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Abstract
Antidepressant drugs can exert significant effects on the mood of a patient suffering major depression and other disorders. These drugs generally have pharmacological actions on the uptake or metabolism of the neurotransmitters serotonin, noradrenaline and, to a lesser extent, dopamine. However, there are many aspects of antidepressant action we do not understand. We have applied proteomic analysis in a rat hippocampal model in an attempt to identify relevant molecules that operate in pathways functionally relevant to antidepressant action. Rats were administered either 5mg/kg daily of the antidepressant  paroxetine or vehicle for 12 days, then hippocampal protein was resolved by 2-D gel electrophoresis. After antidepressant exposure we observed increased expression or modification of cytochrome c oxidase, subunit Va (COX5A), cyclin-dependent kinase inhibitor 2A interacting protein (CDKN2A interacting protein), dynein, axonemal, heavy polypeptide 3 (DNAH3) and RHO GDP-dissociation inhibitor alpha (ARHGDIA). Decreased expression or modification was observed for complexin 1 (CPLX1), alpha-synuclein (SNCA), parvalbumin (PVALB), ribosomal protein large P2 (RLA2), prohibitin (PHB), nerve growth factor, beta subunit (NGFB), peroxiredoxin 6 (PRDX6), 1-acylglycerol-3-phosphate O-acyltransferase 2_predicted (AGPAT2), cystatin B (CYTB) and lysosomal membrane glycoprotein 1 (LAMP-1). CPLX1, the most strongly regulated protein observed, mediates the fusion of cellular transport vesicles with their target membranes and has been implicated in the pathophysiology of mood disorders, as well as antidepressant action. CPLX1 and the other proteins identified may represent links into molecular processes of importance to mood dysregulation and control, and their respective genes may represent novel candidates for studies of antidepressant pharmacogenetics.
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Introduction

Antidepressant drugs are widely used in the treatment of mood disorders and other conditions. Several effective antidepressants are available but none work for all patients, and it is not possible to predict which patient will respond to which drug. Furthermore, it can take several weeks before a therapeutic response, or lack of response, becomes apparent. During this period, the patient suffers ongoing morbidity and increased risk of suicide. Therefore, choosing the appropriate antidepressant for each patient is a significant problem in psychiatry (Wells et al. 1989). 

There is a growing body of evidence that extends our understanding of depression and antidepressant function beyond the monoaminergic synapse, that includes the concepts of neuronal plasticity and neurogenesis (Duman et al. 2001; Harlan et al. 2006; Jacobs et al. 2000). Reduction in hippocampal volumes and other subtle changes in brain structure are observed in depression, implicating loss of neurons as one cause, or effect, of the illness (Bremner et al. 1995; Duman et al. 2001; Gurvits et al. 1996; Sheline et al. 1996; Steffens et al. 2000). This effect on the hippocampus has been demonstrated to be a consequence of chronic stress (Czeh et al. 2005; McEwen 1999; Sapolsky 2000). Chronic stress manifests as disturbances of the hypothalamic-pituitary-adrenal axis and immune response, as indicated by increased secretion of pro-inflammatory cytokines in affected patients (Kaestner et al. 2005; Leonard 2005; Licinio and Wong 1999; Schiepers et al. 2005; Sutcigil et al. 2007). A related observation is that antidepressant treatment can prevent structural changes in the brain caused by chronic stress (Czeh and Lucassen 2007) and the importance of normalizing these defects in order to achieve a clinical response to medication (Binder et al. 2004; Holsboer and Barden 1996). Some antidepressants appear to stimulate neurogenesis in the hippocampus and perhaps other regions of the brain (Benmansour et al. 1999; Czeh and Lucassen 2007; Malberg et al. 2000; Manev et al. 2001), and moreover, the behavioral effects of antidepressants in some rodent models are not manifested if neurogenesis is inhibited (Santarelli et al. 2003). Processes such as these require changes in neuronal receptor density, morphology, survival and growth that are likely to occur over time frames more compatible with the therapeutic delay of antidepressant drugs (Benmansour et al. 1999; Duman et al. 2001; Jacobs et al. 2000; Manev et al. 2001; Sapolsky 2000).  
It is clear we lack fundamental knowledge of the biochemical, cellular and physiological determinants of mood and its dysfunction, and this is the stimulus for new experimental approaches to the biology of major depression and its treatment.  Improved understanding of the molecular and cellular processes affected by exposure to antidepressant drugs may help to answer some of the questions relating to the action of these drugs, and perhaps will add to our knowledge of the biology of mood and mood disorders. We have used a proteomic approach to examine the effects of paroxetine, a selective serotonin reuptake inhibitor (SSRI), on rat hippocampus.
Materials and Methods
Animal dosing. 

Adult male Sprague-Dawley rats (6–8 weeks old) weighing 230–320 g were group-housed (12 hr light/dark cycle) with ad libitum access to food and water. Rats were administered either paroxetine-HCL (5mg/kg daily, n = 7) or vehicle alone (50 % ethanol in distilled water, n = 6) for 12 days (total n = 13) using Alzet 2ML2 osmotic minipumps implanted subcutaneously under aseptic conditions. Briefly, a small incision was made in the skin between the scapulae under light anaesthesia using a halothane/oxygen mix and a small pocket was formed. The pump was inserted into the pocket, and the skin incision was closed with sutures on day 0. After the procedure rats were kept in individual cages until surgical wounds had healed, at which time rats were caged in groups of three. All animal procedures were in strict accordance with the guidelines approved by the University of Otago’s Animal Ethics Committee.
Determination of paroxetine concentrations in plasma.

To measure plasma paroxetine levels, blood was collected via the tail-vein into an EDTA tube at day 7 post osmotic mini-pump insertion. Blood was also collected at post-mortem by decapitation. Blood samples were centrifuged to provide plasma samples which were analysed for paroxetine by HPLC-MS-MS (Canterbury Health Laboratories, Toxicology Department, Christchurch, NZ).
Tissue retrieval and protein preparation.

The animals were euthanized and hippocampi were dissected rapidly from the whole brain, snap frozen and crushed using a pestle and mortar. The frozen tissue was dissolved in 0.5ml lysis buffer containing 8M urea, 2M thiourea (Sigma), 4% 3- [(3-chloramidopropyl)dimethylammonio]-1-propane-sulphonate (CHAPS) (Roche), 20mM Tris, 130mM DTT, 500(l Pharmalyte (pH 3-10; Pharmacia Biotech) and 125mM Pefabloc (Roche), kept on ice for 20 min and centrifuged at 13,000 g for 15 min. The protein was quantified using a nitric acid method (Bible et al. 1999).
2-D gel electrophoresis
Immobilised pH gradient gel strips (IPG, 17cm, pH 4-7, Bio-Rad Laboratories Inc.) were each rehydrated overnight with 100(g of protein sample resuspended in 300(l rehydration buffer. The strips were transferred to an isoelectric focusing tray (IEF) tray and focused using a Protean IEF system (Bio-Rad Laboratories Inc.). The program used for IEF was 300 V, 1 h; 1000 V, 1 h; 3000 V, 1 h; 6000 V, 75,000 Vh and reduced to 500 V indefinitely. IPG strips were equilibrated for 10 min in 5M urea, 0.05M Tris-HCl pH 6.8, 0.3M glycerol, 0.03M SDS, and 0.05M DTT. The strips were then re-equilibrated for 10 min in this solution without the DTT, but containing 0.24M iodoacetamide (AppliChem GmbH, Darmstadt, Germany) and 0.1% w/v bromophenol blue. Strips were placed on a 12.5% SDS polyacrylamide gel with a 2-D SDS-PAGE Standard (Bio-Rad Laboratories Inc.) and electrophoresed at 10mA for 18 h.
Following electrophoresis the gels were fixed in 40% v/v ethanol, 0.1M glacial acetic acid for 30 min, and then transferred to sensitising solution (30% v/v ethanol, 0.125% v/v glutaraldehyde, 8mM sodium thiosulphate, 0.5M sodium acetate) for 30 min before being placed in silver solution (0.01M silver nitrate, 5mM formaldehyde) for 20 min. Gels were developed with 0.24M sodium carbonate, 2.5mM formaldehyde for 8-10 min, followed by addition of 0.04M EDTA to stop the reaction, and then washed with three changes of water. 
Image analysis
The gels were visualised using the Quantity One Fluor-S system (Bio-Rad Laboratories Inc.). For protein spot analysis, PDQuest( Basic 2-D Analysis Software (Bio-Rad Laboratories Inc., v. 7.1) was used. Protein spots were detected using a combination of PDQuestTM automated spot detection and manual interpretation with the guide of landmark proteins. Protein spot density was determined and normalised by calculating the relative spot density of the proteins compared to the total density of protein in the gel. Protein spots that were determined to have a statistically significant differential intensity between drug exposed and control cell samples were recovered from a preparative gel stained with Sypro( Ruby (Bio-Rad Laboratories Inc.). Spots were excised and sent to the Australian Proteome Analysis Facility (Sydney, Australia) for analysis. Proteins were subjected to tryptic digestion for 16 hours followed by matrix assisted laser desorption ionization (MALDI) mass spectrometry using an Applied Biosystems 4700 Proteomics Analyser with TOF/TOF optics in MS mode. After acquisition of spectra in the mass range 800 to 3500 Th, the  instrument was switched to MS/MS (TOF/TOF) mode where the eight strongest peptides were subjected to collision-induced dissociation to generate MS/MS sequence data. The data was exported in a format suitable for submission to the database search program Mascot (Matrix Science Ltd, London, UK). Positive protein identification takes into account the percentage sequence coverage, the MS spectra, the MS/MS ion score, the number of missed cleavages, and how well the MW and pI of the identified protein match. 
Results

Plasma Drug levels

An initial pilot study of twice-daily intraperitoneal injection of paroxetine resulted in negligible plasma levels of the drug at sacrifice (data not shown). Therefore, we used osmotic minipumps (Alzet) which release drug at a constant rate. Six rats were dosed with paroxetine at 5 mg/kg/day and at 12 days (following sacrifice) the paroxetine levels in the plasma ranged from 57-128 ng/ml (mean = 84.33 ng/ml). Therapeutic levels of paroxetine in humans have been shown to range from 10-600 ng/ml in depressive patients (DeVane 1999).

Proteomic analysis
2-D gel electrophoresis was used to compare and identify protein spots with differential intensity in samples recovered from parallel rats exposed for 12 days to either paroxetine or vehicle. A total of 10 gels (six paroxetine-exposed samples and four control samples) of high quality were processed through the 2-DE procedure (Figure 1). A total of 253 protein spots were resolved, of which 14 spots were determined to have significantly differential intensity (Student’s t-test, p-value <0.01) between paroxetine-treated and control samples (Table 1; Figure 2).  These spots were recovered from a preparative gel and identified by their tryptic peptide fingerprints and MALDI-TOF mass spectra (Table 2). 
Discussion
We examined the proteomic effects of the SSRI paroxetine in rat hippocampus. The hippocampus forms part of the limbic system and plays a role in learning and memory, spatial navigation and is one of the two main sites where adult neurogenesis occurs (Eriksson et al. 1998). Mood disorders and other psychiatric conditions have been linked to dysfunction in the hippocampus (Horn et al. 1996; Knable et al. 2004). It has been suggested that the therapeutic benefits of antidepressants may be due a reversal of this dysfunction by stimulating neurogenesis in the hippocampus (Dranovsky and Hen 2006; Encinas et al. 2006; Hunsberger et al. 2007; Malberg et al. 2000; Marcussen et al. 2008; Santarelli et al. 2003). Two other studies have looked at the effects of antidepressants on rat hippocampi (Carboni et al. 2006; Khawaja et al. 2004). These, and other studies, will be discussed in the context of our findings below.
Rats in our study were exposed to either 5mg/kg daily paroxetine or vehicle for 12 days. A 12 day drug exposure was used as this was a balance between the time required for a therapeutic effect in humans, and the capacity of the pumps used to deliver drug to the animals. We identified 14 proteins that were significantly affected by paroxetine exposure (Table 2; Figure 2). 
Three proteins involved in synaptic function and neurotransmission, complexin 1 (CPLX1), parvalbumin (PVALB) and alpha-synuclein (SNCA), were apparently down-regulated after paroxetine treatment. Complexins are cytosolic proteins that preferentially bind to syntaxin within the SNARE complex, which in turn mediate fusion of cellular transport vesicles with the cell membrane or target compartment. Complexins have been implicated in the pathophysiology of several psychiatric disorders, including mood disorders (Eastwood and Harrison 2000a; Eastwood and Harrison 2000b; Knable et al. 2004; Sawada et al. 2002), suggesting that these disorders are accompanied by altered synaptic properties. Other studies have looked at the effects of antidepressants on complexins in rat hippocampi and have shown a pronounced increase in the expression of CPLX2 (Carboni et al. 2006b; Zink et al. 2005), and to a lesser extent, an elevated level of CPLX1 (Zink et al. 2005). 
PVALB was down-regulated 1.3-fold with paroxetine treatment in our study. PVALB is a high affinity calcium-ion binding protein expressed in a specific population of GABAergic interneurons and plays a role in maintaining the balance between excitation and inhibition in the dentate gyrus of the hippocampus (Celio 1986). There is evidence that long-term psychosocial stress affects the number of PVALB-immunoreactive interneurons (PV-IR) in the hippocampus of tree shrews (Czeh et al. 2005). This reduction in PV-IR was  normalized by exposure to the SSRI fluoxetine (Czeh et al. 2005). 
Our observations are somewhat contrary to other studies on the regulation of CPLX1 and PVALB by antidepressants (Carboni et al. 2006b; Czeh et al. 2005; Zink et al. 2005). These differences may be explained in part, by the different antidepressants and model systems being used. For example, Zink et al. (2005) looked at specific anatomical structures within rat hippocampus, as compared to our study which interrogated whole rat hippocampi. As a consequence, we maybe observing an overall global effect of paroxetine on CPLX1 and PVALB expression in the hippocampus rather than more specific regional effects. 
SNCA was observed to be down-regulated 1.6-fold with paroxetine exposure. SNCA is a membrane-bound protein belonging to the synuclein family of proteins that are primarily expressed in neural tissue (McLean et al. 2000). SNCA is found predominantly pre-synaptically and is specific to several brain regions including the hippocampus (Totterdell et al. 2004). Although poorly understood, the function of these proteins is believed to involve regulation of membrane stability and/or turnover. Human neuroblastoma cells transfected with either mutant or normal SNCA affected the expression of many molecules including members of the tetrahydrobiopterin (BH4) pathway (Baptista et al. 2003). BH4 is an essential cofactor for synthesis of many neurotransmitters, including dopamine and serotonin, as well as being able act on specific membrane receptors to directly stimulate the release of these monoamine neurotransmitters (Miwa et al. 1992; Ohue et al. 1991). Components of the BH4 pathway have shown altered expression levels in several studies which have examined antidepressants and mood stabilizers (Brandish et al. 2005; McHugh et al. 2008; McQuillin et al. 2007) and the BH4 pathway has been proposed to be a target for potential antidepressant therapy (Abou-Saleh et al. 1995; Anderson et al. 1994; Curtius et al. 1984; Curtius et al. 1983; Hoekstra et al. 2003; Miura et al. 2004; Miura et al. 2005; Woggon et al. 1984). 
Three proteins pertaining to mitochondrial function, prohibitin (PHB), peroxiredoxin 6 (PRDX6) and cytochrome c oxidase, subunit Va (COX5A) were differentially regulated by paroxetine exposure. COX5A is one of the 13 subunits of mammalian cytochrome c oxidase complex, the terminal component of the oxidative phosphorylation respiratory chain in the mitochondria. PRDX6 provides protection against oxidative stress by functioning as an antioxidant and is localized to peroxisomes and mitochondria (Wang et al. 2003b). PHB is a highly conserved mitochondrial protein that shows anti-proliferative activity and plays a role in cell cycle progression (Dell'Orco et al. 1996; Ikonen et al. 1995; Nijtmans et al. 2002; Nuell et al. 1991). Reduction in the level of this anti-proliferative protein, as observed in this study and our previous study that examined the effect of chronic paroxetine exposure on ES cell-derived neural cells (McHugh et al. 2008), may be consistent with the possible onset of neurogenesis stimulated by antidepressant exposure. 
A number of studies have suggested mitochondrial defects in psychiatric disease (Gardner et al. 2003; Leuner et al. 2007; Sabunciyan et al. 2007; Washizuka et al. 2005), including mood disorders (Gardner et al. 2003; Wang 2007; Washizuka et al. 2005). COX5A, PRDX6 and PHB have been found to be differentially regulated in post-mortem frontal cortex of subjects with bipolar disorder (Pennington et al. 2007; Sun et al., 2006). Furthermore, Carboni and co-workers (Carboni et al. 2006a) investigated the effects of psychological stress on the rat hippocampal proteome and found PHB down-regulated and PRDX6 up-regulated after exposure to a single social stress, as compared to control animals or rats repeatedly exposed to social stress. PRDX6 may provide protection against oxidative stress in several disease states (Krapfenbauer et al. 2003) and decreased PRDX6 expression observed with paroxetine exposure may be a consequence of a reduced stress response in the hippocampus. 
Several studies have shown that mood regulating drugs, including antidepressants and mood-stabilizers, produce neuroprotective effects (Shao et al. 2005; Wang et al. 2003a; Xu et al. 2003), potentially against oxidative damage caused by mitochondrial dysfunction. Furthermore, pharmacogenomic studies looking at these drug classes have found alteration in expression levels of mitochondrial genes and proteins that include PHB, members of the peroxiredoxin family and components of the cytochrome c oxidase complex 
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(Brandish et al. 2005; Carboni et al. 2006b; Chen et al. 2003; Conti et al. 2006; Drigues et al. 2003; Khawaja et al. 2004; McHugh et al. 2008; McQuillin et al. 2007; Nakatani et al. 2004; Nielsen et al. 2008; Palotas et al. 2004; Seelan et al. 2008; Wang et al. 2004; Wong et al. 2004)
. Mood-regulating drugs may reverse effects of mitochondrial damage by either preventing oxidative damage through stimulation of antioxidant defense pathways and/or regulate pathways or molecules that contribute to mitochondrial function. 
Several molecules that impact on the growth of cells were differentially expressed with paroxetine treatment. The anti-proliferative protein PHB, which was discussed in the context of its mitochondrial function above, cyclin-dependent kinase inhibitor 2A interacting protein (CDKN2A interacting protein) and nerve growth factor, beta subunit (NGFB). CDKN2A interacting protein was up-regulated with drug treatment and functions as a tumour suppressor by interacting with the p19ARF (p14ARF in humans)-p53-p21 pathway, as well as other cell cycle regulators (Hasan et al. 2002; Kaul et al. 2006). It has been demonstrated that the mechanisms underlying the efficacy of antidepressants include actions involving cell cycle molecules (Pechnick et al. 2008).

NGF is a small secreted protein that functions as a neurotrophic factor by inducing the differentiation and survival of nerve cells. The NGF beta subunit (NGFB), which we showed to be down-regulated with paroxetine exposure, is responsible for the nerve growth stimulating activity of NGF (Ullrich et al. 1983). It has been suggested that there is a correlation between levels of the neurotrophic factors, including NGFB, and the clinical states of patients with mood disorders (Gronli et al. 2007). Several studies have shown neurotrophins, including NGF, to be differentially regulated by antidepressants (Alfonso et al. 2005; Schulte-Herbruggen et al. 2006). 
Several proteins involved in cell structure, signalling and processing were found to be differentially regulated by paroxetine exposure including the down-regulation of ribosomal protein, large P2 (RLA2), 1-acylglycerol-3-phosphate O-acyltransferase 2_predicted (AGPAT2), lysosomal membrane glycoprotein 1 (LAMP-1) and cystatin B (CSTB), and the up-regulation of dynein, axonemal, heavy polypeptide 3_predicted (DNAH3) and RHO GDP-dissociation inhibitor alpha (ARHGDIA). AGPAT2 is located within the endoplasmic reticulum and converts lysophosphatidic acid to phosphatidic acid, the second step in de novo phospholipid biosynthesis. Overexpression of human AGPATs in vitro correlates with enhanced transcription and synthesis of pro-inflammatory cytokines (Eberhardt et al. 1999; West et al. 1997), suggesting that AGPAT overexpression may amplify the cellular response to cytokine stimulation (Eberhardt et al. 1999) and that the AGPAT genes represent candidates for affecting the development of inflammation-associated diseases (Leung 2001). 

LAMP-1 was down-regulated more than 2-fold with paroxetine exposure. LAMP-1 is an acidic heavily glycosylated membrane protein enriched in the lysosomal membrane that has been found to shuttle between lysosomes, endosomes and the plasma membrane. LAMP-1 has been implicated in a variety of cellular functions including the immune response (Parkinson-Lawrence et al. 2005), where LAMP-1 functions as a marker of immune reaction (Alter et al. 2004). Conti et al. (2006) observed Lamp1 down-regulated in the dorsal raphe nucleus of rats that underwent either 2 days of Electric Convulsive Therapy (ECT) (four sessions per day), 24 h of sleep deprivation, or 14 days of daily treatment of fluoxetine. There is some evidence to support the involvement  of the immune system in the aetiology of depression, possibly through increased production of pro-inflammatory cytokines (Kaestner et al. 2005; Leonard 2005; Licinio and Wong 1999; Schiepers et al. 2005; Sutcigil et al. 2007). Antidepressants, including SSRIs, may act in some capacity to attenuate the adverse effects of immune system molecules on central neurotransmission (Kenis and Maes 2002; Myint et al. 2007; Roman and Nalepa 2005; Sutcigil et al. 2007). Down-regulation of AGPAT2 and LAMP-1 could conceivably mark a reduction in immune reaction as a consequence of antidepressant action.
RHO GDP-dissociation inhibitor alpha (ARHGDIA) was observed to be differentially up-regulated more than 2-fold by chronic paroxetine treatment. Carboni et al. (2006) also found ARHGDIA protein up-regulated in rat hippocampus with chronic exposure to fluoxetine. RHO proteins are small guanine nucleotide exchange (GTP/GDP) factors and have been shown to play a crucial role in controlling various cellular activities including cell migration, polarity, trafficking, proliferation, differentiation and survival (Burridge and Wennerberg 2004; Cernuda-Morollon and Ridley 2006; Etienne-Manneville and Hall 2002). Transgenic mice over-expressing ARHGDIA demonstrate either increased or decreased cell proliferation, depending on the cell type in which it is expressed (Maddala et al. 2008; Wei et al. 2002). Furthermore, inhibition of RHO proteins has also been shown to promote progenitor cell proliferation (Ghiaur et al. 2006), indicating the effect of RHO proteins is cell type specific, in the context of cell proliferation responses. 
Antidepressant proteomic research, including the study described here, has identified some common proteins (Carboni et al. 2006b; Cecconi et al. 2006; Guest et al. 2004; Khawaja et al. 2004; McHugh et al. 2008), including ARHGDIA (Carboni et al. 2006b) and PHB (McHugh et al. 2008). However, there are also many differences in proteins identified by the various studies discussed. In part, this variability is likely to result from the types of drugs used, the duration of treatment and the diversity of the model systems being employed, where different species, brain regions, or cultured cells have been analysed. Furthermore, the limited sampling of the proteome that each study has achieved may influence the outcomes. This reinforces the need for further, more comprehensive studies in this area to account for these issues.

In conclusion, we studied the effects of chronic paroxetine exposure on protein expression in the rat hippocampus. Several proteins affected by the drug exposure were identified, including the antiproliferative mitochondrial protein PHB (Dell'Orco et al. 1996; Ikonen et al. 1995; Nijtmans et al. 2002; Nuell et al. 1991). Establishing the relevance of the different classes of proteins identified including those involved in synaptic function and neurotransmission and mitochondrial function, to the actions of paroxetine will require further work, particularly in order to establish whether the differential expression reflects operation of therapeutic pathways or non-therapeutic side-effects.  In addition, we do not yet know if the observed proteomic changes are specific to paroxetine, or whether they are non-specific alterations likely to be induced by many drugs. Although these questions need to be clarified, it is possible that the proteins identified in this study may represent links into molecular processes associated with mood disorders, and their respective genes may represent novel candidates for studies of antidepressant pharmacogenetics.
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Table 1 Significant spots identified by PDQuest™.

	SSP #
	Spot Intensity with coefficient of variance(CV) 

	
	Control
	CV
	Paroxetine
	CV

	0004
	783.3
	44.9
	245.5
	39.9

	1101
	3283.7
	10.5
	2174.8
	26.7

	2001
	7645.7
	12.3
	5972.2
	5.9

	2102
	1392.8
	51
	433.6
	52.5

	3001
	7290.6
	12
	10459.7
	21.1

	3002
	3307.5
	19.1
	1767.6
	36

	3301
	1305.6
	70.7
	3156.1
	25.4

	4301
	351.1
	26.6
	789.3
	26.9

	6401
	2796.7
	15.4
	1963.1
	18.9

	6501
	2085.1
	17.1
	1475.7
	24.1

	6507
	1063.7
	20
	675.6
	25.8

	7001
	10584.7
	9.5
	7698.1
	16.4

	8701
	3284.4
	32.7
	5846.0
	21.5

	9201
	3086.6
	23.5
	1543.6
	49.7


Table 2 Identification of proteins with altered expression or modification after paroxetine exposure in rat hippocampus.

	SSP #
	Protein Name
	Accession

Number 
	Peptide Number
	Score
	Sequence Coverage (% ) †
	MS/MS (sequence data)
	Expression change by paroxetine
	Theoretical MW/pI 

	Synaptic Function and Neurotransmission
	
	
	
	
	
	

	2102
	complexin 1 (CPLX1)
	P63041
	6
	46
	34
	MLGGDEEKDPDAAK; EAEAQAAMEANSEGSLTRPK
+ 4 additional fragments
	0.31 (3.2)
	15.1/4.9

	1101
	alpha-synuclein (SNCA)
	P37377
	4
	32
	27
	TKEQVTNVGGAVVTGVTAVAQK;

TVEGAGNIAAATGFVK
+ 2 additional fragments
	0.63 (1.6)
	14.5/4.7

	2001
	parvalbumin (PVALB)
	P02625
	6
	67
	34
	KAIGAFTAADSFDHK; SGFIEEDELGSILK
+ 4 additional fragments
	0.75 (1.3)
	11.8/5.0

	Mitochondrial Function/Oxidative Stress
	
	
	
	
	
	

	6501
	prohibitin (PHB)
	P67779
	18
	150
	62
	FGLALAVAGGVVNSALYNVDAGHR; DLQNVNITLR 

+ 16 additional fragments
	0.67 (1.5)
	29.9/5.7

	3001
	cytochrome c oxidase, subunit Va (COX5A)
	P11240
	4
	49
	17
	KGMNTLVGYDLVPEPK; RLNDFASAVR
+ 2 additional fragments
	1.37
	12.4/5.0

	6401
	peroxiredoxin 6 (PRDX6)
	O35244 
	9
	96
	39
	PGGLLLGDEAPNFEANTTIGHIR;

AAKLAPEFAK
+ 7 additional fragments
	0.66 (1.5)
	24.7/5.7

	Neurogenic/Cell Cycle
	
	
	
	
	
	
	

	3002
	nerve growth factor, beta subunit (NGFB)
	P25427
	3
	25
	37
	SSTHPVFHMGEFSVCDSVSVWVGDK; GIDSKHWNSYCTTTHTFVK

+ 1 additional fragment
	0.53 (1.9)
	13.2/8.5

	4301
	cyclin-dependant kinase inhibitor 2A interacting protein_predicted (CDKN2A interacting protein) 
	Q5U2X0*
	2
	27
	46
	MAQEVSEYLSQNPRVAAWVETLR; QLQQLVSFSMAWANHVFLGCGTLK  
	2.25
	na

	Transcription/Translation
	
	
	
	
	
	
	

	0004
	ribosomal protein, large P2 (RLA2)
	P02401
	9
	100
	47
	MRYVASYLLAALGGNSNPSAK;

ILDSVGIEADDER 
+ 7 additional fragments
	0.33 (3.0)
	11.7/4.4

	Structural
	
	
	
	
	
	
	

	8701
	dynein, axonemal, heavy polypeptide 3_predicted (DNAH3)
	gi|109462780*
	2
	30
	24
	TEMEGENSTHIYR; INSLYDFSSQIYEMMLVRH GYMIVGDPMGGK
	1.78
	468.4 / 5.5 ‡

	Cell Signalling/Processing
	
	
	
	
	
	
	

	3301
	Rho GDP-dissociation inhibitor alpha (ARHGDIA)
	Q99PT1
	11
	115
	44
	VAVSADPNVPNVIVTR;
SIQEIQELDKDDESLR
+ 9 additional fragments
	2.41
	23.4/5.1

	6507
	1-acylglycerol-3-phosphate O-acyltransferase 2_predicted (AGPAT2)
	  XP_231089*

	6
	36
	29
	RELMFTGPVGLIMYLGGVYFINR; QQAKTAMSLMADLGDLMVK

+ 2 additional fragments 
	0.64 (1.6)
	31.1/8.9

	7001
	cystatin B (CYTB)
	P01041
	6
	53
	51
	ANQKFDVFK; 
QVVAGTNFFIK
+ 4 additional fragments
	0.67 (1.5)
	11.2/5.9

	9201
	lysosomal membrane glycoprotein 1 (LAMP-1)
	P14562

	5
	51
	19
	VSNMTLPASAEVLK ; GPDTVDSTTDIKADINK 

+ 3 additional fragments
	0.48 (2.1)
	43.9/7.6


PDQuest( significant spot number (SSP #), protein name and accession numbers are shown. Data determined and provided by APAF, including peptide number, sequence coverage, identification scores and MS/MS sequence data are shown. Theoretical values of molecular weights (MW) of the unprocessed precursor and isoelectric point (pI) are shown. The theoretical pI for the unprocessed precursor form of the corresponding identified fragments was determined using the Swiss-Prot compute pI/Mw tool (http://au.expasy.org/tools/pi_tool.html).

* hypothetical rat proteins of mouse orthologues.
n.a. = not applicable

† =  sequence coverage indicates how much of the entire protein sequence is covered by the matching peptide masses (not the sequences).
‡ =  MW for this protein was determined in the same way as the pI.
Figure Legends
Figure 1. 2-D gel electrophoresis of protein from rat hippocampus
Example of a 2-D gel. Total protein was separated in the first dimension by isoelectric focusing with an 17cm long IPG strip (horizontal arrow) containing a non-linear pH gradient of 4-7, followed by separation of proteins by molecular weight (vertical arrow) using a 12.5% SDS-PAGE gel. Protein detection was by silver-staining.
Figure 2. PDQuest( analysis of 2-D electrophoresis gels.

The 2-D gels were analysed using PDQuest™  Basic 2-D Analysis Software (BioRad Laboratories Inc., v. 7.1). Total protein was separated in the first dimension by isoelectric focusing with 17cm long IPG strip (horizontal arrow) containing a non-linear pH gradient of 4-7, followed by separation of proteins by molecular weight (vertical arrow) using a 12.5% SDS-PAGE gel. Protein detection was by silver-staining. A reference image of the 10 2-D gels analysed (paroxetine and control gels) generated by PDQuest( is shown. A Student’s t-test (p<0.01) was performed between replicate groups and the resulting significant spots are indicated and numbered (SSP). 
Figure 1
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