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ABSTRACT  

With an increasing interest of the agricultural community in precision agriculture, this paper aims to 
compare two novel sensing approaches for crop monitoring. The recently developed multispectral 
proximal sensor named Plant-O-Meter and Sentinel-2 satellite, which carries a multispectral optical 
instrument, are two sensors suitable for agricultural applications. Each of them has pros and cons 
regarding spatial, spectral and temporal resolutions and their complementary use will surely bring 
added value compared to information retrieved by a single sensor. In order to correctly address the 
problem of data fusion, compatibility studies between the two sensors are necessary. In this study, a 
maize field was sensed on several dates in 2018 growing season using both sensors. Numerous 
vegetation indices based on different spectral channel combinations were calculated and the results 
were compared using linear regression analysis. First results showed good positive correlations 
between the indices obtained by the two sensors. 
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1. INTRODUCTION 

Recent advances in technology provided an unprecedented opportunity for further development of 
precision agriculture that has been practiced commercially since 1990’s (Mulla, 2013). Both remote 
and in-field sensors are used for monitoring plant deficiency for nutrients and water, plant health 
status and soil condition (Lee et al., 2010) and the development of low-cost sensors, as well as the 
liberalization of data access by data providers such as the European Space Agency (ESA) and NASA, 
have paved the way for acquisition of vast amounts of sensor data. However, compatibility studies 
between datasets acquired by different sensors are necessary prior to any kind of data fusion in 
practice. 

Proximal sensing or ground-based remote sensing is performed by sensors at a relatively short 
distance from the object of interest. Hand-held devices or sensors mounted on tractors and other 
vehicles are usually referred to as proximal sensors. Their limitation is the small area coverage 
(Jackson, 1986), but they also have significant advantages, such as high spatial resolution and 
independent choice of the time of acquisition. Another advantage is that their measurements are not 
compromised by cloudiness and are ideal for practical applications such as on-the-go variable rate 
fertilization (Shanahan et al., 2008). Over the years, various different optical proximal sensors found 
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practical applications, such as SPAD meter (Konica Minolta Inc., Osaka, Japan), Hydro N-sensor (Yara 
International ASA, Oslo, Norway), GreenSeeker (Tribmle Inc., CA, USA), Crop Circle (Holland Scientific, 
NE, USA), CropScan (Next Instruments, Sydney, Australia), etc.  

On the other hand, satellite remote sensing has been used in agriculture since 1970’s when the first 
Landsat satellite was launched. Over the period of nearly half a century, the resolution of satellite 
images, as well as the revisit frequency, increased dramatically (Mulla, 2013). However, a big 
drawback of this sensing approach has historically been the high price of satellite imagery. ESA and 
NASA changed their policies in the last decade and made certain satellite imagery available to 
general public at no cost (Woodcock et al., 2008; Aschbacher and Milagro-Pérez, 2012). Landsat’s  
40-year long archive is now freely available together with on-going Landsat missions and state-of-
the-art Earth observation program Copernicus operated by ESA on behalf of European Commission. 
These led to an increased interest of the agricultural community toward satellite remote sensing in 
the last decade.  

Although proximal and remote sensing were extensively studied for assessing crop dynamics (Corti et 
al., 2018), direct inter-comparison between satellite remote sensing and proximal sensors with 
respect to crop monitoring has rarely been discussed. Bausch and Khosla (2010) compared QuickBird 
satellite-derived indices with ground-based Exotech radiometer-derived indices and found good 
correlation, with highest agreement in green normalized difference vegetation index normalized for 
reference area (NGNDVI). Caturegli et al. (2015) tested ground-based multispectral measurements 
(using Licor spectroradiometer and GreenSeeker) and GeoEye-1 satellite images for estimating 
nitrogen status of turfgrasses. Comparing NDVI values acquired from these instruments, the highest 
Pearson correlation coefficient was found between GreenSeeker and satellite derived NDVI (r ≈ 1). 
Yang et al. (2008) found substantial linear correlation (r > 0.7) between NDVI measured from 
Formosat-2 satellite images and ground portable spectroradiometer GER-2600. Wagner and Hank 
(2013) revealed Pearson correlation coefficient of 0.85 between RapidEye and YARA-N sensor-
derived Red Edge Inflection Point (REIP). Within this study, the necessary modification was made in 
RapidEye measurements using YARA-N sensor-based model, so that the REIP could be calculated. Bu 
et al. (2017) confirmed that yields of sugar beet root, spring wheat, corn and sunflower can be 
predicted with GreenSeeker, Crop Circle and RapidEye red and red-edge imagery. 

The use of vegetation indices (VIs) is of great importance in monitoring crop dynamics and predicting 
the yield. Hence, it is essential to quantify the level of similarity between different sensor 
measurements prior to data fusion. In this paper, various VIs derived from measurements made with 
a recently developed, active, multispectral proximal sensor named Plant-O-Meter (POM), were 
compared to VIs derived from Sentinel-2 optical satellite imagery. Although the spatial resolution of 
POM is higher than Sentinel-2’s and more detailed information can be obtained, the latter would be 
more suitable for covering larger agricultural areas. In this regard, POM measurements could serve 
as ground-truth or they could be used for on-the-go in-field applications. Nevertheless, both sensors 
represent modern active optical instruments that are likely to find broader use in the near future. 

2. MATERIALS AND METHODS 

The present study was carried out during the 2018 growing season on a commercial field located in 
Begeč in Serbia (45° 14’ 32.712” N and 19° 36’ 21.486” E), whose size was 6 ha. The field was sown 
with “Exxupery” hybrid (R.A.G.T. Semences, France) of maize (Zea mays L.) on 15 April 2018. Seeding 
was done in 300 m long rows, at the plant distance of 0.2 m within rows and 0.7 m between rows. A 
total of 300 kg ha–1 of 15:15:15 NPK fertilizer was applied at planting. 

In-field reflectance measurements were made using POM sensor, recently developed by BioSense 
Institute (Republic of Serbia). This proximal sensor is connected to Android-operated devices through 
a user-friendly application and has the ability to record georeferenced point measurements and map 
the canopy properties of a field crop, using the internal GPS of the Android device. It records the data 
in four different spectral bands, namely blue (465 nm), green (535 nm), red (630 nm) and near-



Digitizing Agriculture 

                  

12th EFITA International Conference | Rhodes Island, Greece | June 27-29, 2019                                                    14                                                                                                                   

 

infrared (850 nm). Every tenth row of the experimental field was scanned by walking along the rows, 
holding the sensor directly on top of the crop row with the scanning footprint perpendicular to the 
row direction. The measuring frequency was 1 Hz, which roughly corresponded to 1 m distance 
between the POM record points along the row. POM measurements were performed at four 
different dates and were carried out in the following stages of maize development: 6-leaf growth 
stage (V6), beginning of tasseling (VT), silking (R1) and at the end of blister stage (R2), (Table 1). 

Table 1. Corresponding acquisition dates for POM and Sentinel-2 and development stage of maize. 

POM date Sentinel-2 date Crop development stage 

01.06.2018 30.05.2018 6-leaf (V6) 
21.06.2018 24.06.2018 

(cloudy) 

Tassel (VT) 
04.07.2018 14.07.2018 Silking (R1) 
26.07.2018 29.07.2018 Blister (R2) 

Sentinel-2 is a constellation of two identical satellites and the joint revisit time of A and B satellites is 
5 days at the equator. Each carries an optical multispectral instrument that provides images in 13 
spectral bands with spatial resolutions of either 10, 20 or 60 m (European Space Agency, 2015). 
Bands used in the experiment are blue (490 nm), green (560 nm), red (665 nm) and NIR (842 nm) 
bands with a 10 m resolution and the narrow NIR (865 nm) band with a 20 m resolution. With 
respect to POM measurement dates, corresponding cloud-free satellite images were downloaded 
and processed. Atmospherically corrected images were downloaded from the official Copernicus 
Open Access Hub (https://scihub.copernicus.eu/) and processed with official Sentinel-2 Toolbox 
(SNAP) software and QGIS. Acquisition dates for Sentinel-2 images are given in Table 1. 

Since the narrow NIR band of Sentinel-2 images was only available at a 20 m resolution, all images 
were resampled using the nearest neighbor method. Thus, the blue, green, red and NIR bands from 
Sentinel-2 images were down-sampled from 10 m to 20 m resolution.  

Due to the higher resolution of POM measurements compared to Sentinel-2 images, i.e. several POM 
measurements points fell within a single Sentinel-2 image pixel (Fig. 1), all POM measurements inside 
a Sentinel-2 pixel were averaged. By employing this, there was only one corresponding value per 
POM spectral band for a single image pixel. Hence, 1-1 mapping between measurements of the two 
sensors was achieved. Using different spectral band combinations, various indices were calculated 
(Table 2). 

 
Figure 1. Sentinel-2 image of the experimental field in Begeč at 20 m resolution where yellow dots 

represent POM measurement points. 
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Pixels that were known to be outliers were manually excluded from further analysis. Those were 
either border pixels, contaminated by the features outside the field, or pixels contaminated by other 
objects located inside the parcel. 

3.  RESULTS AND DISCUSSION 

The analysis of the Sentinel-2 image acquired on 24 June 2018 provided poor results due to the 
significant effect of a layer of clouds over the experimental field. Therefore, this date was excluded 
from the analysis. This is a good example of the constraints of the use of optical satellite images as 
they highly depend on the weather (Mulla, 2013). 

Table 2. Coefficient of determination (r2) and Root Mean Square Error (RMSE) form the regression 
between indices calculated from Sentinel-2, using the wide range NIR band, and POM. 

date 01-06-2018 04-07-2018 26-07-2018 
 r2 RMSE r2 RMSE r2 RMSE 

NDVI 0.680 0.075 0.162 0.093 0.036 0.093 
SR 0.612 0.905 0.147 4.283 0.045 4.616 
IPVI 0.668 0.045 0.162 0.047 0.036 0.046 
NDVIg 0.616 0.058 0.102 0.209 0.008 0.210 
NDVIb 0.652 0.103 0.050 0.096 0.000 0.134 
SIPI 0.546 0.527 0.059 0.266 0.000 0.267 
EVI 0.325 0.182 0.002 0.719 0.000 1.327 
GSAVI 0.614 0.091 0.105 0.319 0.008 0.318 
GOSAVI 0.615 0.058 0.103 0.210 0.008 0.210 
GCI 0.574 0.500 0.087 4.625 0.028 4.611 
NLI 0.478 0.014 0.124 0.006 0.060 0.004 
TDVI 0.672 0.115 0.167 0.091 0.034 0.089 
WDRVI 0.648 0.120 0.156 0.226 0.041 0.230 
GRNDVI 0.659 0.062 0.177 0.236 0.022 0.239 
GBNDVI 0.676 0.061 0.097 0.244 0.008 0.274 
RBNDVI 0.700 0.131 0.143 0.152 0.010 0.184 
PNDVI 0.686 0.082 0.155 0.259 0.017 0.288 
Average 0.580 0.179 0.111 0.677 0.020 0.736 

Table 3. Coefficient of determination (r2) and Root Mean Square Error (RMSE) form the regression 
between indices calculated from Sentinel-2, using the narrow range NIR band, and POM. 

date 01-06-2018 04-07-2018 26-07-2018 
 r2 RMSE r2 RMSE r2 RMSE 

NDVI  0.710 0.069 0.162 0.100 0.045 0.103 
SR  0.644 0.863 0.135 4.791 0.058 5.615 
IPVI  0.696 0.042 0.162 0.050 0.045 0.052 
NDVIg  0.630 0.059 0.106 0.217 0.012 0.224 
NDVIb  0.676 0.099 0.044 0.101 0.002 0.141 
SIPI  0.579 0.522 0.057 0.265 0.001 0.264 
EVI  0.344 0.176 0.003 0.715 0.000 1.312 
GSAVI  0.627 0.093 0.108 0.331 0.012 0.339 
GOSAVI  0.629 0.060 0.107 0.218 0.012 0.225 
GCI  0.595 0.515 0.094 5.015 0.032 5.349 
NLI  0.493 0.014 0.116 0.006 0.097 0.004 
TDVI  0.702 0.106 0.167 0.096 0.043 0.098 
WDRVI  0.677 0.114 0.153 0.243 0.052 0.261 
GRNDVI  0.683 0.057 0.178 0.248 0.029 0.260 
GBNDVI  0.696 0.056 0.095 0.255 0.017 0.293 
RBNDVI  0.728 0.124 0.136 0.162 0.022 0.200 
PNDVI  0.710 0.076 0.151 0.274 0.028 0.313 
Average 0.603 0.175 0.110 0.733 0.028 0.842 

The linear regression analysis provided an insight of which indices calculated using POM are in better 
agreement with the same ones calculated using Sentinel-2 satellite images. The differences were 
mainly due to the deviations in the operating wavelengths for the two sensors and in the different 
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sensitivity of each sensor at different bands. Sentinel-2 provides two measurements in the NIR 
channel: wide (785 – 900 nm) and narrow (855 – 875 nm) range. According to the statistical analysis, 
using the narrow range NIR in calculations of Sentinel-2 indices provided better correlation to the 
POM indices (Tables 1, 2; Figure 2). This was expected since the measuring range for the two bands, 
narrow NIR band of Sentinel-2 and NIR band of POM, is much closer. 

In general, good positive correlations were obtained for most of the indices measured by the two 
sensors at V6 growth stage of maize (01-06-2018; Tables 2 and 3). This is an indication that POM has 
a high potential for providing reliable measurements of the canopy reflectance and plant status 
during maize growing stages, and it can serve as a good alternative to the satellite sensors, having 
the benefits that the active proximal sensors offer: high spatial resolution, flexibility in the 
measurement timing and independence from cloudiness, as given by (Bu et al., 2017). 

  
a b 

Figure 2. Linear regression between the NDVI calculated from POM measurements and Sentinel-2 
satellite images using wide (a) and narrow (b) bands, at V6 maize growth stage. 

POM measurements at the V6 growth stage showed good correlation with Sentinel-2 results, mainly 
due to the uniformity of the color of the canopy across the field. Concerning the NDVI, which is the 
most widely used vegetation index (Tagarakis and Ketterings, 2017; Hatfield et al., 2008), the linear 
regression showed significant correlation for the narrow band (r2= 0.71, RMSE = 0.069; Table 3, 
Figure 2) showing a 1:1 relationship; the slope of the linear model was almost 1 and the constant 
approached 0 (Figure 2). After tasselling, the measurements showed considerably lower correlation 
between the two sensors explained by the mixture of colors after the tassels appear, and the 
different shades of the canopy from green to yellow as the plants approach maturity. Due to the 
large difference in the spatial resolution of the measurements of the two sensors in the study, this 
random mixture of colors affected the results of each sensor differently. 

4. CONCLUSIONS 

Ground based proximal sensing provides comparable results to the indices calculated from Sentinel-2 
satellite images. Cloudiness is an important limiting factor of satellite remote sensing. POM active 
proximal sensor can be an alternative to satellite images, as it provides comparable measurements at 
a high spatial resolution, independent of weather and illumination conditions. The plant 
development stage plays an important role in the agreement between the indices derived by POM 
and Sentinel-2 due to the large difference in spatial resolution of the measurements. 
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