esda.Moran_Local¶
-
class
esda.
Moran_Local
(y, w, transformation='r', permutations=999, geoda_quads=False)[source]¶ Local Moran Statistics
- Parameters
- y
array
(n,1), attribute array
- w
W
weight instance assumed to be aligned with y
- transformation{‘R’, ‘B’, ‘D’, ‘U’, ‘V’}
weights transformation, default is row-standardized “r”. Other options include “B”: binary, “D”: doubly-standardized, “U”: untransformed (general weights), “V”: variance-stabilizing.
- permutations
int
number of random permutations for calculation of pseudo p_values
- geoda_quadsbool
(default=False) If True use GeoDa scheme: HH=1, LL=2, LH=3, HL=4 If False use PySAL Scheme: HH=1, LH=2, LL=3, HL=4
- y
Notes
For technical details see [Ans95].
Examples
>>> import libpysal >>> import numpy as np >>> np.random.seed(10) >>> w = libpysal.io.open(libpysal.examples.get_path("desmith.gal")).read() >>> f = libpysal.io.open(libpysal.examples.get_path("desmith.txt")) >>> y = np.array(f.by_col['z']) >>> from esda.moran import Moran_Local >>> lm = Moran_Local(y, w, transformation = "r", permutations = 99) >>> lm.q array([4, 4, 4, 2, 3, 3, 1, 4, 3, 3]) >>> lm.p_z_sim[0] 0.24669152541631179 >>> lm = Moran_Local(y, w, transformation = "r", permutations = 99, geoda_quads=True) >>> lm.q array([4, 4, 4, 3, 2, 2, 1, 4, 2, 2])
Note random components result is slightly different values across architectures so the results have been removed from doctests and will be moved into unittests that are conditional on architectures
- Attributes
- y
array
original variable
- w
W
original w object
- permutations
int
number of random permutations for calculation of pseudo p_values
- Is
array
local Moran’s I values
- q
array
(if permutations>0) values indicate quandrant location 1 HH, 2 LH, 3 LL, 4 HL
- sim
array
(permutations
by
n
) (if permutations>0) I values for permuted samples
- p_sim
array
(if permutations>0) p-values based on permutations (one-sided) null: spatial randomness alternative: the observed Ii is further away or extreme from the median of simulated values. It is either extremely high or extremely low in the distribution of simulated Is.
- EI_sim
array
(if permutations>0) average values of local Is from permutations
- VI_sim
array
(if permutations>0) variance of Is from permutations
- seI_sim
array
(if permutations>0) standard deviations of Is under permutations.
- z_sim
arrray
(if permutations>0) standardized Is based on permutations
- p_z_sim
array
(if permutations>0) p-values based on standard normal approximation from permutations (one-sided) for two-sided tests, these values should be multiplied by 2
- y
-
__init__
(self, y, w, transformation='r', permutations=999, geoda_quads=False)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
(self, y, w[, transformation, …])Initialize self.
by_col
(df, cols[, w, inplace, pvalue, outvals])Function to compute a Moran_Local statistic on a dataframe
calc
(self, w, z)