for ranking (referred to as features).
Once this transformation is complete, the CDPs and aggregated features are sent to the
Scoring sub-component, which uses a ranking model to score and hence rank each CDP based
its suitability with respect to the user’s requirements. Once the CDPs have been ranked, that
ranking is sent to the Pattern Selection sub-component, which selects the most suitable one.
This selected CDP is then sent to the BigDataStack Adaptive Visualisation Environment
component for the user to decide whether to deploy with this configuration. At the same
time, a notification is sent to the Dynamic Orchestrator to specify that deployment is
underway for the user’s application. Moreover, the selected CDP, other CDPs not selected
and ranking information/features are sent to the Global Decision Tracker (ADS-GDT) for
persistence.

<) —
&> A wen i wcxin ook D G S

ADS-R Feat ADS-R Patt BigDataStack
reature ADS-R Scoring | | ADS-R Model atern gudiastdc
Builder Selection ul

Sends CDPs
CDPs and Aggregated
Features

=

Dimensioning Orchestrator ADS-GDT

Get Ranking Model

Scoring Model

Ranked CDPs and Scores Selected CDP

Notify

H Selected CDP, Ranked CDPs and Scores

Figure 39 - Interaction Diagram for First-Time Ranking

@0l

BY NC ND

page 71 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

Application Deployment

The ADS-Deploy component interacts with Openshift through Kubernetes OpenAPI v1 [1].
Once the candidate deployment pattern has been obtained, it is sent to the deployment
component. This is parsed by the ADS-Deploy component, which extracts information on the
three main objects of importance to the deployment process (Pods, Services and Routes).
ADS-Deploy maps these into a series of independent Openshift-managed objects
representing each, enabling incremental deployment and more fine-grained control.
However, all those objects are grouped into a single logical application, in order to maintain
the internal coherence and keep relations between the objects. These objects are:

e Pods: A Pod represents an atomic object in Openshift, and includes one or more
containers. Each pod can be replicated according to the configuration values or due
to Quality-of-Service requirements. Pods have been represented as
DeploymentConfig objects in BigDataStack. [11]

e Services: A Service provides access to a pod from the outside, and is in charge of vital
actions such as load balancing. Services can also be replicated, so that they are
scaled in/out independently or together with the pods. ADS-Deploy, creates a
configuration file for each service and sends it to Openshift.

e Routes: A route gives a service a hostname that is reachable from outside the
cluster. Routes are not replicable, but they are closely related with the services. In
BigDataStack, a configuration file is created for each route, and information on the
service and application to which they relate is contained in there.

AL OPENSHIFT (@
. b kubernetes g X =

BigDataStack .
1 ADS-Deploy Openshift Kubernetes Orchestrator ADS-GDT

Selected CDPs ‘
ks

Deployment

Commands

» Pod Deployment
Notify

Notify
Deployment Status 7 ————

Figure 40 - Interaction Diagram for Application Deployment

7.3. Data as a Service & Storage

The Data as a Service and the Storage offerings of BigDataStack cover different cases. As base
data stores, the LeanXcale data store and the Cloud Object Storage (COS) are considered as
depicted in the following figure (Figure 31).

@ ®®@ page 72 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holstic i or i ot aplcaons and operatons D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019

Dissemination Level: PU

—.—

Periodically send

‘ Seamless Storage Interface

Figure 41 - Architecture of data stores

From the above, it can be considered that the two components that are able to persistently
store data are: LeanXcale’s relational data store, and IBM’s Cloud Object Store. The former is
a fully transactional database which will serve operational workloads, while in the meantime
can execute analytical operations on the runtime, providing a JDBC implementation, thus
being able to execute SQL compliant queries. The latter is a cloud Object Store capable of
storing numerous terabytes of data but lacking transactional nor SQL capabilities. Fresh data
will be first inserted in the LeanXcale database (LXS) in order to benefit from its transactional
capabilities. Once data is no longer considered as fresh, (e.g. several months have passed),
data will be moved to the Cloud Object Store (COS) while analytical processing over COS is
provided by Apache Spark.

On top of the datastores the Seamless Storage Interface (SSI) provides an entry point for
seamlessly executing queries over a logical dataset that can be distributed over different
datastores which themselves may provide different interfaces. The SSI provides a common
JDBC interface and is capable of executing standard SQL statements. The SQL queries will be
pushed down to both stores, and retrieved intermediate results will be merged and returned.
Offering a JDBC interface, SSI can be exploited by data scientists through the usage of well-
known analytical tools such as SparkSQL. As a result, the end-user can write SparkSQL queries
and have the SSI locate the various parts of the dataset and retrieve the results. Direct
execution of the queries to a specific data store is also permitted. As a result, we have the
following five scenarios:

e Direct access to the LeanXcale database

e Direct access the Cloud Object Store (COS)

e Request data using a simple SparkSQL query

e Insert data to BigDataStack

e Insert streaming data to BigDataStack

@ ®®@ page 73 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holstic i or i ot aplcaons and operatons D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

Direct access the LeanXcale (LXS) database

2 Sz

1, riegiuest |

Figure 42 - Direct access the LXS
User executes an SQL query, requesting data directly from LXS using a standard JDBC
interface, and the latter returns the resultSet as the response.

Direct access the Cloud Object Store (COS)

|
B -
b
=1
]
o

1, reguaest

3 = |
2, FRsponse ! lis)

Figure 43 - Direct access the COS
User executes a query from Apache Spark, requesting data directly from COS, using the
stocator open source connector which permits the connection of Object stores to Spark, and
the COS returns back the result as the response.

@0l

BY NC ND page 74 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

Request data using a simple SparkSQL query

X sk B >z

Usar SparkCl 550 LS Cos
| L simple request i | | l
' |
I | |
| | |
> 2. pushdown l | l
|
3. request | | I
' |
44 get operaticnal | l
1
|
k] [
data j 1 I
T |
48, gut histencal :
| -
| ;
=
data !JJ
s e
= | |
' > 5 cormbing results | I
|
cembined data | l
PR | |
T | |
: | | |
3F l | '
> & perform remaing operations | l
[|
esults | | I
RS S s : : |
| ! ! '
| ' ! l
l |

Figure 44 - Request data using a simple SparkSQL query

User sends a request for executing an analytical task by writing a SparkSQL query. The SSI,
which is an extension of the LXS Query Engine provides a JDCB functionality, and as a result,
is already integrated with SparkSQL. Due to this, SparkSQL will pushdown all operations to be
executed by the SSl itself. The SSI is aware of the location of the data over the distributed
dataset that is split into the two different datastores and is integrated with both of them. As
a result, it translates the query to each data store’s internal language and requests the data
from both of them. It finally aggregates the results and returns the data back to SparkSQL,
which returns the results to the user. It is important to notice that the SSI supports various
qguery operations such as table scans, table selections, projections, ordered results, data
aggregations (min, max, count, sum, avg) either grouping them by specific fields or not. From
the above figure it can be also noticed that steps 4A and 4B might be in parallel according to
the type of the query operators.

The architecture of the seamless analytical framework and the main interactions between its
components can be shown in Figure 45:

@ ®®@ page 75 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

_——__ 6.Drop Slice
/,/ ‘---“‘--_ J DBC
S .Y
Data Federator
z; LY
1. Prepare Data Slice Vi \'\\
TR e 7 4 \. JOBC
= Y // N\ \
LA \"\‘\\\
&4 v
\ W/ IDBC 3t
Data =
Manager w(_____s\ :I...e is moved o B
N LXS =] BMOS /
\ « 2
\\ l\ sy _~""a. store Data Slice
| ata Slice il
'|.l -.\\ ’__‘_/
‘} --‘-“*-___ et —
Data Mover
/,i
. 2
“ o
_\ ‘-—/

2. Inform to Move Data Slice

Figure 45 - Seamless Analytical Framework

The Data Manager component, as shown in Figure 45, keeps track of the data ingested in the
framework. For each dataset the data user can configure the period of time after which data
can be considered as historical and can safely be moved to a data warehouse such as the
Object Store. When a data movement action is triggered, it first informs the relational
database that a data slice should be moved to the COS. LXS is getting prepared to drop that
slice (internally it marks it as read-only and splits it to a data region that can be easily dropped
later on). The Data Manager then informs the Data Mover to move the slice. The latter
requests the data slice by executing one or many standard JDCB statements to LXS and then
uploads the data slice as one or many objects into the objects store. When the whole slice is
eventually persisted into the Object Store, it informs the Data Manager which forwards this
acknowledgment to the data Federator. The data Federator internally keeps track of a
timestamp which records the latest successful data movement. When a query is submitted
for data retrieval, it creates the query tree and pushes down a selection based on this
timestamp on each operation for a table scan. Then it rebuilds the query by interpreting it
according to the target datastore and retrieves the results. Finally, in accordance with the
query operation, it merges the results and builds the result set. When the Data Manager
acknowledges a data movement and informs the Data Federator, the Data Federator will
move accordingly the internal timestamp (the splitting point). At this point, the data
corresponding to the moved data slice co-exists in both stores. However, the Data Federator
thanks to the timestamp will hide the replicated data first at the Object Store and after the
timestamp is updated at the relational store. When it receives the acknowledgement, it
updates this timestamp (split point) so that the next transactions can scan the tables

@ ®®@ page 76 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

accordingly. Pending transactions however will continue to scan the tables based on the value
that they received when the transaction first started. The transactional semantics of LXS
ensure the data consistency when the split point is updated. When this happens, the Data
Federator can order the LXS to safely drop the data slice that has now been moved to the
object store. However, it will wait until all pending transactions has been finished, and thus,
no scan operation is performed on the data slice that is about to be dropped. By doing so, the
Data Federator ensures data consistency and the validation of the results during the process
of data movement: Data will exist either on LXS or the COS, or both, but they will be always
scanned only once.

@ ®®@ page 77 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

Instert data to BigDataStack

(

» *

[

Application Gateway LXS 05

1. send data

®)

BSEE, Soclle

2. transferm

3. send to store

g

A get outdated data

B. store history batch

.

& L

Figure 46 - Inserting data

An integrated application produces data to be stored in the BigDataStack platform. The data
are being sent to the Gateway: the entry point of the platform. Its responsibility is to
transform data coming from external sources in various formats, to the platform’s internal
schema. Then, it forwards the data to the operational data store to permanently store them.
The latter periodically moves data that has been inserted from more than a constant period
of time, to the COS.

@ ®®@ page 78 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holstic i or i ot aplcaons and operatons D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

Insert streaming data to BigDataStack

e willd ‘ 1T &

(

8. store history batch

|
|
|
|

-

Ship Flest CEP Gateway CEP LHS €08
1. send data				
A				
[= 2. correlate locally	[[
—				
3, send data				
A				
	4. transfarm		I	
	5. send to stere			
	-l			
	s & reguest global information			
	I 3			
		s		
		daa [F		
		SN e e e S		

e—
| | | |
| | | I |
I I I 7, carrelate globaily I
i
		& store	
		1	
		A	

L]
|
|
|
|
|
I A, get cutdated data
|
|
|
|
|
|
|
|

| l_
I
. U
I
Figure 47 - Inserting streaming data

In this specific use case, a ship from the DANAOS fleet streams data coming from one of its
sensors. Data is being first sent to a local installation of the CEP which correlates them and
identifies possible threats, producing alerts. Then, data is sent to the platform’s Gateway
which is responsible of transforming the data to the platform’s internal format. A CEP cluster
inside the platform receives data from the Gateway. It further analyses data to detect possible
rules infringement. Data coming from all the fleet vessels is merged. This second CEP cluster
processing involves querying LXS to retrieve data in rest that has been already been stored in
the data store. Finally, it stores the incoming data to the relational datastore which eventually
will move the data to the Object Store.

7.4. Monitoring & Runtime Adaptations

When considering the process of monitoring and adapting user applications on the cloud, it
is useful to divide the discussion into three parts: 1) the interactions required to perform the
actual monitoring of a running application; 2) how this monitoring process can be used to
track quality of service; and 3) the interactions needed to adapt the user’s application to some
new configuration when a quality of service deficiency is identified or predicted. We
summarize each below.

@ ®®@ page 79 of 108 bigdatastack.eu

BY NC ND

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

7.4.1. Triple Monitoring Engine

The triple monitoring system provides APIs for receiving metrics from different sources and
exposes them for consumption. Metrics are obtained mainly by exporters and federation. In
the case of the deployment of an exporter is impossible for some reason, the monitoring
engine implements a system that can receives metrics by get and post methods and exposes
them to Prometheus. This component of the triple monitoring is expected to behave as a REST
APl and Prometheus exporter. The following diagram describes its functionality.

Metrics AN Monitoring Input [\ Prometheus AN
provider REST API pushgateway

Request (send
! metrics) ;

>
»

Parsing,
sanitizing
Error message Request
':
1
1
1
1
1

A

| Response

Prepare
response

X

Response

Figure 48 - Prometheus exporters

An application provider sends its metrics in JSON format by http get or post, the API parses
the json structure, sanitizes metrics to convert them to Prometheus’s format and saves them
in a temporally list. A response is then returned to the application provider. The Prometheus
engine scrapes the REST APl by http get metrics, to get available metrics. This scraping
operation is iteratively performed at intervals based on the amount of time specified in the
Prometheus configuration.

The triple monitoring engine implements two different exposition system methods. The first
is a REST APl where applications consumers ask for a metric, the REST API translates this
request to an Elasticsearch query and returns a result. The following sequence describes this
process.

@ ®®@ page 80 of 108 bigdatastack.eu

BY NC ND

Application consumer

mBigDataStack

Holistic stack for big data applications and operations

@

Project No 779747 (BigDataStack)
D2.5 — Conceptual model and Reference architecture Il

Date: 03.07.2019
Dissemination Level: PU

Monitoring REST-API

Elasticsearch query

Monitoring database

Elasticsearch

Response

Y

Component Outapi
request
)
rg
Verification and
conversion
&
[1;
Formating
result
Response JSON format
&
<

OOE

BY NC ND

Figure 49 - Prometheus REST API

page 81 of 108

bigdatastack.eu

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

The second output interface implemented in the triple monitoring system is the
publish/subscription mechanism.

Consumer RabbitMQ | Manager |

Subscription request r
>
>

[Ly

[] Consume metric

IDLE
metric
& - message
L »
IDLE |

Yes (request) No (metric)

Redirect
message
to users

subscribed

Storing/update
subscription

A

&
<

Figure 50 - Publish/subscription mechanism

An application that needs steaming data can through this component subscribe and receive
metrics in real-time. Four different types of requests are available.

@

The first request type is the “subscription”, the consumer after having created his
queue, it is going to send to the pub/sub system a subscription request that contains
the name of its queue, its name (application name) and a list a metrics. The consumer
sends its request in the “manager” queue so that to be consumed by the manager of
the triple monitoring system. The manager receives the subscription request, creates
a subscription object and adds it into the subscription list. A confirmation message is
then returned to the consumer. The manager reads the subscription list each time it
receives a metric from its queue, it redirects this metric to the declared queue.

The second request is the “add_metrics” request type, the consumer sends a message
that contains its name, queue name and a metric to add to its subscription list, the
manager verifies the request, updates the subscription and returns a message.

The third request type is “my_subscription”, the consumer sends its name and queue
name. The manager returns the corresponding subscription list.

The last request is the heart_beat, the manager has no way to detect disconnection
by a consumer. The consumer should confirm its presence each specific interval of
time. The heart_beat interval is declared in the subscription request.

®®@ page 82 of 108 bigdatastack.eu

BY NC ND

= mBigDataStack

@ w0 Hoistic stack for big data appications and operations

7.4.2.

Project No 779747 (BigDataStack)
D2.5 — Conceptual model and Reference architecture Il

Date: 03.07.2019
Dissemination Level: PU

Quality of Service (QoS) Evaluation

QoS properties (parameters) to be evaluated by the QoS Evaluation component should
correspond to the kind of quality of service (QoS) requirements coming from the
Application Dimensioning Workbench and defined within the BigDataStack Playbook.

e An example of a QoS requirement is the “throughput.”

e There should be a trivial mapping between Playbooks’ KPls and the “guaranteed” of

“agreements”.

The QoS Evaluation component will be responsible for translating the Playbooks’ QoS

requirements into SLOs (Service Level Objectives).

Dynamic

Orchestrator

Metrics

Application
Dimensioning
Workbench

Playbook KPIs

QoS
Viotations
]

QoS Evaluator

The QoS Evaluation component will periodically query the Triple Monitoring Engine (based on

DB
Monitoring

Triple Monitoring

KPIs g
£ =
g2
o w®
u><J =)
Prometheus WY « §
(Monitoring 2 6
= O
Manager) @ =
=13
9 —
[-%

Metrics

Metrics

Metrics

Figure 51 - QoS Evaluation component

Kubernetes) to recover the metrics related to the monitored QoS parameters.

Once a violation of a given SLO is detected, a notification is sent to the Dynamic Orchestrator
to trigger the data-driven orchestration of application components and data services. The

standard sequence of interactions will be the following:

e Evaluator calls the Adapter to recover a certain set of QoS metrics from Prometheus.

e The Evaluator calls the Notifier when an SLO violation is detected.

e Notifier calls the Dynamic Orchestrator passing a message describing the violation
through publisher/subscriber mechanism implemented as a topic within the
RabbitMQ service (which acts as the message broker between BigDataStack

components)

The Dynamic Orchestrator communicates with the ADS-Ranking component to trigger the
dynamic adaptation (re-configuration) of the application or data service deployment
patterns.

page 83 of 108

bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

Adapting at Runtime

If a user’s application is identified or predicted to have some deficiency with respect to the
quality of service targets, then that application’s configuration needs to be altered to correct
for this. For instance, this might involve moving data closer to the machines performing the
computation to reduce 10 latency, or in more extreme cases it might require the complete re-
deployment of the user’s application on new more suitable hardware. BigDataStack supports
a range of adaptations that might be performed , such as Pattern Re-Deployment, where the
goal is to select an alternative candidate deployment pattern (hardware configuration) after
the user’s application has been deployed. This is used in cases where the original deployment
pattern was deemed unsuitable and this could not be rectified without changing the
deployment infrastructure. In this case, a new candidate deployment pattern will be chosen,
and the application services will be transitioned to this new configuration. This may result in
application down-time as services are moved.

The components involved for this adaptation are the Dynamic Orchestrator (DO) and the
Triple Monitoring. When a new application is deployed, the Playbook is sent to the DO on the
queue OrchestratorPlaybook. The DO reads the playbook and enriches it, adding more
information about the SLOs: it splits the values of the metrics related to SLOs in different
intervals that the QoS component will monitor, e.g. response time can be divided in the
intervals 0.5-1s, 1-1.5s, etc. In addition, the DO subscribes to the Triple Monitoring Engine
and creates a new queue, using which it will consume the metrics from the application.

The Enriched Playbook is sent to the QoS Evaluator on the queue EnrichedPlaybook. The QoS
registers this and will start monitoring the application to detect when an SLO is violated, and
in this case, a message will be sent to the DO on the queue OrchestratorQOSFeed. The DO
will read this message and based on the current state (as defined by the metrics consumed
from the Triple Monitoring Engine, the QoS information and its experience), will decide what
is the most likely action to resolve the violation is and subsequently send it to the ADS-Ranker
on queue Lv3-ADSRanking-RR to start adaptation.

In the remainder of this section we provide more detail on how Pattern Re-Deployment is
operationalized within BigDataStack.

Pattern Re-Deployment

The aim of the pattern re-deployment task is to facilitate the selection of a new candidate
deployment pattern (CDP) if a previously selected CDP is no longer considered viable. This
might occur if a deployed application fails to meet minimum service requirements and this
cannot be resolved through data service manipulation. In this case, we need to take into
account why the current pattern is failing and based on that information, re-rank the CDPs
for the user application and select a new alternative that will provide better performance.
This new CDP can then be used to transition the user’s application to the new configuration
by the Application and Data Services Deployment component.

This task is triggered by the Dynamic Orchestrator when the orchestrator detects that an
application deployment is failing. It sends a notification to the Application and Data Services
Ranking component. More precisely, this notification is processed by the Failure Encoder sub-
component. This component first contacts the Global Decision Tracker to retrieve the other

@ ®®@ page 84 of 108 bigdatastack.eu

BY NC ND

Project No 779747 (BigDataStack)

D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019

Dissemination Level: PU

MBigDataStack

Holitic stack for big data applications and operations

CDPs that were not selected for the failing user’s application (as it is from these that a new
pattern will be selected). These patterns are then sent into the same process pipeline as for
first-time ranking (see Section 6.5), with the exception that the previously selected
deployment is excluded (we know that it is insufficient) and the Pattern Selector sub-
component will also consider the reason that the previously selected CDP failed.

When the ADS-Selector chooses the new CDP, this information is sent to the ADS-Deploy,
together with the instruction to redeploy. Then, the deployment component translates the
CDP, and communicates it to the container orchestrator using the same process as defined in
Section 6.5. The orchestrator will then start a re-dimensioning process. If the process is
successful, then the user’s process continues normally. However, if the re-dimensioning was
unsuccessful, then the container orchestrator needs to destroy the current deployment,
stopping the processes and starting a new deployment from scratch. This situation has the
setback that users have their processes interrupted and/or restarted and ultimately impair
the availability of application and data services (downtimes).

¥ \ - A
@ ADS-R A ADSK ADS-K ﬁﬁ\ﬁ ADSR & ADS-R § AL @i
Orchestrator AB&R Fallus |{sP6-R Beature R AR5 tearving ADS-R Model ADS-R Selector ADS-Deploy Global Decision
Encoder Aggregator to Rank Tracker

I
Sends CDPs,
QoS and Rule(s)
Failed

Send CDPs
with Encoded

Failure Data

I
Request Application CDPs ‘

Application CDPs

CDPs and Aggregated
Features
Get Ranking Model

Il

LTR Model

Ranked CDPs and Scores

Selected CDP ‘

Notify

Selected CDP, Ranked CDPs and Scores

;i

Notify

Figure 52 - Interaction Diagram for CDP Re-Ranking

OOE

BY NC ND

@

page 85 of 108

ffffffff i

1]

bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holstic i or i ot aplcaons and operatons D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

8.Conclusions

This document refines the initial version of the BigDataStack architecture presented in
deliverable D2.4 - Conceptual model and Reference architecture. It captures the updated
version of the overall conceptual architecture in terms of information flows and capabilities
provided by each one of the main building blocks. Additional refinements for each component
are also detailed on the corresponding sections, as well as the changes in the main
interactions between them.

This report serves as a design documentation for the individual components of the
architecture (which are further specified and detailed in the corresponding WP-level scientific
reports) and presents the outcomes (in terms of design) of the initial integrated prototypes
and the obtained experimentation and validation results.

@0l

BY NC ND page 86 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

9. References

[1] “OpenShift Origin Kubernetes Distribution,” [Online]. Available: http://www.openshift.com.

[2] J. Duncan and J. Osborne, “Chapter 1. Getting to know OpenShift,” in OpenShift in Action,
Manning Publications Co. ISBN 978-1-6172-9483-9, 2018.

[3] “How Deployments Work,” [Online]. Available:
https://docs.okd.io/latest/dev_guide/deployments/how_deployments_work.html.

[4] RedHat, “What’s New in Red Hat OpenShift Origin 3.10 OpenShift Commons Briefing,” [Online].
Available: https://blog.openshift.com/wp-content/uploads/Whats-New-in-Origin-3.10.pdf.

[5]1 “Geard,” [Online]. Available: https://openshift.github.io/geard.

[6] “Project Atomic,” [Online]. Available: https://www.projectatomic.io/.

[7] RedHat. [Online]. Available: Architecture OpenShift Container Platform 3.6 Architecture
Information”, https://access.redhat.com/documentation/en-

us/openshift_container_platform/3.6/pdf/architecture/OpenShift_Container_Platform-3.6-
Architecture-en-US.pdf.

[8] “User Requirements Notation,” [Online]. Available: https://www.itu.int/rec/T-REC-Z.151-
201210-I/en.

[9] BigDataStack, “D2.1 — State of the art and Requirements analysis - |,” 2018.
[10] O. A. Garcia, “Requirements & State-of-the-Art Analysis II,” EC Deliverable, 2018.

[11] Kubernetes Authors, “Concepts: Pods,”
https://kubernetes.io/docs/concepts/workloads/pods/pod/, 2019.

[12] T.-Y. Liu, “Learning to rank for information retrieval,” Foundations and Trends in Information
Retrieval, vol. 3, no. 3, pp. 225--331, 2009.

[13] “Apache Flink: Scalable batch and stream data processing,” 2016. [Online]. Available:
https://flink.apache.org/.

[14] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente and P. Valduriez, “Streamcloud:
An elastic and scalable data streaming system,” in IEEE Transactions on Parallel and Distributed
Systems, 2012.

[15] “Apache Storm: Distributed and fault-tolerant realtime computation,” 2013. [Online].
Available: http://storm.apache.org.

[16] “Apache Spark: Apache Spark: Lightning-fast cluster computing.,” 2016. [Online]. Available:
spark.apache.org/streaming.

[17] “Workflow Patterns Initiative,” [Online]. Available: http://www.workflowpatterns.com/R.

[18] R. Raschke, “Process-based view of agility: The value contribution of IT and the effects on
process outcomes,” International Journal of Accounting Information Systems, vol. 11.4, pp.
297-313, 2010.

[19] “Node-RED,” [Online]. Available: https://nodered.org/.
[20] “Data-Driven Documents,” [Online]. Available: https://d3js.org/.
[21] “Flow-Based Programming for JavaScript - NoFlo,” [Online]. Available: https://noflojs.org/.

[22] R. L. Raschke, “Process-based view of agility: The value contribution of IT and the effects on
process outcomes,” International Journal of Accounting Information Systems, vol. 11, no. 4, pp.
297-313, 2010.

@ ®®@ page 87 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

©loce

BY NC ND page 88 of 108 bigdatastack.eu

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il

Date: 03.07.2019
Dissemination Level: PU

Appendix 1 — Real-time Ship
Management use case dataset

structure and description

It should be noted that given the data schemas described below, the DANAQS datasets do not

have any GDPR-related aspect.

TELEGRAMS table structure (14 attributes)

id: Telegram id,

vessel_code: The id of the vessel,

telegram_date: Telegram timestamp (UTC),

type: Telegram type: D:Departure, A:Arrival, N:Noon-telegram,
total_teus: Total Twenty-foot Equivalent Unit (TEU) (# of containers)
total_feus: Total Fourty-foot Equivalent Unit (FEU) (# of containers)
cons_ifo_static_counter: sensor-based measurement TEUs
cons_ifo_staticl_counter: sensor-based measurement of FEUs,
draft_aft: Vessel draft at stern (m),

draft_fore: Vessel draft at fore (m),

sea_temperature: Sea temperature (°C),

port_name: Current port name,

next_port: The name of the next port,

eta_next_port: ETA to the next port

VESSEL_DATA table structure (23 attributes)

vessel_code: Vessel id,

datetime: Timestamp of the measurement (UTC),

power: Consumed power (kW),

apparent_wind_speed: Wind-speed (kn),

speed_overground: GPS speed (kn),

stw_long double precision: Speed through water — longitudinal (kn),
stw_trans double precision: Speed through water — transverse (kn),
rpm: rotations per minute of the main shaft,

apparent_wind_angle: Wind angle (0-359.99 degrees),

@ page 89 of 108

bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

Holtic stak o g gt aplasions and prations D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

total_teus: Total Twenty-foot Equivalent Unit (TEU) (# of containers),
total_feus: Total Fourty-foot Equivalent Unit (FEU) (# of containers),
cons_ifo_static_counter: Low-sulfur fuel oil consumption (metric tones),
cons_ifo_staticl_counter: High-sulfur fuel oil consumption (metric tones),
port_mid_draft: Vessel draft at port-side (left-side looking to the fore) (m),
stbd_mid_draft: Vessel draft at starboard-side (right-side looking to the fore) (m),
draft_aft: Vessel draft at stern (m),

draft_fore: Vessel draft at fore (m),

stw: Speed through water — calculated by stw_trans and stw_lon (kn),
equivalent_teus: Total number of containers,

mid_draft: Vessel draft at mid-line (m),

trim: The trim of the vessel, calculated by draft_aft and draft_fore,
latitude: The latitude of the vessel’s position,

longitude: The longitude of the vessel’s position,

MAIN_ENGINE_DATA table structure (102 attributes)

vessel_code: The id of the vessel,

datetime: Timestamp of measurement in UTC,

airCoolerCWInLETPress: Air Cooler Cooling Water Inlet Pressure (Pa)

Q),
Q),
Q),
Q),

scavAirFireDetTempNo1l: Cyllinder #1 Scavenge Air Fire Detection Temperature
scavAirFireDetTempNo2: Cyllinder #2 Scavenge Air Fire Detection Temperature
scavAirFireDetTempNo3: Cyllinder #3 Scavenge Air Fire Detection Temperature

scavAirFireDetTempNo4: Cyllinder #4 Scavenge Air Fire Detection Temperature

Q),
Q),
Q),
Q),

°

°

°

°
scavAirFireDetTempNo5: Cyllinder #5 Scavenge Air Fire Detection Temperature (°C),
scavAirFireDetTempNo6: Cyllinder #6 Scavenge Air Fire Detection Temperature (°
scavAirFireDetTempNo7: Cyllinder #7 Scavenge Air Fire Detection Temperature (°
scavAirFireDetTempNo8: Cyllinder #8 Scavenge Air Fire Detection Temperature (°
scavAirFireDetTempNo9: Cyllinder #9 Scavenge Air Fire Detection Temperature (°
scavAirFireDetTempNo10: Cyllinder #10 Scavenge Air Fire Detection Temperature (°C),
scavAirFireDetTempNo11: Cyllinder #11 Scavenge Air Fire Detection Temperature (°C),
scavAirFireDetTempNo12: Cyllinder #12 Scavenge Air Fire Detection Temperature (°C),
coolerCWinTemp: Air Cooler Cooling Water Inlet Temperature (°C)

cfWInPress: Cooling Fresh Water Inlet Pressure (Pa),

@ ®®@ page 90 of 108 bigdatastack.eu

BY NC ND

ﬁBigDataStaCk Project No 779747 (BigDataStack)

stk forbi et spcatons nd e D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

controlAirPress: Control Air Pressure (Pa),

cylLoTemp: Cylinder Lube Oil Temperature (°C)

exhVVSpringAirInPress: Exhaust Valve Spring Air Inlet Pressure (Pa)

foFlow: Fuel Oil Flowrate (lIt),

folnPress: Fuel Qil Inlet Pressure (Pa),

folnTemp: Fuel Oil Inlet Temperature (°C),

hfoViscocityHighLow: Heavey Fuel Qil Viscosity High Low (mm2/s)

hpsBearingTemp: HPS Bearing Temperature (°C),

jcfWInTempLow: Jacket Cooling Fresh Water Inlet Temperature Low (°C)
cylExhGasOutTempNo1l: Cyllinder #1 Exhaust Gas Out Temperature (°C),
cylExhGasOutTempNo2: Cyllinder #2 Exhaust Gas Out Temperature (°C),
cylExhGasOutTempNo3: Cyllinder #3 Exhaust Gas Out Temperature (°C),
cylExhGasOutTempNo4: Cyllinder #4 Exhaust Gas Out Temperature (°C),
cylExhGasOutTempNo5: Cyllinder #5 Exhaust Gas Out Temperature (°C),
cylExhGasOutTempNo6: Cyllinder #6 Exhaust Gas Out Temperature (°C),
cylExhGasOutTempNo7: Cyllinder #7 Exhaust Gas Out Temperature (°C),
cylExhGasOutTempNo8: Cyllinder #8 Exhaust Gas Out Temperature (°C),
cylExhGasOutTempNo9: Cyllinder #9 Exhaust Gas Out Temperature (°C),
cylExhGasOutTempNo10: Cyllinder #10 Exhaust Gas Out Temperature (°C),
cylExhGasOutTempNo11: Cyllinder #11 Exhaust Gas Out Temperature (°C),
cylExhGasOutTempNo12: Cyllinder #12 Exhaust Gas Out Temperature (°C),
cylJCFWOutTempNo1l: Cyllinder #1 Jacket Cooling Fresh Water Outlet Temperature (°C),
cylJCFWOutTempNo2: Cyllinder #2 Jacket Cooling Fresh Water Outlet Temperature (°C),
cylJCFWOutTempNo3: Cyllinder #3 Jacket Cooling Fresh Water Outlet Temperature (°C),
cylJCFWOutTempNo4: Cyllinder #4 Jacket Cooling Fresh Water Outlet Temperature (°C),
cylJCFWOutTempNo5: Cyllinder #5 Jacket Cooling Fresh Water Outlet Temperature (°C),
cylJCFWOutTempNo6: Cyllinder #6 Jacket Cooling Fresh Water Outlet Temperature (°C),
cylJCFWOutTempNo7: Cyllinder #7 Jacket Cooling Fresh Water Outlet Temperature (°C),
cylJCFWOutTempNo8: Cyllinder #8 Jacket Cooling Fresh Water Outlet Temperature (°C),
cylJCFWOutTempNo9: Cyllinder #9 Jacket Cooling Fresh Water Outlet Temperature (°C),
cylJCFWOutTempNo10: Cyllinder #10 Jacket Cooling Fresh Water Outlet Temperature (°C),
cylJCFWOutTempNo11: Cyllinder #11 Jacket Cooling Fresh Water Outlet Temperature (°C),
cylJCFWOutTempNo12: Cyllinder #12 Jacket Cooling Fresh Water Outlet Temperature (°C),

@ page 91 of 108 bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

stk forbi et spcatons nd e D2.5 — Conceptual model and Reference architecture |l

Date: 03.07.2019
Dissemination Level: PU

cylPistonCOOutTempNo1: Cyllinder #1 Piston Cooling Outlet Temperature (°
cylPistonCOOutTempNo2: Cyllinder #2 Piston Cooling Outlet Temperature (°
cylPistonCOOutTempNo3: Cyllinder #3 Piston Cooling Outlet Temperature (°
cylPistonCOOutTempNo4: Cyllinder #4 Piston Cooling Outlet Temperature (°
cylPistonCOOutTempNo5: Cyllinder #5 Piston Cooling Outlet Temperature (°
cylPistonCOOutTempNo6: Cyllinder #6 Piston Cooling Outlet Temperature (°
cylPistonCOOutTempNo7: Cyllinder #7 Piston Cooling Outlet Temperature (°
cylPistonCOOutTempNo8: Cyllinder #8 Piston Cooling Outlet Temperature (°
cylPistonCOOutTempNo9: Cyllinder #9 Piston Cooling Outlet Temperature (°

C),
C),
C),
C),
C),
C),
C),
C),
C),

cylPistonCOOutTempNo10: Cyllinder #10 Piston Cooling Outlet Temperature (°C),

cylPistonCOOutTempNo11: Cyllinder #11 Piston Cooling Outlet Temperature (°C),

cylPistonCOOutTempNo12: Cyllinder #12 Piston Cooling Outlet Temperature (°C),

tcExhGasInTempNo1: Turbo-Charger #1 Exhaust Gas Inlet Temperature (°C)
tcExhGasInTempNo2: Turbo-Charger #2 Exhaust Gas Inlet Temperature (°C),
tcExhGasInTempNo3: Turbo-Charger #3 Exhaust Gas Inlet Temperature (°C),
tcExhGasInTempNo4: Turbo-Charger #4 Exhaust Gas Inlet Temperature (°C),

tcExhGasOutTempNo1l: Turbo-Charger #1 Exhaust Gas Outlet Temperature (°C),

tcExhGasOutTempNo2: Turbo-Charger #2 Exhaust Gas Outlet Temperature (°C),

tcExhGasOutTempNo3: : Turbo-Charger #3 Exhaust Gas Outlet Temperature (°C)

tcExhGasOutTempNo4: Turbo-Charger #4 Exhaust Gas Outlet Temperature (°C)

tcLOINLETPressNo1l: Turbo-Charger #1 Lube Qil Inlet Pressure (Pa),
tcLOINLETPressNo2: Turbo-Charger #2 Lube Qil Inlet Pressure (Pa),
tcLOINLETPressNo3: Turbo-Charger #3 Lube Qil Inlet Pressure (Pa),
tcLOINLETPressNo4: Turbo-Charger #4 Lube Oil Inlet Pressure (Pa),
tcLOOuUtLETTempNo1: Turbo-Charger #1 Lube Oil Outlet Pressure (Pa),
tcLOOuUtLETTempNo2: Turbo-Charger #2 Lube Oil Outlet Pressure (Pa),
tcLOOuUtLETTempNo3: Turbo-Charger #3 Lube Qil Outlet Pressure (Pa),
tcLOOuUtLETTempNo4: Turbo-Charger #4 Lube Oil Outlet Pressure (Pa),
tcRPMNo1: Turbo-Charger #1 RPMs,

tcRPMNo2: Turbo-Charger #2 RPMs,

tcRPMNo3: Turbo-Charger #3 RPMs,

tcRPMNo4: Turbo-Charger #4 RPMs,

orderRPMBridgelLeverer: Order RPM (Bridge Lever)

@ page 92 of 108

bigdatastack.eu

ﬁBigDataStaCk Project No 779747 (BigDataStack)

stk forbi et spcatons nd e D2.5 — Conceptual model and Reference architecture |l
Date: 03.07.2019
Dissemination Level: PU

rpm: Rotations per minute of the main shaft
scavAirinLetPress: Scavenge Air Inlet Pressure (Pa),
scavAirReceiverTemp: Scavenge Air Receiver Temperature (°C),
startAirPress: Starting Air Pressure (Pa),
thrustPadTemp: Thrust Pad Temperature (°C),
mainLOlInLetPress: Main Lube Oil Inlet Pressure (Pa),
mainLOInTemp: Main Lube Qil Inlet Temperature (°C)
foTemperature: Fuel Oil Temperature (°C)
foTotVolume: Fuel Qil Total Volume (It)

power: Consumed power (kW),

scavengeAirPressure: Scavenge Air Pressure (Pa)

torque: Torque of the main shaft (N/m),

coolingWOuUtLETTempNo1: Turbo-Charger #1 Air Cooler Cooling Water Outlet Temperature

(°C),

coolingWOUtLETTempNo2: Turbo-Charger #2 Air Cooler Cooling Water Outlet Temperature

(°C),

coolingWOuUtLETTempNo3: Turbo-Charger #3 Air Cooler Cooling Water Outlet Temperature

(°C),

coolingWOUtLETTempNo4: Turbo-Charger #4 Air Cooler Cooling Water Outlet Temperature

(°C),

foVolConsumption: Fuel Oil Consumption (It/min)

VESSEL_DAMAGES table structure (5 attributes)

vessel_code: The id of the vessel,

defect_type: Type of damage (Main Bearing, Crosshead Bearing, Crankpin Bearing)

defect_details: Short description of damage
date_of damage: Date of damage

cause_of damage: Short description for cause of damage

@ page 93 of 108 bigdatastack.eu

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

Appendix 2 — Connected Consumer
use case dataset structure and
description

Introduction

This document aims at describing the main entities to be used in the implementation of the
recommender system that is going to be developed in the retailer use-case of the project
BigDataStack.

Having pre-analysed a sample of raw data coming from our partner Eroski, a selection of the
most relevant attributes that are candidates to be used during the build of the predictive
model has been done. These selected attributes are the ones contained in this document.

CANDIDATE
RAW DATA ITERATION 1
ATTRIBUTES
CLIENTS CLIENTS CLIENTS
52 attributes 8 attributes 1 attribute
ORDERS ORDERS ORDERS
HEADERS HEADERS HEADERS
52 attributes 11 attributes 4 attributes
LINES LINES LINES
62 attributes 25 attributes 6 attributes
CENTERS CENTERS CENTERS
55 attributes 16 attributes 1 attributes
ARTICLES ARTICLES ARTICLES
76 attributes 16 attributes 12 attributes

Figure 53 - Dataset structure and description

The dataset contains information about EROSKI clients. However, GDPR aspects have been
taken into account before sharing the data with the consortium. Concretely:

e The only data that could be used to uniquely identify a person related to the field
“ID_CLIENTE”.

e |D _CLIENTE is an internal identifier of the database of EROSKI that is not known by
the customers. l.e. only a person with access to the database of EROSKI could identify
the customer from ID_CLIENTE.

e |D_CLIENTE has been encrypted by EROSKI with an SHA-1 algorithm. Encryption has
been done before providing the dataset to BigDataStack consortium. A SHA-1 (168
bits) algorithm has been used for encryption of ID_CLIENTE.

e For each ID_CLIENTE, SHA-1 has been applied to “string_1”+ID_CLIENTE+"string_2".
String_1 and string_2 are alphanumeric that contain capital and non-capital letters,
numbers and special characters. These 2 values are only known by EROSKI.

@OE0

BY NC ND page 94 of 108 bigdatastack.eu

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

The attributes for each entity have been included in this section.

CLIENTS table structure (21 attributes)

ID_CLIENTE: Client id,

TIPO_CLIENTE_ORO: Type of gold client

FLG_CLIENTE_APP: Flag if the client is an app client or not,
FLG_CLIENTE_WEB: Flag if the client is a web client or not,
FLG_CLIENTE_NUTRICIONAL: Customer shows interest in healthy products
FRANJA_GASTO_ORO_INICIAL: Initial Range of expenditure

POSIBLE_VALOR_ORO: Percentage indicating the discount given to the customer for being a
gold customer

CLIENTE_1000_ORO: Flag indicating whether the client is 1000 Oro or not
FRANJA_GASTO_ORO_ACTUAL: Current Range of expenditure

TIPO_MADUREZ: Type of maturity of the client

DESC_SEG_C_CLIENTE: Description of the type of maturity of the client
DESC_SEG_G_FIDELIDAD: Segmentation of the customer according to his loyalty

DESC_INTERES_AHORRO: Segmentation of the customer according to his interest in
promotions

DESC_INTERES_FRESCOS: Segmentation of the customer according to his interest in fresh
food

DESC_INTERES_LOCAL: Segmentation of the customer according to his interest in local food

DESC_INTERES_SALUD: Segmentation of the customer according to his interest in healthy
food

DESC_INTERES_SALUD_DETALLE: additional detail on which type of healthy food the
customer is interested in

DESC_MISION_COMPRA: description of the purchase mission of the customer
DESC_SEG_SEC: segment description

DESC_SEG_SOCIODEMO: Socio-demographic segment of the client.
COD_LOC: preferred store

TICKETS (36 attributes)
ID_CLIENTE: Client id,

COD_LOC: Store’s localization id,
DIA: Day,

COD_CAJA: Till id,

@ page 95 of 108 bigdatastack.eu

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

NUM_TICKET: Ticket number (id),

NUM_LINEA: Line number (id),

COD_TIPO_MOVIM: Movement type,

HORA_EMISION: Timestamp of tickets emission,

COD_TIPOMARCA_HIST: Type of brand of the product

COD_F_PAGO_DET -> M_FORMA_PAGO: Type of payment procedure,
UNID_VENTA_TARIFA: Total amount of items sold in tariff’s type,

UNID VENTA_OFERTA: Total amount of items sold in offer’s type,

UNID _VENTA_COMPETE: Total amount of items sold in competence’s type,

UNID _VENTA_LIQUID: Total amount of items sold in liquidation’s type,

UNID VENTA_CAMPANA: Total amount of items sold in campaign’s type,
IMP_VENTA_TARIFA: Total economic amount of the items sold by tariff’s type,
IMP_VENTA_OFERTA: Total economic amount of the items sold by offer’s type,
IMP_VENTA_COMPETE: Total economic amount of the items sold by competence’s type,
IMP_VENTA_LIQUID: Total economic amount of the items sold by liquidation’s type,
IMP_VENTA CAMPANA: Total economic amount of the items sold by campaign’s type,
IMP_DTO_CONSUMER: Discount amount applied for using VISA Eroski,
IMP_DTO_TRAVEL: Discount amount applied for using loyalty card Travel Club,
IMP_DTO_COUPON: Discount amount applied for the usage of coupons,
IMP_DTO_CUOTA: Discount amount applied for being member of EROSKI Club,
IMP_DTO_ONSITE: Discount amount applied after redemption of loyalty Travel points,
IMP_DTO_OTROS: Other discounts,

IMP_DTO_VALE: Amount of discounts coming from the redemption of a supplier coupon,
IMP_CONSUMO_RAP: Special discount applied in the shop,

COD_ART: Article’s id,

FLG_TECLA: information about whether the product has been sold by a direct key or not
ANO_OFERTA: year of the offers applied to the order

COD_OFERTA: offer code

COD_TIPO_CENTRO: type of shop (primary/secundary)

FLG_SCANNER: has the product been scanned during the purchase (Y/N)

IMP_PVP_TARIFA: amount of the order if all of the items had been charged to the customer
with catalogue prices

CENTERS structure (55 attributes)

@ page 96 of 108 bigdatastack.eu

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

COD_LOC: Store’s localization id,

COD_PROVIN: Province id,

DESC_LOC: Center’s description,

DESC_PROVIN: Province’s name,

FLG_PLATAF : Indicator of distribution platform,
FEC_MODIF: Date of last modification,
COD_ZONA: Zone id,

DESC_ZONA: Zone description,

COD_REGION: Region id,

DESC_REGION: Region description,

COD_AREA: Areaid,

DESC_AREA: Area’s description,

COD_ENSENA: Type of center id,
DESC_ENSENA: Type of center description (Eroski City, Eroski Center...),
COD_NEGOCIO: Store’s id,

DESC_NEGOCIO: Store’s type,

COD_SOCIEDAD: Type of company,
DESC_SOCIEDAD: Company’s description,
COD_GAMA _OBLIG: Code of mandatory catalogue,
COD_FINANZIA: financing code,
DESC_DIRECCION: address,

DESC_POBLACION: location,

FLAG_CUOQTA: quota flag,

FEC_INI_LOC: opening date,

FEC_FIN_LOC: closing date,

NUM_CAJAS: number of boxes,

NUM_M2: squared meters of the store,
NUM_M_LINEA: linear meters,

COD_LOC_AME: store code in AME system,
COD_TP_LOC: type of location,

DESC_TP_LOC: description of the type of location,
COD_LOC_PADRE: father location code,
COD_MUNICIPIO: location code,

@ page 97 of 108 bigdatastack.eu

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

COD_TP_POTENCIAL: type of potential code,

FEC_ULT_APERTURA : last opening date,

COD_POSTAL: zip code,

COD_AGR_IMP: grouping code,

FLG_CECO_MODELO_COSTES: cost model flag,

LATITUD: latitude,

LONGITUD: longitude,

COD_ISLA: ISLA code,

FLG_LEAN: lean flag,

FLG_TRANSFORMADO: transformed flag,

FLG_PUESTA PUNTO_PLUS: tunning flag,

COD_NIVEL_ESTR_LOC: code of local structure of sales of the center,
COD_N1: code of the level 1 of the structure of sales of the center,
DES_N1: description of the level 1 of the structure of sales of the center,
COD_N2: code of the level 2 of the structure of sales of the center,
DES_N2: description of the level 2 of the structure of sales of the center,
COD_N3: code of the level 3 of the structure of sales of the center,
DES_N3: description of the level 3 of the structure of sales of the center,
COD_N4: code of the level 4 of the structure of sales of the center,
DES_N4: description of the level 4 of the structure of sales of the center,
COD_NS5: code of the level 5 of the structure of sales of the center,

DES_NS5: description of the level 5 of the structure of sales of the center,

PRODUCTS structure (79 attributes)

COD_ART: product id,

DESC_ART: product description,

FLG_TECLA: exists a direct key to sell the product or not,
COD_TIPOMARCA: type of brand code,
DESC_TIPOMARCA: description of the type of brand code,
COD_N1_PPAL: Area’s id,

DESC_N1: Area’s description,

COD_N2_PPAL: Section’s id,

DESC_N2: Section’s description,

@ page 98 of 108 bigdatastack.eu

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

COD_N3_PPAL: Category’s id,

DESC_N3: Category’s description,

COD_N4_PPAL: Subcategory’s id,

DESC_N4: Subcategory’s description,

COD_N5_PPAL: Segment’s id,

DESC_N5: Segment’s description,

FEC_INI_ART: Article start time,

FEC_FIN_ART: Article finishes time,

COD_FORMATO: Format id (KG, Gr, Unities...),

COD_MARCA: Brand’s id,

COD_EAN: EAN code,

COD_TALLA: Size code,

DESC_TALLA: Size code description,

COD_COLOR: Colour code,

DESC_COLOR: Colour code description,

COD_PACK : Number of items per pack,

COD_BLOQUEO: has the product blocked for the sales?,
COD_ENS_EROSKI: commercial codification in the Hypermarket,
COD_ENS_CONSUM: commercial codification in the SUPERmarket,
COD_TIPO_FORMATO: unit of measurement (related to COD_FORMATO),
COD_ART_PRIM: father product code,

COD_TIPO_MARCA2: code of EROSKI Brand (only for products belonging to a EROSKI brand)),

DESC_TIPO_MARCA2: description of EROSKI Brand (only for products belonging to a EROSKI
brand)),

FEC_ULT_BLOQ: date on which the product was blocked for the sales,

COD_PORCI_CONS: product has info for the consumer related to the number of portions,
DESC_PORCI_CONS: indicator about whether the product has a description for the portions,
CC_CAPRABO: Comercial code of CAPRABO,

COD_CATEGORI_HIP: Category code hypermarket,

DESC_CATEGORI_HIP: Description of the Hypermarket Category,

COD_CATEGORI_SUP: Category code supermarket,

DESC_CATEGORI_SUP: Description of the supermarket Category,

COD_SENSIBI_HIP: SENSIBI code hypermarket,

@ page 99 of 108 bigdatastack.eu

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

DESC_ SENSIBI HIP: Description of the SENSIBIcode of the hypermarket,

COD_ SENSIBI SUP: Category code supermarket,

DESC_ SENSIBI SUP: Description of the SENSIBIcode of the supermarket,

FLG_COMPRA: indicator about whether the product is for purchasing,

FLG_VENTA: indicator about whether the product is for sales,

COD_FAMILIA: family of the product,

DESC_FAMILIA: description of the family of the product,

COD_AMBITO_EROSKI: Scope code of the product in the hypermarkets,
DESC_AMBITO_EROSKI: Description of the scope of the product in the hypermarkets,
COD_AMBITO_CONSUM: Scope code of the product in the supermarkets,
DESC_AMBITO_CONSUM: Description of the scope of the product in the supermarkets,
COD_CODMARCA: brand code (related to COD_MARCA)

FLG_MMPP: Does the product belong to a EROSKI brand?,

COD_POSICION_MARCA: Maker brand / EROSKI Brand code,

DESC_POSICION_MARCA: Description of the code of maker Brand / EROSKI Brand code,
FLG_SALUD_BIENESTAR: health indicator,

FLG_INNOVACION: innovation indicator,

FLG_GAMA TURISTICA: tourism product,

FLG_PODER_ADQUISITIVO: indicator about product for customer with a high purchasing
power,

FLG_BLOQ_DEFINITIVO: Product definitely blocked,
COD_SUBMARCA: sub-brand code,
DESC_SUBMARCA: sub-brand description
FLG_GAMA_LOCAL: local product,

FLG_GAMA REGIONAL: regional product,
FLG_PESO_SGA: flag product by weight,
FLG_LIQUIDABLE: flag payable,
FLG_EXDEPRECIACION: depreciation flag,
COD_TP_ART: product type,

DESC TIPO_ARTICULO: description of the product type,
CANTIDAD: number of items per lot,

FEC_LANZAM: launch date,

PORC_IVA: VAT rate,

@ page 100 of 108 bigdatastack.eu

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

COD_PROVR_GEN: code of generic supplier,
COD_PROVR_TRABAIJO: code of work supplier,
NOMBRE: name of the work supplier,

PESO: weight (in grams),

PESO_NETO: net weight (in grams),
VOLUMEN: volume (in cm3)

@OE0

BY NC ND page 101 of 108 bigdatastack.eu

iﬁBigDataStaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

Appendix 3 — Smart Insurance use
case dataset structure and
description

The datasets provided by the Insurance Company (customer of GFT) are described in the
following in terms of tables and records structure and description.

Following the GDPR directive, all sensitive information of the datasets have been anonymized.
For the encryption, we used a cryptographic hash function, the MD5 algorithm. It is a
unidirectional function different from coding and encryption because it is irreversible. The
spread of this encryption algorithm is still widespread (just think that the most frequent
integrity check on file is based on MD5). This function takes as input an arbitrary length string
and outputs another 128 bit output. The process happens very quickly and the output (also
known as "MD5 Checksum" or "MD5 Hash") returned is such that it is highly unlikely to obtain
the same hash value in output with two different input strings.

We have modeled the length of the encrypted string, based on the length of the field to be
encrypted. For example, for the tax code the encrypted string is 16 characters, while for the
license plate it is 8 characters. This eliminates the possibility of tracing back to the initial value.
We have performed several decrypting tests present on numerous online sites and no one
has been able to decrypt the string entered.

Furthermore, we have carried out a univocal check of all the encrypted keys, so that the
possibility of two different string yielding identical encrypted strings is excluded.

In the following, the datasets tables and records are described. The fields highlighted in blue
have been anonymized as explained above.

ana

3k 3k sk 3k 3k 3k 3k 5k 3k 3k 3k sk sk sk 3k sk sk 3k 3k sk sk ok sk 3k 5k 3k 3k 3k 3k 3k 3k sk 3k sk 3k 5k 3k 3k 5k 3k 3k 3k 3k 3k 3k sk sk sk sk 3k 3k sk ok 3k 3k 3k 3k %k 5k >k 5k %k 3k >k sk sk ok ok sk k ok k

id_univoco_anagrafica string Flow unique identifier: REGISTRY
id_univoco_master string

codice_fiscale string Subject unique identifier

tipo_anagrafica string Registry type (P = person, N = company)
cognome string Surname / company name

nome string Name

sesso string Gender (M=male, F=female, N=company)
pubblica_amministrazione string Public Administration (YES/NO)

@ page 102 of 108 bigdatastack.eu

mBigDataStack

Holistic stack for big data applications and operations

ana_ptf

Project No 779747 (BigDataStack)

D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019

Dissemination Level: PU

3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k sk sk 3k sk sk sk 3k 3k sk sk 3k sk 5k 5k 3k 3k 5k 3k 3k sk sk 3k sk 3k 5k 3k 3k 5k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk sk %k 3k 3k 3k 5k %k >k %k 3k %k 3k >k sk sk ok ok sk %k k k

codice_fiscale string
idpolizza string
ruolo string
cognome string
nome string
ana_sin

Subject unique identifier
Policy unique identifier
Subject role

Surname / company name

Name

3k 3k ok 3k ok 3k sk 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k 3k 3k >k 3k ok 3k ok 3k >k sk ok sk 3k 3k sk 3k ok 3k ok 3k ok 3k sk 3k sk 3k sk 3k sk ok 3k 3k ok 3k >k 3k 3k %k %k %k %k K k

id_univoco_anagrafica
id_univoco_master
codice_fiscale
idsinistro

ruolo

cognome

nome

ana_vei

string
string
string
string
string
string

string

Flow unique identifier: REGISTRY

Subject unique identifier
Claim unique identifier
Subject role

Surname / company name

Name

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k sk sk sk 3k sk sk 3k 3k sk sk 3k sk 5k 5k 3k 5k 3k 3k 3k sk sk 3k sk 3k 5k 3k 3k 5k 3k 3k 3k >k 3k 3k sk 3k sk sk sk 3k sk ok 3k 3k 5k 3k %k 5k %k >k %k 3k 3k sk sk ok ok sk ok k ok

codice_fiscale string
targa string
cognome string
nome string
anaage

Subject unique identifier
License plate
Surname / company name

Name

3k 3k 3k 3k 3k 3k 3k 5k 3k 3k >k sk sk 3k 3k sk sk sk 3k sk sk ok sk 5k 5k 3k 3k 3k 3k 3k 3k sk 3k sk 3k 5k 3k 3k 5k 3k 3k 3k 3k sk 3k sk 3k sk sk sk 3k sk %k 3k 3k 3k 3k %k 5k >k 3k 3k %k 3k sk sk ok ok sk ok ok k

codice_fiscale string
agenzia string
descrizione string

@OE0

BY NC ND

Subject unique identifier
Agency ID

Description

page 103 of 108 bigdatastack.eu

ﬁB i g DataStaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

anaaia

3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k sk sk 3k sk sk sk 3k 3k sk sk 3k sk 5k 5k 3k 3k 5k 3k 3k sk sk 3k sk 3k 5k 3k 3k 5k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk sk %k 3k 3k 3k 5k %k >k %k 3k %k 3k >k sk sk ok ok sk %k k k

codice_fiscale string Subject unique identifier
codice_anomalia string Anomaly identifier
anabds

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk 3k 3k sk sk 3k sk 5k 5k 3k 3k 3k 3k 3k sk sk 3k sk 3k 5k 3k 3k 5k 3k 3k 3k 3k 3k 3k sk 3k sk sk sk sk sk %k 3k 3k 3k 3k %k >k >k 5k 3k 3k 3k sk sk ok ok sk ok ok k

codice_fiscale string Subject unique identifier
bds bigint

pl bigint

p2 bigint

p3 bigint

p4 bigint

p5 bigint

p6 bigint

anacci

3k 3k ok 3k ok 3k 3k 3k ok ok 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k sk 3k 3k 3k sk 3k 3k 5k 3k >k 3k >k 3k ok sk >k sk >k sk 3k 3k sk 3k ok 3k ok 3k ok 3k sk 3k 3k 3k 3k 3k sk 3k 3k 3k ok 3k ok 3k 3k %k %k %k k K k

codice_fiscale string Subject unique identifier
tipo_assicurazione string Insurance type
ente_comunicante string Communicating entity
data_infortunio string Accident date
luogo_infortunio string Accident place
lesione_1 string Injury nr 1

lesione_2 string Injury nr 2

lesione_3 string Injury nr 3
lesioni_ulteriori string Other Injuries
percentuale_inabilita double Disability percentage
data_decesso string Date of death

anacnt

3k 3k >k 3k ok 3k 3k 3k ok 3k >k 3k ok 3k ok 3k >k sk >k sk >k 3k ok 3k sk 3k ok 3k ok 3k 3k 3k 3k 3k 3k 3k sk 3k 3k 3k ok 3k ok 3k 3k %k %k %k %k Kk

codice_fiscale string Subject unique identifier

@ ®®@ page 104 of 108 bigdatastack.eu

BY NC ND

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

tipo_contatto string Contact type
contatto string Contact
anacontatori

3k 3k 3k 3k 3k sk 3k 5k 3k 3k >k >k 3k sk 3k sk sk 3k 3k sk sk 3k sk 5k 5k 3k 3k 5k 3k 3k 3k sk 3k sk 3k 5k 3k 3k 5k 3k 3k 3k 3k 3k sk sk 3k sk sk sk 3k sk %k 3k 3k >k 3k %k >k >k 5k 3k 3k >k sk sk ok ok sk ok k ok

codice_fiscale string Subject unique identifier

portafoglio bigint Total insurance policies number
portafoglio_auto bigint Auto insurance policies number

portafoglio_re bigint Elementary branches insurance policies number
portafoglio_vita bigint Life insurance policies number
portafoglio_cauzioni bigint Deposits policies number

sinistri_aperti bigint Open claims number

veicoli_attivi bigint Insured vehicles number

anafid

3k 3k ok 3k ok 3k 3k 3k ok 3k ok 3k ok 3k ok 3k >k sk >k sk >k 3k ok 3k ok 3k ok 3k ok 3k 3k 3k sk 3k 3k 3k sk ok 3k 3k ok 3k ok >k 3k %k %k *k %k % k

codice_fiscale string Subject unique identifier
tipo_soggetto string Subject type
anaind

3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k sk sk 3k 3k sk sk 3k 3k sk sk ok sk 5k 5k 3k 3k 5k 3k 3k sk sk 3k sk 3k 5k 3k 5k 5k 3k 3k 3k 3k sk 3k sk 3k 3k sk sk sk sk %k 3k 3k 3k 3k %k 5k 3k 3k 3k 3k 3k sk sk ok ok sk k k ok

codice_fiscale string Subject unique identifier
comune string Subject main address, city
provincia string Subject main address, province
nazione string Subject main address, country
flag_principale string

analnkcnt

3k 3k 3k 3k ok 3k 3k 3k ok 3k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok 3k ok sk sk sk >k sk 3k 3k ok 3k sk 3k ok 3k ok 3k sk 3k 3k 3k sk 3k sk ok 3k 3k ok 3k >k >k sk %k %k %k k K k

tipo_contatto string Contact type

contatto string Contact

codice_fiscale_a string Subject unique identifier a
codice_fiscale_b string Subject unique identifier b

@ ®®@ page 105 of 108 bigdatastack.eu

BY NC ND

ﬁB i g DataStaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

crvdink

3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k sk sk 3k sk sk sk 3k 3k sk sk 3k sk 5k 5k 3k 3k 5k 3k 3k sk sk 3k sk 3k 5k 3k 3k 5k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk sk %k 3k 3k 3k 5k %k >k %k 3k %k 3k >k sk sk ok ok sk %k k k

partita_iva string VAT number
codice_fiscale string Subject unique identifier
denominazione string Subject / company name
cognome string Surname / company name
nome string Name

crvdsem

3k 3k ok 3k ok 3k sk 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k 3k 3k >k 3k ok 3k ok 3k >k sk ok sk 3k 3k sk 3k ok 3k ok 3k ok 3k sk 3k sk 3k sk 3k sk ok 3k 3k ok 3k >k 3k 3k %k %k %k %k K k

codice_fiscale string Subject unique identifier

semaforo string Traffic light

ptf

3k 3k 3k 3k 3k >k >k 3k sk 3k ok ok sk sk ok 3k 3k 3k 3k >k sk sk %k %k 3k sk sk ok 3k 3k 3k 3k 3k >k 3k sk sk 3k 3k sk %k %k 3k 3k 3k 3k 3k 3k 3k sk 3k >k 3k 3k 3k 3k >k 3k sk 3k ok sk sk %k %k >k 3k sk %k k k 3k
idpolizza string Policy unique identifier

agenzia string Agency ID

descrizione_agenzia string Agency description

provincia_agenzia string Province of the agency

ramo string Policy branch

tipo_polizza string Policy type (Individual / Collective)
stato_polizza string Policy state (Active/ Canceled / Suspended)
stato_coass string No coinsurance / Our delegation / Delegation
codice_prodotto string Product Code-Product Description

prodotto string Product

data_effetto string Policy effective date

data_scadenza string Policy effective deadline

premio double Policy premium

sin

3k 3k >k 3k ok 3k sk 3k ok 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk ok 3k ok 3k ok sk sk sk >k sk >k 3k ok 3k sk 3k ok 3k ok 3k 3k 3k sk 5k sk 3k sk 3k 3k 3k ok 3k ok >k k %k %k % k K k

idsinistro string Claim unique identifier

idpolizza string Policy unique identifier

@ ®®@ page 106 of 108 bigdatastack.eu

BY NC ND

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

data_sinistro string Claim occurrence date (Format: YYYY-MM-DD)
ora_sinistro string Claim occurrence time (Format: HH: MM)
tipo_sinistro string Accident type (RCA / ARD / RE)

tipo_danno string Damage reported type (1 = THINGS / 2 = PEOPLE / 3 =
MIXED)

tipo_gestione string Claim management type

flag_autorita_presenti string Authority flag present (S - Yes, N - No)
stato_sinistro string Accident status

data_definizione_sinistro string Claim closing date (Format: YYYY-MM-DD)
numero_veicoli bigint Vehicles involved number

comune string Claim occurrence address, city

provincia string Claim occurrence address, province
pagato double Paid

riservato double Reserved

data_denuncia string Claim complaint date (YYYY-MM-DD)

sinantifrode

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk 3k sk sk sk 3k 3k sk sk ok 3k 5k 5k 3k 3k 5k 3k 3k sk sk 3k sk 3k 5k 3k 3k 5k 3k 3k 3k 3k 3k 3k sk 3k sk sk 3k 3k sk ok 3k 3k 3k 3k %k >k >k >k %k %k >k 3k sk ok ok sk k ok k

idsinistro string Claim unique identifier
semaforo string Traffic light

verifica string Verification
note_verifica string Verification notes
approfondimento string Deepening
note_approfondimento string Deepening notes
antifrode string Anti fraud

sinantifrodectl

3k 3k 3k 3k ok 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok 3k ok sk sk sk ok sk 3k 3k ok 3k ok 3k ok 3k ok 3k 3k 5k 3k 5k 3k 3k sk 3k 3k 3k ok 3k ok >k 3k %k %k %k k K k

idsinistro string Claim unique identifier

controllo string Check

@ ®®@ page 107 of 108 bigdatastack.eu

BY NC ND

ﬁB i g DatastaCk Project No 779747 (BigDataStack)

Holstc s for i daaaplcatons and oerations D2.5 — Conceptual model and Reference architecture Il
Date: 03.07.2019
Dissemination Level: PU

vei

3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k sk sk 3k sk sk sk 3k 3k sk sk 3k sk 5k 5k 3k 3k 5k 3k 3k sk sk 3k sk 3k 5k 3k 3k 5k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk sk %k 3k 3k 3k 5k %k >k %k 3k %k 3k >k sk sk ok ok sk %k k k

targa string License plate
marca string Vehicle brand
modello string vehicle model
tipo_veicolo string Vehicle type
tipo_targa string License plate type
data_immatricolazione string Matriculation date
vei_ptf

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk 3k 3k sk sk 3k 3k sk sk ok sk 5k 5k 3k 3k 3k 3k 3k sk sk 3k sk 3k 5k 3k 3k 5k 3k 3k 3k 3k sk sk sk 3k sk sk 3k sk sk %k 3k 3k 3k 3k %k >k %k 5k %k 3k 3k sk sk ok ok sk ok ok k

targa string Vehicle identifier
idpolizza string Policy unique identifier
vei_sin

3k 3k ok 3k ok 3k 3k 3k ok 3k ok 3k ok 3k ok 3k >k sk >k sk >k 3k ok 3k ok 3k ok 3k ok 3k 3k 3k sk 3k 3k 3k sk ok 3k 3k ok 3k ok >k 3k %k %k *k %k % k

targa string Vehicle identifier

idsinistro string Claim unique identifier

@OE0

BY NC ND

page 108 of 108 bigdatastack.eu

