WLCG Bearer Token Discovery

Authored by the WLCG AuthZ Working Group

Proposal

Client tools that rely on a bearer token for authenticating themselves need a mechanism for receiving the tokens from their
environment. While the browser is a monolithic user agent (and can internally manage tokens), the terminal environment
involves a number of independently-developed tools; the environment needs a way to communicate the token to be used to
Unix processes. To the best of our knowledge, there's no previously defined standard about how a Unix tool should discover a
token from its environment.

If a tool needs to authenticate with a token and does not have out-of-band WLCG Bearer Token Discovery knowledge on which
token to use, the following steps to discover a token MUST be taken in sequence (where $1p below is taken as the process's
effective user ID):

1. If the BEARER_TOKEN environment variable is set, then the value is taken to be the token contents.

2. If the BEARER_TOKEN_FILE environment variable is set, then its value is interpreted as a filename. The contents of the
specified file are taken to be the token contents.

3. If the XDG_RUNTIME_DIR environment variable is set*, then take the token from the contents of $XDG_RUNTIME_DIR/bt_u$ID **.
4. Otherwise, take the token from /tmp/bt_u$ID .

If a potential token is found at a step, then the discovery implementation MUST strip all whitespace on the left and right sides of
the string (we define whitespace the same way as the C99 isspace function: space, form-feed (\f), newline (\n), carriage
return (\r), horizontal tab (\t), and vertical tab (\v)). Upon finding a valid token according to section 2.1 of RFC6750, the
discovery procedure MUST terminate and return this token. Upon finding an empty token, the discovery implementation should
continue with the next step. Upon finding an invalid token, the implementation SHOULD stop and return an error.

Once a valid token, $TOKEN , is discovered, if it is used to authenticate an HTTP request, the tool MUST use it in accordance
with RFC6750, for example in the Authorization header as follows:

Authorization: Bearer $TOKEN

High-level tools that need to simultaneously support bearer tokens for multiple purposes (e.g. multiple VOs) MAY set
$BEARER_TOKEN_FILE using the patterns of steps 3 and 4 with filenames having an added hyphen and purpose name appended
to the filename. For example, a toolset named fife, keeping one token per VO, may choose the following name for user 1221
and VO CMS:

/tmp/bt_u1221-fife-CMS

The purpose name is deliberately left undefined and intended for use by the tool implementer. These high-level tools SHOULD
consider potential filename collisions with other tools when implementing a naming scheme. When executing lower-level tools,
the high-level tool SHOULD set the $BEARER_TOKEN_FILE to the desired file. Tools SHOULD NOT inspect multiple tokens to try to
determine which one to use based on content.

* https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

** This additional location is intended to provide improved security for shared login environments as $XDG_RUNTIME_DIR is
defined to be user-specific as opposed to a system-wide directory.

