

D3.6 Third Parties enabling
APIs v1
WP3 – Cybersecurity risk assessment

and Beyond – Sphinx Intelligence
Version: 1.00

 D3.6 Third Parties Enabling APIs v1

 2 of 34

Disclaimer

Any dissemination of results reflects only the author's view and the European Commission is not responsible for any
use that may be made of the information it contains.

Copyright message

© SPHINX Consortium, 2020

This deliverable contains original unpublished work except where clearly indicated otherwise. Acknowledgement of

previously published material and of the work of others has been made through appropriate citation, quotation or both.

Reproduction is authorised provided the source is acknowledged.

Document information

Grant Agreement Number 826183 Acronym SPHINX

Full Title A Universal Cyber Security Toolkit for Health-Care Industry

Topic SU-TDS-02-2018 Toolkit for assessing and reducing cyber risks in hospitals

and care centres to protect privacy/data/infrastructures

Funding scheme RIA - Research and Innovation action

Start Date 1st January 2019 Duration 36 months

Project URL http://sphinx-project.eu/

EU Project Officer Reza RAZAVI (CNECT/H/03)

Project Coordinator Dimitris Askounis, National Technical University of Athens - NTUA

Deliverable D3.6 – Third Parties enabling APIs v1

Work Package WP3 – Cybersecurity risk assessment and Beyond – Sphinx Intelligence

Date of Delivery Contractual M18 Actual M18

Nature R - Report Dissemination Level P - Public

Lead Beneficiary EDGE

Responsible Author Marco Manso Email marco@edgeneering.eu

 Phone -

Reviewer(s): FINT; PDMFC

Keywords API; Third-parties equipment and services; SPHINX sandboxed

environment; Secure and trusted plug and play framework

http://sphinx-project.eu/

 D3.6 Third Parties Enabling APIs v1

 3 of 34

Document History

Version Issue Date Stage Changes Contributor

0.1 18-10-2019 Draft Table of Contents Marco Manso (EDGE)

0.2 04-11-2019 Draft Content creation SPHINX Partners

0.3 25-04-2020 Draft Internal Review 1
Marco Manso (EDGE), José

Pires (EDGE)

0.4 01-06-2020 Draft Content consolidation
Ilia Pietri (ICOM), Yannis

Nikoloudakis (HMU), Stylianos
Karagiannis (PDMFC)

0.5 17-06-2020 Draft Internal Review 2
Marco Manso(EDGE), José

Pires (EDGE)

0.6 22-06-2020 Draft Review 1 Dimitris Apostolakis (FINT)

0.7 23-06-2020 Draft Review 2 Luís Ribeiro (PDMFC)

0.8 24-06-2020
Pre-
final

Update to reflect the
reviewers’ comments

Marco Manso and Bárbara
Guerra (EDGE)

0.9 29-06-2020
Pre-
final

Quality Control
George Doukas (NTUA),

Michael Kontoulis (NTUA)

1.0 29-06-2020 Final Final Christos Ntanos (NTUA)

 D3.6 Third Parties Enabling APIs v1

 4 of 34

Executive Summary
The SPHINX Application Programming Interface (API) for Third Parties (S-API) enables third-party solution

providers to access and interact with the SPHINX Platform and its components. Subject to authentication,

authorisation and using end-to-end encryption, S-API exposes advanced cybersecurity functionalities

implemented by the SPHINX components, such as device/application certification, threat registry notification

and anomaly detection. S-API therefore brings to SPHINX an easy integration with external components and

the possibility for third-parties to extend existing SPHINX functionalities and incorporate additional functions.

S-API also brings additional exploitation opportunities related with third-party’s services.

This document presents the detailed design for the SPHINX S-API component, following the component’s

introduction in the SPHINX architecture deliverable (D2.6 - SPHINX Architecture v2) [1]. It extends the technical

specifications defined in [1] with the specific requirements for the component’s development, addressing its

specificities, as well as interface specifications between S-API and the SPHINX components and third-parties.

Importantly, it describes S-API interactions with third-parties and SPHINX services, which serve as a basis for

the technical implementation of the S-API component in SPHINX.

The next iteration of this deliverable (D3.12) will incorporate refinements and updates of the S-API component,

resulting from the implementation work to be performed throughout the duration of the task.

 D3.6 Third Parties Enabling APIs v1

 5 of 34

Contents

Executive Summary ... 4

1 Introduction ... 9

1.1 Purpose and scope ... 9

1.2 Structure of the deliverable .. 9

1.3 Relation to other WPs and Tasks ... 9

2 SPHINX API for Third Parties .. 10

2.1 General Overview .. 10

2.2 S-API Architectural Overview ... 10

2.2.2 S-API Service Component Requirements .. 12

2.3 S-API Sequence Diagrams .. 17

2.3.1 S-API Authentication in SPHINX .. 18

2.3.2 Registration ... 18

2.3.3 Login .. 20

2.3.4 Service List Request ... 21

2.3.5 Service Request ... 22

2.3.6 Access Token Refresh .. 24

2.3.7 Retrieve a SPHINX Service’s List of Topics ... 25

2.3.8 Event Topic Subscription ... 26

2.3.9 Message Event Associated with a Subscribed Topic ... 27

2.3.10 SPHINX Certification Workflow ... 28

2.4 S-API Interfaces ... 30

2.4.1 S-API Interfaces for Management and Administration ... 30

2.4.2 SPHINX Interfaces for Third Parties ... 30

3 Conclusion .. 33

4 References .. 34

 D3.6 Third Parties Enabling APIs v1

 6 of 34

Table of Figures

Figure 1: The S-API Concept .. 10

Figure 2: The S-API Architecture .. 11

 D3.6 Third Parties Enabling APIs v1

 7 of 34

Table of Tables

Table 1: Relevant Technical Specifications for the S-API Service Components... 12

Table 2: SPHINX S-API Interface Specifications ... 30

Table 3: SPHINX Third-parties Interfaces Specifications ... 32

 D3.6 Third Parties Enabling APIs v1

 8 of 34

Table of Abbreviations

AD – Anomaly Detection

AM – Administration and Management

AP – Anonymisation and Privacy

API – Application Programming Interface

BBTR – Blockchain-based Threat Registry

DD – Detailed Design

DTM – Data Traffic Monitoring

FDCE – Forensic Data Collection Engine

GDPR – General Data Protection Regulation

HE – Homomorphic Encryption

HTTP – HyperText Transfer Protocol

ID – IDentification

IP – Internet Protocol

IT – Information Technology

JSON – JavaScript Object Notation

REST – REpresentational State Transfer

S-API – SPHINX API for Third Parties

SB – Sandbox

SIEM – Security Information and Event Management

SM – Service Manager

TPCF – Third-Party SPHINX Certification Functions

TPMF – Third-Party Management Functions

TPSAF – Third-Party Service Access Functions

TTL – Time-To-Leave

URL – Uniform Resource Locator

WP – Work Package

 D3.6 Third Parties Enabling APIs v1

 9 of 34

1 Introduction

1.1 Purpose and scope
This document, named D3.6 - Third Parties Enabling APIs v1, elaborated as part of Task 3.6 - Third Parties

Enabling APIs, presents the detailed design for the SPHINX Application Programming Interface for Third Parties

(S-API) component, as introduced in the SPHINX architecture (D2.6) [1]. The detailed design includes the

identification and allocation of technical specifications defined in [1], further extended with specific

requirements for the component’s development, addressing its specificities, as well as interface specifications

between S-API and the SPHINX components and third-parties.

This document provides the necessary basis for the technical implementation of the S-API component in

SPHINX. It will be updated by a second version of the deliverable (D3.12 - Third Parties Enabling APIs v2) due

for submission in June 2021, taking into consideration updates to the SPHINX architectural design and the

ongoing development and integration work involving the S-API.

1.2 Structure of the deliverable
This document is structured as follows: section 2 presents the detailed design of S-API, which forms the main

content of this deliverable. It starts by presenting a general overview of the S-API, with the identification of its

positioning within the SPHINX Platform; it is followed by a presentation of S-API requirements, a set of sequence

diagrams displaying the flow of interactions in key functions and the S-API interfaces. Section 3 delivers the

conclusions of the work performed; and section 4 conveys the bibliographical references used in this document.

1.3 Relation to other WPs and Tasks
The elaboration of Task 3.6 - Third Parties Enabling APIs takes its main inputs from the work performed in WP2,

specifically the definition of the SPHINX architecture [1] that provides system requirements and interfaces

between components, developed in Task 2.5, also having as reference the SPHINX use cases (D2.4) [2] and user

requirements (D2.5) [3]. Importantly, since S-API requires the interaction with SPHINX components providing

services to third-parties, this work involved close interaction with the different WPs developing SPHINX

components (i.e., WPs 3, 4 and 5) and WP 6 that deals with integration and deployment components.

 D3.6 Third Parties Enabling APIs v1

 10 of 34

2 SPHINX API for Third Parties

2.1 General Overview
The SPHINX Application Programming Interface for Third Parties (S-API) enables third-party solution providers

to access and interact with the SPHINX Platform and its components. Subject to authentication, authorisation

and using end-to-end encryption, S-API exposes advanced cyber security functionalities implemented by

SPHINX components, such as device/application certification, threat registry notification and anomaly

detection. The third-party interface specification for each component is presented in the respective component

subsection. The S-API concept is presented in Figure 1.

Figure 1: The S-API Concept

A particularly important feature in S-API consists on the delivery to third-parties of SPHINX device certification

functionalities. Specifically, S-API may be used by medical devices manufacturers (constrained hardware

running specialised software or firmware) and software services providers (specialised software applications

and solutions) to access the SPHINX Sandbox and receive assurance that the device and services are SPHINX-

compliant and certified, therefore becoming trusted assets in a SPHINX-secured information technology (IT)

ecosystem.

2.2 S-API Architectural Overview
SPHINX provides an open API for third-parties, making its advanced cybersecurity functionalities and cyber

certification capabilities available to them. This API provides a set of calls to invoke specific actions. The API

calls should be well-documented and open to enable an easy integration by third parties. Via the API, third-

parties will be able to discover and find which SPHINX services are available.

Aiming to maximise interoperability and ease of integration, interface specification follows OpenAPI [5] using

the Swagger toolset [9]. Moreover, SPHINX supports the following type of interfaces with third-party

components:

• JavaScript Object Notation (JSON) data format (RFC 8259 [4]);

• Web services based on the REpresentational State Transfer (REST) architecture, allowing devices to access

services from the SPHINX Sandbox;

• OAuth2.0 as authorisation framework (RFC 8252 [6] and RFC 6750 [7]);

The architecture choice is designed to fully decouple the third-party component from SPHINX.

SPHINX Environment3rd Party Environment

Medical

Device

Software

Application

3rd Party

Component

SPHINX API

for 3rd Parties

3rd Party
Entity

SPHINX Components

Component
API

Component
API

Component
API

...

Authentication

Cyber Security
Services

Automated
Cyber

Certification

 D3.6 Third Parties Enabling APIs v1

 11 of 34

The high-level architecture for the S-API is depicted in the next figure.

Figure 2: The S-API Architecture

The S-API component provides the following primary functions:

• Administration and Management of the S-API, allowing to manage third-party users, grant/revoke access

and define service levels (e.g., permission to use a service, number of requests allowed) according to a

third-party profile. This function is also used to define subscription plans for third-parties, each involving

specific features and cost models (e.g., free, pay-per-use, monthly rate).

• Third-Party Management Functions, allowing third-party users to create and manage their account,

providing information concerning their entity (personal, business or both) and select their appropriate

subscription plan. Third-parties can also delete their account (and all associated data) at any time.

• Third-Party Service Access Functions, allowing third-parties to programmatically access functionalities

provided by SPHINX services, including receiving notifications.

• Third-Party SPHINX Certification Functions, allowing access to the SPHINX Sandbox in order to validate and

receive SPHINX compliance and certification reports concerning a third-party device and services.

The types of users defined for the S-API are:

• S-API Administrator users: refers to users that have administration roles to manage third-parties and their

roles.

• S-API Third-Party users: refers to users representing third-parties to SPHINX that wish to access SPHINX

services and functionalities via S-API.

For each of these functions, relevant technical specifications apply, extracted from deliverable D2.6 - SPHINX

Architecture v2 [1]. The requirements that are relevant for the adequate implementation of Task 3.6 results are

identified in the following sections.

2.2.1.1 Allocated Requirements

The following requirements from D2.6 are allocated to the S-API.

Requirement Description Fulfilled Comment

SYS-M-010
SPHINX shall be implemented following
modular architecture principles.

Yes Fully supported by the S-API.

SYS-M-020 SPHINX shall deliver a scalable platform. Yes Fully supported by the S-API.

 D3.6 Third Parties Enabling APIs v1

 12 of 34

Requirement Description Fulfilled Comment

SYS-S-010
SPHINX shall provide data management
functions to control sensitive data.

Yes
S-API benefits from SPHINX’s
data management functions.

SYS-S-020
SPHINX shall enforce secure management
and storage of user credentials.

Yes
S-API benefits from SPHINX’s
secure management of user
credentials.

SYS-S-030
SPHINX shall enable sessions management
and re-authentication with single sign-on.

Yes
S-API benefits from SPHINX’s
secure management of user
credentials.

SYS-S-070
SPHINX shall ensure that only authorised
and authenticated users may access the
system.

Yes

S-API benefits from SPHINX’s
authentication and
authorisation (AAAC)
mechanism.

S-API-F-010
SPHINX shall provide an open API to third
parties enabling them to access SPHINX
functionalities.

Yes
Fully supported by the S-API
(cybersecurity discovery
service).

S-API-S-020
SPHINX API access shall be authenticated
and secure.

Yes
Fully supported by the S-API
(authentication service).

S-API-S-030
SPHINX shall be able to manage credentials
for API access.

Yes
Fully supported by the S-API
(authentication service).

S-API-S-040
SPHINX shall be able to manage credential
roles.

Yes
Fully supported by the S-API
(authentication service).

S-API-S-050
SPHINX API shall provide a list of available
services to a given third-party based on its
role.

Yes
Fully supported by the S-API
(cybersecurity discovery
service).

Table 1: Relevant Technical Specifications for the S-API Service Components

2.2.2 S-API Service Component Requirements

This section specifies the requirements allocated to the S-API component. It starts with the general

requirements and then presents the requirements per S-API sub-component.

2.2.2.1 S-API General Requirements

S-API shall provide open APIs enabling third-parties to access SPHINX functionalities.

Requirement ID S-API-DD-F-01

Requirement Type Functional Specifications

Dependencies S-API-F-010, STA-F-580

SYS-M-010, SYS-M-020

Description and
Rationale

SPHINX services will be made available to third-parties via the S-API component. For
this purpose, S-API will expose SPHINX services APIs to third-parties.

 D3.6 Third Parties Enabling APIs v1

 13 of 34

SPHINX services providing third party access shall deliver well documented end-points and APIs.

Requirement ID S-API-DD-F-02

Requirement Type Functional Specifications

Dependencies STA-F-580

Description and
Rationale

SPHINX services providing third-party access shall deliver well defined end-points and

well documented interfaces regarding their APIs. The interface specification shall

follow OpenAPI [5], using the Swagger toolset [9].

S-API shall be granted permissions to access all SPHINX services and interfaces providing interfaces
to third-parties.

Requirement ID S-API-DD-S-01

Requirement Type Security Specifications

Dependencies STA-F-580

Description and
Rationale

S-API access to SPHINX will be subject to authentication and authorisation. Upon
successful authentication, S-API shall be granted access to all SPHINX services and
interfaces.

2.2.2.2 S-API Administration and Management (AM)

S-API AM deals with functions related with housekeeping and third-party access in SPHINX, including

management of third-party users and setting their access rights. S-API AM are not available to third-parties.

The following requirements are specified for the S-API AM.

S-API AM access shall require secure authentication.

Requirement ID S-API-DD-S-10

Requirement Type Security Specifications

Dependencies S-API-S-020

SYS-S-020, SYS-S-070

Description and
Rationale

Specific user accounts within S-API (i.e., S-API administrators) will be created with
permissions to access the S-API AM. Only after successful authentication, a S-API
administrator can access the S-API AM functions. Authentication shall use end-to-end
encryption to ensure confidentiality.

S-API AM shall allow the creation and management of third-party users.

Requirement ID S-API-DD-F-10

Requirement Type Functional Specifications

Dependencies S-API-S-030, S-API-S-040

Description and
Rationale

Third-party users can be created by S-API administrators (provided a third-party has
granted authorisation). A S-API administrator can also revoke (i.e., temporarily disable)
access to a third-party and remove a third-party from SPHINX (thus deleting all its
data).

 D3.6 Third Parties Enabling APIs v1

 14 of 34

S-API AM shall allow defining access permissions and usage profiles for third-party users.

Requirement ID S-API-DD-F-11

Requirement Type Functional Specifications

Dependencies STA-F-590

Description and
Rationale

A third-party shall be granted a role based on its selected profile and preferences. The
third-party role establishes which services it can access (as well as their interfaces),
usage profiles (e.g., limitation in number of service requests) and added-value services
(e.g., email push-notifications). The role is used to associate a third-party to specific
subscription plans. A third-party role shall be subjected to approval by the S-API AM.

S-API AM shall provide an access token allowing third-party's components to access the SPHINX
Third-Party API.

Requirement ID S-API-DD-S-11

Requirement Type Security Specifications

Dependencies S-API-S-030

Description and
Rationale

The S-API AM shall provide for each third-party an authorisation token that will allow
the third-party to access the SPHINX Third-Party API. The token is used to replace the
need to use user credentials (i.e., username and password) when accessing the APIs.
Access tokens are managed by the S-API AM and can be revoked at any time.

2.2.2.3 S-API Third-Party Management Functions

The Third-Party Management Functions (TPMF) allow third-party users to manage their accounts (including

create, modify and delete their data) and select their intended role for access permissions and usage profiles.

The following requirements are specified for the S-API TPMF.

Third-party access shall require secure authentication.

Requirement ID S-API-DD-S-20

Requirement Type Security Specifications

Dependencies S-API-S-020

SYS-S-020, SYS-S-070

Description and
Rationale

In order to access SPHINX functionalities, third-parties are required to be
authenticated by the S-API component. Authentication shall use end-to-end
encryption to ensure confidentiality.

S-API shall allow a third-party to create a third-party user account.

Requirement ID S-API-DD-F-20

Requirement Type Functional Specifications

Dependencies S-API-S-030, S-API-S-040

Description and
Rationale

A third-party can use S-API to create a user account. S-API shall grant the third-party a
default role (as defined by the S-API administrator).

 D3.6 Third Parties Enabling APIs v1

 15 of 34

S-API shall allow a third-party to manage its third-party account.

Requirement ID S-API-DD-F-21

Requirement Type Functional Specifications

Dependencies S-API-S-030, S-API-S-040

Description and
Rationale

A third-party can use the S-API to manage its user account. This involves:

- Edit the third-party's information (e.g., company’s name, address);

- Edit the contact's information (e.g., person’s name);

- Change the contact email and password;

- Delete the account (thus removing all stored third-party data).

S-API shall allow a third-party to request a change in role.

Requirement ID S-API-DD-F-22

Requirement Type Functional Specifications

Dependencies STA-F-590, S-API-DD-F-11

Description and
Rationale

A third-party can use the S-API to visualise its current role and can request a role
change. The request will be subject to approval by the S-API Administrator.

S-API shall allow a third-party to recover its user credentials.

Requirement ID S-API-DD-S-21

Requirement Type Security Specifications

Dependencies S-API-S-030

Description and
Rationale

In case a third-party loses its credentials, it can use the S-API to recover them. The S-
API will send an email to the third-party contact email containing the recovery
instructions. Furthermore, an information email will also be sent to (1) a third-party
registered email and (2) S-API Administrators.

2.2.2.4 S-API Third-Party Service Access Functions

The S-API Third-Party Service Access Functions (TPSAF) allow authorised third-parties to access the SPHINX

Services APIs provided via S-API. The API is meant to be accessed programmatically by third-parties'

components.

The following requirements are specified for the S-API TPSAF.

A third-party shall be able to discover and retrieve SPHINX services.

Requirement ID S-API-DD-F-30

Requirement Type Functional Specifications

Dependencies S-API-S-050

S-API-DD-F-11

Description and
Rationale

Third-parties can use the S-API to discover and visualise a list of SPHINX services. The
list shall contain, for each service, the service’s description, configuration and the
interface specification to third-parties (JSON structured file). Access to services will be
granted or denied based on the third-party's role, as defined by the S-API AM.

 D3.6 Third Parties Enabling APIs v1

 16 of 34

A third-party component shall be able to programmatically access a SPHINX service via S-API.

Requirement ID S-API-DD-F-31

Requirement Type Functional Specifications

Dependencies STA-F-580

Description and
Rationale

S-API shall allow a third-party user to programmatically access a SPHINX service
functionality. The applicable SPHINX service must have an API enabled for this
purpose. S-API shall provide a mapping between third-party requests and SPHINX
services. For loosely-coupling components and to maximise interoperability, the APIs
shall follow the OpenAPI specifications, use HyperText Transfer Protocol (HTTP) REST
and, unless deemed unfeasible, data in JSON format.

S-API shall support on-demand (synchronous) and event-based requests.

Requirement ID S-API-DD-F-32

Requirement Type Functional Specifications

Dependencies STA-F-580

Description and
Rationale

Third-parties can issue the following type of requests to the S-API:

• On-demand (synchronous) requests, where a third-party issues a request to a

SPHINX service waiting for its response (or timeout due to an error). For example,

this is the case of a HTTP GET request.

• Notification-based request, where a third-party issues a request to a SPHINX

service and receives its response by means of a notification. For this, a third-party

is required to subscribe to events of interest.

Third-party's components access to APIs shall require secure authentication.

Requirement ID S-API-DD-S-30

Requirement Type Security Specifications

Dependencies S-API-S-020, S-API-S-030

SYS-S-070

S-API-DD-S-11

Description and
Rationale

In order to access SPHINX functionalities via S-API, third-parties’ components are
required to provide authentication credentials, by using the access token provided by
the S-API. Authentication shall use end-to-end encryption to ensure confidentiality.

2.2.2.5 Third-Party SPHINX Certification Functions

The S-API Third-Party SPHINX Certification Functions (TPCF) shall enable programmatic access to the SPHINX

Sandbox. Specifically, S-API may be used by medical devices manufacturers (constrained hardware running

specialised software or firmware) and software services providers (specialised software applications and

solutions) to access the SPHINX Sandbox and receive assurance that the device and services are SPHINX-

compliant and certified, therefore becoming trusted assets in a SPHINX-secured IT ecosystem.

If the third-party component is considered untrusted, the Sandbox is invocated to isolate the process

conducting the appropriate auditing to certify it. In this way, certification is performed in a controlled

environment, not disrupting normal operations.

 D3.6 Third Parties Enabling APIs v1

 17 of 34

However, the certification process can also be requested and executed in already deployed systems or assets

(i.e., assumed trusted).

The certification process takes two steps:

• In the first, named “certification request”, the third-party issues the certification request to the Sandbox

providing the necessary information concerning the module to be certified. If the module is considered to

be trusted (already deployed in operational environment), no isolated environment will be created.

• In the second, named “certification result”, the third-party receives the certification report, issued by the

Sandbox’s Automated Cybersecurity Certification, via a S-API message event, that contains the results of

the certification process

S-API shall allow third-parties to issue certification requests.

Requirement ID S-API-DD-F-40

Requirement Type Functional Specifications

Dependencies S-API-F-010

Description and
Rationale

A third-party can use S-API to issue a certification request to the Sandbox, also
providing the necessary information concerning the module to be certified.

S-API shall convey certification results to third-parties.

Requirement ID S-API-DD-F-41

Requirement Type Functional Specifications

Dependencies S-API-F-010

S-API-DD-F-32

Description and
Rationale

A third-party receives a certification report, issued by the Sandbox’s Automated
Cybersecurity Certification, via a S-API message event.

Third-party's components access to SPHINX certification functions shall require secure authentication
and proper role.

Requirement ID S-API-DD-S-40

Requirement Type Security Specifications

Dependencies S-API-S-030

SYS-S-070

S-API-DD-S-11

Description and
Rationale

In order to access the S-API TPCF, third-parties’ components are required to provide
authentication credentials, by using the access token provided by the S-API.
Authentication shall use end-to-end encryption to ensure confidentiality. Access to the
S-API TPCF is granted or rejected based on the third-party's role.

2.3 S-API Sequence Diagrams
In this section, sequence diagrams related with specific functions of S-API are presented. It details the process

and the sub-components involved in each of the functional processes executed by the S-API component. Its

goal is to present a high-level interaction between sub-components, involving a successful sequence of

operations.

 D3.6 Third Parties Enabling APIs v1

 18 of 34

2.3.1 S-API Authentication in SPHINX

The following sequence diagram depicts the registration process for S-API in SPHINX. The process requires that

the username/password credentials have been created by the Service Manager (SM).

The sequence of actions is the following:

1. Check Cached SM
Authentication
Ticket

S-API -> S-API • Check if there is a valid SM authentication ticket stored locally
in cache.

• If such ticket is valid, this sequence is stopped (no need to run
2, 3 and 4).

2. SM Authentication
Ticket Request

S-API -> Service
Manager

• If not previously cached on S-API, S-API requests an
authentication ticket to the SM. A username/password
credentials pair is provided as parameters.

3. SM Authentication
Ticket Response

Service Manager ->
S-API

• If the authentication is successful, the SM provides the
authentication ticket code as response.

• The ticket locally cached by the S-API is reused in following
SPHINX service calls.

4. Store SM
Authentication
Ticket in Cache

S-API -> S-API • Store the retrieved token in a local cache, along with any
Time-To-Leave (TTL) information to avoid repeating this
process every time a third-party request is made.

2.3.2 Registration

The following sequence diagram depicts the registration process for third-parties. Once completed, the third-

party becomes registered in the S-API component. Note that third-party accounts are fully managed by S-API.

 D3.6 Third Parties Enabling APIs v1

 19 of 34

The sequence of actions is the following:

1. User Accesses the S-
API Portal

Third-Party User ->

S-API

• The third-party user uses a browser to open the S-API
homepage.

2. Display S-API Login
Page

S-API -> S-API • A login window is presented with username/password fields. If
login is selected, step 7 is executed.

• Additionally, a Register New User option is visible. If selected,
step 3 is executed.

3. Display S-API Register
Page

S-API -> S-API • A registration window is presented with username/password
and General Data Protection Regulation (GDPR)-related
settings.

• Terms and conditions are available for the third-party user to
read, acknowledge and accept them.

4. Send Registration
Activation Mail

S-API -> Third-

Party User

• S-API triggers an e-mail notification including a link to activate
the new third-party user that is disabled at the moment.

5. User Activation by
Email Link Click

Third-Party User ->

S-API

• After the third-party user clicks the link on the email, the third-
party user is redirected again to the Login page.

6. S-API Login with New
User

S-API -> S-API • S-API login window is presented again for the third-party user
to authenticate with its credentials (username/password).

7. Check Active
User/Plan/Scopes

S-API -> S-API • S-API evaluates if the third-party user is enabled on the system
and if he/she has a valid plan that allows him/her to use the

 D3.6 Third Parties Enabling APIs v1

 20 of 34

system.

8. Display User
Dashboard

S-API -> Third-

Party User

• After the login/plan validations have been checked, the third-
party user enters the S-API Portal and is redirected to the
third-party user’s dashboard page.

2.3.3 Login

The following sequence diagram depicts the login process for third-parties. For completeness purposes, it also

includes a request to a SPHINX service performed via S-API and the SM.

The sequence of actions is the following:

1. User Calls SPHINX
Service

Third-Party User ->

Third-Party Client

• The third-party uses a third-party client to request a call to a
SPHINX service.

2. Check for Locally
Stored Access
Token

Third-Party Client ->

Third-Party Client

• The third-party client tries to use a cached version of an access
token, if available.

• If the cached access token does not exist, the third-party client
is redirected to S-API Authorisation link with step 3.

• Otherwise, move to step 6.

3. Redirection to
S-API OAuth
Authorisation URL

Third-Party Client ->

S-API

• The third-party client is redirected to the S-API OAuth
authorisation endpoint, providing a custom redirect Uniform
Resource Locator (URL) as call back or using the default S-API
redirect URL for the application.

• If the third-party client has not logged in on S-API previously,
he/she/it is redirected to the S-API Login page (step 4).

• If he/she/it has logged in previously, an authorisation page is
displayed to ask for the user’s approval. Depending on OAuth
settings on S-API, this authorisation flow might be implicit.

 D3.6 Third Parties Enabling APIs v1

 21 of 34

4. Display S-API Login
Page

S-API -> S-API • A login window is presented with login/password fields.

• The third-party user enters credentials for an existing S-API user.

5. Call back to Client
with Request
Token

S-API -> Third-Party

Client

• The third-party client is notified via the call back provided on
step 3.

• This call back contains a temporary request token to be used on
step 10 to request the final access token.

6. Fetch Access
Token with
Request Token

Third-Party Client ->

S-API

• The S-API OAuth access token request endpoint is invoked.

• This access token may or might not be returned, depending if
the third-party user has a proper role, plan or if he/she/it is
disabled via the S-API back-office.

7. Check Active
User/Plan/Scopes

S-API -> S-API • S-API evaluates if the third-party user is enabled on the system
and if he/she/it has a valid plan that allows him/her/it to use the
system.

8. Access/Refresh
Tokens Returned

S-API -> Third-Party

Client

• If user requirements are fulfilled, the call returns a new access
token.

• A refresh token is also returned, which can be used to renew
manually/automatically the access token if expired via OAuth
token refresh endpoint.

9. Perform Call to
SPHINX with
Access Token

Third-Party Client ->

S-API

• The third-party invokes the SPHINX service call, using the
obtained access token.

• The access token might be provided via URL or HTTP header,
depending on the S-API implementation.

10. Check Valid SM
Authentication
Ticket

S-API • Check if there is a valid SM authentication ticket cached locally.

• If no valid local ticket exists, the “Service Manager (SM) Login”
process is executed (see 2.3.1).

11. SPHINX Service
Endpoint Call

S-API -> SPHINX

Service

• S-API uses previously cached SM authentication ticket to invoke
the SPHINX service endpoint directly.

12. SPHINX Service
Endpoint
Response

SPHINX Service -> S-

API

• The SPHINX Service executes the call and returns a proper
response for the call to S-API.

13. SPHINX Service
Response

S-API -> Third-Party

Client

• The S-API service conveys the SPHINX service response to the
third-party client.

14. SPHINX Service
Call Results

Third-Party Client ->

Third-Party User

• The SPHINX service call results are properly processed by the
third-party client application and presented to the third-party
user.

2.3.4 Service List Request

The following sequence diagram depicts a third-party request for the list of SPHINX third-party services.

For the request to be successful:

• S-API needs to be authenticated in SPHINX (access token provided by SPHINX);

• The third-party user needs a valid access token (access token provided by S-API).

 D3.6 Third Parties Enabling APIs v1

 22 of 34

Note that all third-party users are authorised by S-API to retrieve the service list request from SPHINX.

The sequence of actions is the following:

1. User Calls
SPHINX Service

Third-Party User ->
Third-Party Client

• The third-party user uses a third-party client to request the list
of SPHINX Services.

2. Check for Locally
Stored Access
Token

Third-Party Client ->
Third-Party Client

• The third-party client uses the cached version of an access
token.

• Note it is assumed that the login flow has occurred previously.

3. Perform Call to
SPHINX with
Access Token

Third-Party Client ->
S-API

• The third-party invokes the SPHINX service call, using the
cached access token.

• The access token might be provided via URL or HTTP header,
depending on the S-API implementation.

4. Check Valid SM
Authentication
Ticket

S-API • Check if there is a valid SM authentication ticket cached locally.

• If no valid local ticket exists, the “Service Manager (SM) Login”
process is executed (see 2.3.1).

5. Service List Call
to Service
Manager

S-API -> Service
Manager

• The SM provides via a specialised endpoint or function a list of
all the SPHINX services available for S-API.

6. SPHINX Service
List Response

Service Manager ->
Third-Party Client

• The list of available services is parsed by S-API, cached locally
and is propagated towards the third-party client.

7. SPHINX Service
List Results

Third-Party Client ->
Third-Party User

• The SPHINX service list is conveyed and presented to the third-
party user.

2.3.5 Service Request

The following sequence diagram depicts a third-party request for a particular SPHINX service.

 D3.6 Third Parties Enabling APIs v1

 23 of 34

For the request to be successful:

• S-API needs to be authenticated in SPHINX (access token provided by SPHINX);

• The third-party user needs a valid access token (access token provided by S-API);

• The third-party user is authorised (by S-API) to perform the service request.

The sequence of actions is the following:

1. User Calls SPHINX
Service

Third-Party User ->
Third-Party Client

• The third-party uses a third-party client to request a call to a
SPHINX service.

2. Check for Locally
Stored Access Token

Third-Party Client ->
Third-Party Client

• Third-party client uses the cached version of the access token.

• Note it is assumed that the login flow has occurred previously.

3. Perform Call to
SPHINX with Access
Token

Third-Party Client ->
S-API

• The third-party invokes the SPHINX service call, using the
obtained access token.

• S-API verifies that the third-party is authorised to perform the
request.

• The access token might be provided via URL or HTTP header,
depending on the S-API implementation.

4. Check Valid SM
Authentication
Ticket

S-API • Check if there is a valid SM authentication ticket cached locally.

• If no valid local ticket exists, the “Service Manager (SM) Login”
process is executed (see 2.3.1).

5. SPHINX Service
Endpoint Call

S-API -> SPHINX
Service

• S-API uses previously cached SM authentication ticket to invoke
the SPHINX service endpoint directly.

6. SPHINX Service
Endpoint Response

SPHINX Service -> S-
API

• SPHINX Service executes the call and returns a response (herein,
a synchronous request is assumed).

7. SPHINX Service
Response

S-API -> Third-Party
Client

• The S-API service conveys the received response to the third-
party client.

8. SPHINX Service Call
Results

Third-Party Client ->
Third-Party User

• The result of the SPHINX service call is conveyed and presented
to the third-party user.

 D3.6 Third Parties Enabling APIs v1

 24 of 34

2.3.6 Access Token Refresh

The following sequence diagram depicts a third-party request for a particular SPHINX service, when the user’s

access token has expired and needs to be refreshed.

The sequence of actions is the following:

1. User Calls SPHINX
Service

Third-Party User
-> Third-Party
Client

• The third-party uses a third-party client to request a call to a
SPHINX service.

2. Check for Locally
Stored Access Token

Third-Party
Client -> Third-
Party Client

• Third-party client uses the cached version of the access token.

• Note it is assumed that the login flow has occurred previously.

3. Perform Call to
SPHINX with Access
Token

Third-Party
Client -> S-API

• Third-party client tries to perform a generic service/service list call
with an expired access token.

4. Expired Token Error
Notification

S-API -> Third-
Party Client

• The S-API returns an OAuth error notifying that the token has
expired. This triggers a token refresh call (manually or
automatically, depending on OAuth client library), according to
step 5.

5. Token Refresh
Endpoint Call

Third-Party
Client -> S-API

• This step (manual or automatic, depending on the OAuth client)
invokes the S-API OAuth token refresh endpoint, providing the
previously retrieved refresh token.

6. Check Active
User/Plan/Scopes

S-API -> S-API • S-API evaluates if the user is enabled on the system and if he/she
has a valid plan which allows him/her to use the system.

7. Access/Refresh
Tokens Returned

S-API -> Third-
Party Client

• If user requirements are fulfilled, the call returns a new access
token.

• A refresh token is also returned, which can be used to renew
manually/automatically the access token if expired, via OAuth
token refresh endpoint.

 D3.6 Third Parties Enabling APIs v1

 25 of 34

8. Perform Call to
SPHINX with New
Access Token

Third-Party
Client -> S-API

• The third-party invokes the SPHINX service call, using the obtained
access token.

• S-API verifies that the third-party is authorised to perform the
request.

• The access token might be provided via URL or HTTP header,
depending on the S-API implementation

9. Check Valid SM
Authentication
Ticket

S-API • Check if there is a valid SM authentication ticket cached locally.

• If no valid local ticket exists, the “Service Manager (SM) Login”
process is executed (see 2.3.1).

10. SPHINX Service
Endpoint Call

S-API -> SPHINX
Service

• S-API uses previously cached SM authentication ticket to invoke
the SPHINX service endpoint directly.

11. SPHINX Service
Endpoint Response

SPHINX Service -
> S-API

• SPHINX Service executes the call and returns a proper response for
the call to the S-API.

12. SPHINX Service
Response

S-API -> Third-
Party Client

• The S-API service conveys the SPHINX service response to the third-
party client.

13. SPHINX Service Call
Results

Third-Party
Client -> Third-
Party User

• The SPHINX service call results are properly processed by the third-
party client application and presented to the third-party user.

2.3.7 Retrieve a SPHINX Service’s List of Topics

The following sequence diagram depicts a third-party request to receive the list of topics a SPHINX service uses

to publish messages.

 D3.6 Third Parties Enabling APIs v1

 26 of 34

The sequence of actions is the following:

1. User Requests SPHINX
Topic Subscriptions

Third-Party User -
> Third-Party
Client

• The third-party user uses a third-party client to retrieve the list
of all SPHINX topics available for subscription.

2. Check for Locally
Stored Access Token

Third-Party Client
-> Third-Party
Client

• The third-party client uses the cached version of an access
token.

• Note it is assumed that the login flow has occurred previously.

3. Perform Call to
SPHINX with Access
Token

Third-Party Client
-> S-API

• The third-party invokes the SPHINX service call, using the cached
access token.

• S-API verifies that the third-party is authorised to perform the
request.

• The access token might be provided via URL or HTTP header,
depending on S-API implementation.

4. Check Valid SM
Authentication Ticket

S-API • Check if there is a valid SM authentication ticket cached locally.

• If no valid local ticket exists, the “Service Manager (SM) Login”
process is executed.

5. SPHINX Available
Topics List Request

S-API -> Service
Manager

• Using a valid authentication ticket, the list of all SPHINX topics
available for subscription is requested.

6. SPHINX Available
Topics List Request

Service Manager -
> S-API

• The SM sends the list of topics to S-API, which is locally cached.

• S-API sends the list to the third-party client.

7. SPHINX Topics List
Results

Third-Party Client
-> Third-Party
User

• The list of all SPHINX topics available for subscription is
conveyed and presented to the third-party user.

2.3.8 Event Topic Subscription

The following sequence diagram depicts a third-party subscribing a topic.

 D3.6 Third Parties Enabling APIs v1

 27 of 34

The sequence of actions is the following:

1. User Requests
Service Event
Subscription

Third-Party User ->
Third-Party Client

• The third-party user uses a third-party client to subscribe to a
particular topic.

2. Check for Locally
Stored Access
Token

Third-Party Client ->
Third-Party Client

• The third-party client uses the cached version of an access token.

• Note it is assumed that the login flow has occurred previously.

3. Perform Call to
SPHINX with
Access Token

Third-Party Client ->
S-API

• The third-party invokes the SPHINX service call, using the cached
access token.

• S-API verifies that the third-party is authorised to perform the
request.

• The access token might be provided via URL or HTTP header,
depending on the S-API implementation

4. Check Valid SM
Authentication
Ticket

S-API • Check if there is a valid SM authentication ticket cached locally.

• If no valid local ticket exists, the “Service Manager (SM) Login”
process is executed (see 2.3.1).

5. Subscribe Service
Topic Request

S-API -> Service
Manager

• Using a valid authentication ticket, S-API subscribes to the
particular topic using the SM.

6. Topic Subscription
Response

Service Manager ->
Third-Party Client

• The SM returns the result of the subscription (success).

7. Display
Subscription
Feedback

Third-Party Client ->
Third-Party User

• The third-party client returns the result of the subscription
(success).

2.3.9 Message Event Associated with a Subscribed Topic

The following sequence diagram depicts a third-party receiving a message associated with a topic.

For this to be successful, the third-party must have successfully subscribed to the respective topic (see 2.3.8).

 D3.6 Third Parties Enabling APIs v1

 28 of 34

The sequence of actions is the following:

1. SPHINX Service
Topic Event

SPHINX Service ->
Service Manager

• As a result of the occurrence of a specific event, a SPHINX
service publishes a message to a predefined topic in the SM.

2. SPHINX Topic Broker
Event

Service Manager -> S-
API

• The SM notifies all consumers that subscribed to the specific
topic. The notifications are conveyed through S-API.

3. Invoke SPHINX Topic
Call back

S-API -> Third-Party
Client

• S-API conveys all notifications to third-party clients that
subscribed to the respective topics.

4. Display Event
Feedback

Third-Party Client ->
Third-Party User

• The third-party client presents the message related with the
notification event to the third-party user.

2.3.10 SPHINX Certification Workflow

The following sequence diagram depicts a third-party issuing a certification request to SPHINX.

The certification takes two steps:

• In the first, named “certification request”, the third-party issues the certification request to the Sandbox

providing the necessary information concerning the module to be certified.

• In the second, named “certification result”, the third-party receives the certification report from the

Automated Cybersecurity Certification, via a message event, that contains the results of the certification

process.

First Step: Certification Request

The sequence of actions is the following:

1. User Calls SPHINX
Service

Third-Party User ->
Third-Party Client

• The third-party user uses a third-party client to issue a
certification request.

2. Check for Locally
Stored Access Token

Third-Party Client ->
Third-Party Client

• Third-party client uses the cached version of an access
token.

 D3.6 Third Parties Enabling APIs v1

 29 of 34

• Note it is assumed that the login flow has occurred
previously.

3. Perform Call to
SPHINX with Access
Token

Third-Party Client ->
S-API

• The third-party invokes the SPHINX service call, using the
cached access token.

• S-API verifies that the third-party is authorised to perform
the request.

• The access token might be provided via URL or HTTP header,
depending on the S-API implementation.

4. Check Valid SM
Authentication
Ticket

S-API • Check if there is a valid SM authentication ticket cached
locally.

• If no valid local ticket exists, the “Service Manager (SM)
Login” process is executed (see 2.3.1).

5. Retrieve Sandbox
Endpoint Request

S-API -> Service
Manager

• If not available on the S-API local cache, fetch a reference for
the SPHINX Sandbox service in order to retrieve the
endpoint to start a certification process.

6. Retrieve Sandbox
Endpoint Request

Service Manager ->
S-API

• The SM returns the necessary information about the service
responsible for certification requests.

7. Start SPHINX
Certification
Request

S-API -> SPHINX
Sandbox

• The certification process is triggered, providing to the
Sandbox component the required information to execute
the certification process (e.g., IP address, network ports,
database/application name).

8. SPHINX Certification
Feedback Response

SPHINX Sandbox ->
S-API -> Third-Party
Client

• The Sandbox component returns: success or error indication;
and, if successful, the corresponding topic ID to which the
certification report is published (see next diagram).

• S-API conveys the results of the certification request to the
third-party client (i.e., topic ID).

• The certification response is asynchronous because the
certification process itself may take a while.

9. Requests Service
Event Subscription

Third-Party Client ->
S-API -> SM

• The third-party client subscribes to the topic ID.

Second Step: Certification Result

 D3.6 Third Parties Enabling APIs v1

 30 of 34

1. Certification Process
End Notification

SPHINX Sandbox
-> Third-Party
Client

• When the certification process is finished, the third-party client
is notified, via the subscribed topic to the SM.

2. Display Certification
Report Feedback

Third-Party
Client -> Third-
Party User

• The third-party client shows the certification report to the user.

2.4 S-API Interfaces
This section lists the S-API interfaces considering two different types of interactions:

• S-API management and administration functions;

• Third-party access to SPHINX services via S-API.

Note that the SPHINX components’ detailed interfaces are documented in the project’s GitLab repository [8].

See also D2.6 [1] for a functional description of the SPHINX interfaces for third-parties.

2.4.1 S-API Interfaces for Management and Administration

For the integration with third-party components (equipment, software applications and services), SPHINX

provides a set of simple RESTful Web interfaces that facilitates the third-parties’ authentication with the SPHINX

System, the third-parties’ authorised access to the available SPHINX cybersecurity services and the third-

parties’ certification of their components, verifying their compliance to the SPHINX cybersecurity standards.

Component Interfaces

Interface ID Involved Components Components Relation Interface Content

S-API.I.01 S-API and Third Parties The S-API allows third-parties to
authenticate themselves with
the SPHINX system.

Third-party credentials.

Authentication results.

S-API.I.02 S-API and SM The S-API receives a list of
available SPHINX services for
third-parties, including the
associated third-party interface
specification from the SM.

List of security services available
for third-parties, including the
third-parties’ interface
specifications.

Table 2: SPHINX S-API Interface Specifications

2.4.2 SPHINX Interfaces for Third Parties

Through a generic interface, third-parties are able to access specific cybersecurity services: Data Traffic

Monitoring (DTM), Anomaly Detection (AD), Security Information and Event Management (SIEM), Forensic Data

Collection Engine (FDCE), Homomorphic Encryption (HE), Anonymisation and Privacy (AP), Sandbox (SB) and

Blockchain-based Threat Registry (BBTR) services.

 D3.6 Third Parties Enabling APIs v1

 31 of 34

Component Interfaces

Interface ID Involved Components Components Relation Interface Content

S-API.I.03 S-API and Third Parties The S-API allows third-parties to
discover and retrieve services
related with the SPHINX
certification process.

List of services available to
perform the SPHINX certification
process.

S-API.I.04 S-API and SPHINX
components with third-
party APIs (DTM, AD,
SIEM, FDCE, HE, AP, SB,
BBTR)

The S-API allows third-parties to
access the SPHINX components’
third-party interfaces.

Third-party request for a specific
SPHINX service.

Services accessible in the SPHINX
Platform.

Specific Interfaces (realise S-API.I.04):

Component Interfaces

Interface ID Involved Components Components Relation Interface Content

DTM.API.01 DTM and Third Parties The DTM enables third parties to
receive information regarding
detected anomalous or
suspicious data traffic.

Third-party request for the
SPHINX DTM service.

Abnormal and suspicious traffic
data.

DTM.API.02 DTM and Third Parties The DTM enables third parties to
receive statistical information on
collected data traffic (e.g.,
number of connected devices
and connected users, data
access type, bandwidth used per
device and per user).

Third-party request for the
SPHINX DTM service.

Statistical information on
collected traffic data.

AD.API.01 AD and Third Parties The AD enables third parties to
receive information regarding
detected anomalies in system
and user behaviour that
constitute a threat.

Third-party request for the
SPHINX AD service.

Detected anomalies in system
and user behaviour.

SIEM.API.01 SIEM and Third Parties The SIEM enables third parties to
receive information regarding
incident-related information.

Third-party request for the
SPHINX SIEM service.

Log entries of security incidents
and threats.

SIEM.API.02 SIEM and Third Parties The SIEM enables third parties to
receive information regarding
security information and events.

Third-party request for the
SPHINX SIEM service.

Log entries of security
information and events.

FDCE.API.01 FDCE and Third Parties The FDCE enables third parties
to receive information regarding
new threats, following the
detection of successful attacks.

Third-party request for the
SPHINX FDCE service.

New threat information (attack
type information and metadata).

HE.API.01 HE and Third Parties The HE enables third parties to
encrypt sensitive information.

Third-party request for the
SPHINX HE service.

Encrypted sensitive data.

 D3.6 Third Parties Enabling APIs v1

 32 of 34

HE.API.02 HE and Third Parties The HE enables third parties to
perform searches on
repositories containing sensitive
data.

Third-party request for the
SPHINX HE service (search
query).

List of files (matching query).

AP.API.01 AP and Third Parties The AP enables third parties to
anonymise personal data.

Third-party request for the
SPHINX AP service.

Anonymised personal data.

AP.API.02 AP and Third Parties The AP enables third parties to
anonymise personal data in
traffic information.

Third-party request for the
SPHINX AP service.

Anonymised personal data in
traffic information.

SB.API.01 SB and Third Parties The SB enables third parties to
receive information regarding
the available SPHINX cyber
security certification services for
third-party components.

Third-party request for the
SPHINX SB service (search
query).

List of available SPHINX cyber
security certification services.

SB.API.02 SB and Third Parties The SB enables third parties to
receive information regarding
their components’ cyber
security certification.

Third-party request for the
SPHINX SB service (third-party
component’s technical
specifications).

Certification report (CVSS
format).

BBTR.API.01 BBTR and Third Parties The BBTR enables third parties
to receive information regarding
new threats and attack types.

Third-party request for the
SPHINX BBTR service.

New attack type information and
metadata.

BBTR.API.02 BBTR and Third Parties The BBTR enables third parties
to receive information regarding
the registration of new threats.

Third-party request for the
SPHINX BBTR service.

New attack type information and
metadata.

BBTR.API.03 BBTR and Third Parties The BBTR enables third parties
to receive information regarding
registered threats.

Third-party request for the
SPHINX BBTR service (threat
select criteria).

List of registered threats
meeting the provided criteria.

Table 3: SPHINX Third-parties Interfaces Specifications

 D3.6 Third Parties Enabling APIs v1

 33 of 34

3 Conclusion

This document presents the detailed design for the SPHINX Application Programming Interface (API) for Third

Parties or S-API component, as introduced in the SPHINX architecture (D2.6) [1]. It delivers a general overview

of the S-API, with the identification of its positioning within the SPHINX Platform, followed by a presentation of

the S-API requirements that extended the technical specifications defined in [1] with the specific requirements

for the component addressing its specificities. A set of sequence diagrams is also presented, illustrating key

functions of S-API from the perspective of third-parties and SPHINX Services, allowing to better understand

details pertaining to the implementation phase.

This document provides an important basis for the technical implementation of the S-API component in SPHINX.

The S-API component will be revised and updated as part of Task 3.6 - Third Parties Enabling APIs, considering

the contributions from other relevant project outcomes, including the development work of the S-API

component, the final version of the SPHINX architecture and the ongoing integration work in SPHINX.

 D3.6 Third Parties Enabling APIs v1

 34 of 34

4 References

[1] SPHINX Project. D2.6 SPHINX Architecture v2. Version 1.0. Dated 24-02-2020.

[2] SPHINX Project. D2.4 - Use Cases Definition and Requirements Document v1. Version 1.0. Dated

31/12/2019

[3] SPHINX Project. D2.5 - SPHINX Requirements and Guidelines v1. Version 1.0. Dated 31/12/2019

[4] IETF. RFC 8259 - The JavaScript Object Notation (JSON). December 2017. Available at:

https://tools.ietf.org/html/rfc8259

[5] OpenAPI Specification. Version 3.0.3. Available at: http://spec.openapis.org/oas/v3.0.3

[6] IETF. RFC 8252 - OAuth 2.0 for Native Apps. October 2017. Available at:

https://tools.ietf.org/html/rfc8252

[7] IETF. RFC 6750 - The OAuth 2.0 Authorization Framework: Bearer Token Usage. October 2012.

Available at: https://tools.ietf.org/html/rfc6750

[8] SPHINX GitLab Available at: https://sphinx-repo.intracom-telecom.com

[9] Swagger. Available at: https://swagger.io/

https://tools.ietf.org/html/rfc8259
http://spec.openapis.org/oas/v3.0.3
https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/html/rfc6750
https://sphinx-repo.intracom-telecom.com/
https://swagger.io/

