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1.  Introduction

Natural systems provide ingenious and efficient 
solutions to complex problems. Charles Darwin wrote: 
‘The more I study nature, the more I become impressed 
with ever-increasing force that the contrivances and 
beautiful adaptations slowly acquired through each 
part […] transcend in an incomparable manner the 
contrivances and adaptations which the most fertile 
imagination of man could invent.’ [1]. The beauty and 
efficiency of nature have also long inspired engineers 
[2], aimed at transferring ideas from biology to 
technology. The specific term biomimetics was coined 
in 1969 by the famous bio-engineer Otto Schmitt [3].

Many other scientists have since used biomimetics 
to refer to the mimicking of natural systems in artefacts 
[4–8]. Roboticists have more recently developed sev-
eral solutions inspired by natural systems, giving rise 
to the branch of science known as ‘Bioinspired Robot-
ics’. The bioinspired approach in robotics has made 
impressive scientific achievements, typically by look-
ing at the animal kingdom, e.g. among many, the octo-
pus [9–12], the caterpillar [13, 14], worms [15, 16],  
geckos [17–22], and insects [23–25].

More recently, plants have been considered as 
a model to develop self-adaptable growing robots  
[26–28]. Plants have the ability to grow and continu-
ously adapt their body to the surroundings, showing 
high plasticity and adaptability to changing environ

ments, thus they have colonized almost all habitats 
on earth [29, 30]. The indeterminate growth and high 
adaptability are also relevant in robotics for developing 
new machines that can exploit their material proper-
ties and interaction with the environment to efficiently 
move and act. To this aim, climbing plants among all 
show many interesting and peculiar features [31, 32]. 
Firstly, they need to grow vertically and rapidly at the 
apical level of shoots to find a suitable support and to 
enhance light acquisition (or they perish), for which 
they minimize their energy consumption [33]. Sec-
ondly, vines and lianas develop flexibility and tough-
ness in their stem because they need to survive extreme 
mechanical stresses in their habitat (e.g. movement or 
falls of trees and branch) [34]. Thirdly, many climbing 
plants have a sophisticated fibre arrangement which 
can affect the mechanical properties of the plant stem, 
leaf or attachment organ [35]. Fourthly, climbing 
plants can perform several kinds of movements (e.g. 
circumnutation is particularly evident in twining stems 
and used to find a support) [36]. Fifthly, their sensory 
capacity (e.g. tactile perception) enables them to per-
ceive the environment [37–41], and their adhesive 
properties (e.g. tendrils, adhesive pads, adventitious 
roots and hook-like structures) enable them to climb 
and adhere [32, 42]. Finally, some climbing plants have 
the capacity to morphologically change their leaf form 
and shape, for example for camouflage in possible 
hostile environments [43] or during different growth 
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Abstract
One of the major challenges in robotics and engineering is to develop efficient technological 
solutions that are able to cope with complex environments and unpredictable constraints. Taking 
inspiration from natural organisms is a well-known approach to tackling these issues. Climbing 
plants are an important, yet innovative, source of inspiration due to their ability to adapt to diverse 
habitats, and can be used as a model for developing robots and smart devices for exploration and 
monitoring, as well as for search and rescue operations. This review reports the main methodologies 
and approaches used by scientists to investigate and extract the features of climbing plants that are 
relevant to the artificial world in terms of adaptation, movement, and behaviour, and it summarizes 
the current available climbing plant-inspired engineering solutions.
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stages [44]. Understanding the key biological princi-
ples behind these, and other features of climbing plants 
is important for developing smart materials, adhe-
sive devices, and autonomous robots for exploration, 
monitoring, search and rescue applications [30]. How-
ever, clear and useful biological investigations require a 
methodological approach to really understand the pos-
sible reasons for a particular phenomenon in order to 
facilitate and correctly translate the working principles 
from nature to the artificial world.

Reviews have typically focused on the adhesive 
mechanisms of climbing plants and their biomi-
metic potential [45] or on analysing the biomechan-
ics of specific species [32, 42]. The aim of this review 
is to provide an overview of the methodological 
approaches and tools exploited by researchers for 
extracting the relevant biological features of climbing 
plants that might be adopted to design their artificial 
counterparts.

The review is divided into three main themes: (i) 
adaptation, (ii) movements, and (iii) behaviour. Sec-
tion 2 deals with adaptation and details the current 
morphological and biomechanical tools and methods 
used to investigate the material structure-properties 
in climbing plants, as well as their tissue architecture 
and variation in material properties from macro to 
micro-scale. Section 3 explores the recent studies on 
movements with an overview of the tracking meth-
ods and ad hoc software for the analysis of kinemat-
ics. Section 4 analyses the approaches used to explore 
the theories behind the behaviour in climbing plants, 
gaining insights into the localization of the support, 
the perception and the differentiation of external 
stimuli. Section  5 then describes the relative artifi-
cial systems for the three main themes presented in 
sections 2–4. Directions for future research are sug-
gested in section 6. For greater clarity, the structure 
of the review is presented in an organizational chart  
(figure 1).

2.  Adaptation

2.1.  Overview
Climbing plants are able to adapt their growth 
to a wide range of environmental contexts, from 
forests to grasslands and riverbanks. They move 
continuously by growing to compete for sunlight, 
optimizing their resources and minimizing costs 
[32, 33]. Plant motion is strongly related to material 
properties and anatomical features. Morphological 
and biomechanical investigations provide a deeper 
understanding of the adaptive response of plants 
to mechanical stress, extracting fundamental 
information on the architecture of the plant tissue and 
cell wall material and mechanics. Table 1 provides a 
general overview of the main methodologies used to 
extract the morphological and biomechanical features 
in climbing plants, which are relevant for investigating 

their adaptive behaviour.

2.2.  Methodologies and benchmarks for 
morphological studies
Morphological investigations analyze a plant’s 
architecture through different scales, thus adopting 
different tools and methodologies. At the microscale 
level, several microscopic techniques have been widely 
used for the anatomical study of climbing plants 
[12, 33, 43–47]. Light microscopy combined with 
histological techniques provides an in-depth analysis 
of different types of tissues and cells. Conventionally, 
the plant tissue is chemically fixed to preserve and make 
visible the microscopic structure, sectioned using a 
microtome, and stained to detect specimen features 
by enhancing tissue contrast [66]. This approach has 
revealed the cellular basis for circumnutation and 
coiling, highlighting the involvement of specialized 
fibers, known as gelatinous fibers (g-fibers), in the 
actuation of the motion [50]. Darkfield and UV-
light microscopy observations of coiled cucumber 
tendrils have been demonstrated to have a g-fiber 
ribbon, consisting of two cell layers with different 
reinforcements, suggesting that coiling takes place via 
an asymmetric contraction of g-fibers (figure 2(A)) 
[51]. An overview of g-fiber distributions in different 
species of tendrils and twining vines is reported in 
figure 2. Tendrils can be divided into three groups with 
respect to their internal anatomy, including (1) tendrils 
with adhesive properties (e.g. g-fibers at the center of 
the tendril, figure 2(B)); (2) those that coil in many 
directions (g-fibers are distributed as bilayer cells along 
the inner surface of the coil, figure 2(C)); or (3) towards 
a single direction (e.g. g-fibers are distributed in a 
cylindrical configuration, figure 2(A)). On the other 
hand, in twining vines, g-fibers occur as isolated cells 
in the cortex (figure 2(D)) [50, 51]. The diversity of 
climbing plant species is highlighted by such variations 
of g-fiber arrangements which suggests the underlying 
mechanism for circumnutation or coiling movements 
in one species or the other, as well as characterizing the 
diversity in their constitutive materials. Microscopy 
analyses on climbing plant’s stems have been used 
to identify the correlation between the evolution of 
specialized biomechanical climbing architectures 
and the anatomical organization of internal stem’s 
structures [49]. For the adaptation of climbing plants, 
one fundamental aspect is the presence/absence 
of primary/secondary growth [49]. Stained red 
sections of Lycopodiella cernua’s stems with primary 
growth have shown a different organization of lignified 
mechanical hypodermal tissues during ontogeny 
(with an increase of hypoderm’s thickness from basal 
to median stem, and a decrease from median to apical 
level) [49]. Instead, microscopy analyses on the C. 
guianense’s stems with secondary growth have shown 
a timely development of large diameter vessels during 
ontogeny, which is strictly correlated to a reduction of 
the stem stiffness [67].

Scanning electron microscopy (SEM) has been 
used for high resolution investigations of climbing 
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plant surfaces and internal structures [35, 47, 54]. A 
typical procedure for the preparation of plant tissue 
and observation by SEM includes: fixation (e.g. usu-
ally using fixative chemicals, such as glutaraldehyde), 
dehydration (e.g. air drying or critical point drying), 
and coating with metal [68, 69]. Several surfaces of 
climbing plants have been examined in detail using 
this technique, such as the adhesive pads with papil-
lae cells in Passiflora discophora [55], the aerial root 
hairs in Syngonium podophyllum [47], adaxial and 
abaxial hooks in Galium aparine [54], and root clus-
ters and hairs of the attachment system of Hedera 
helix [56].

The authors in [35] investigated the formation and 
evolution of the tendril helical morphology of Luffa 
cylindrica, by characterizing the biological material 
across different scales (from nm to cm). Using SEM, 
the microstructures of tendril filaments were char-
acterized in terms of size, organization and hierarchy 
of the internal structures. The authors thus identified 
the role of each hierarchical component and the rela-
tion among them, in terms of chirality transfer, also 
by comparing experimental results with theoretical 
model predictions. The results suggested that cellulose 
fibrils play a key role in the chirality transfer of tendrils 
from the subcellular to macroscale level, thus affecting 
the mechanical properties and architecture of tendrils, 
which were controlled by hydraulic forces. In addition, 
L. cylindrica tendrils show a rubber-like behaviour 
(due to the hyper-elasticity of cellulose fibril helix) 
which provides large elongation and flexibility for 
climbing on given supports [70].

Polarized light microscopy and x-ray analyses are 
widely used to investigate the cell-wall structure and 
cellulose microfibril angle (MFA) in climbing plants. 
Such studies have been carried out, for example, on the 
woody structure of lianas [57, 71], in tendrils [52], and 

in cleavers [53]. X-ray analyses have been performed 
on stiff and flexible dried wood samples, produced 
during the self-supporting and non-self-supporting 
growth phase, respectively, of Bauhinia guianensis and 
Condylocarpon guianense tropical lianas [57, 67]. With 
the exception of the flexible wood in Condylocarpon, 
the comparison of the MFA in lianas wood, during dif-
ferent ontogenetic stages, showed MFA values (from 0 
to 35°) within the same range as self-supporting plants, 
such as trees [57, 72]. This thus showed the analogy of 
mechanical properties in the biological material across 
different species which enable similar functionalities 
(self-supporting structures).

The staining protocol using permanganate stain 
for lignin used in polarized light microscopy invest
igations, in the twisted tendrils of Brunnichia ovata, 
enabled the observation of the cellulose microfibril 
orientation among adjacent cells, which seems to be 
oriented perpendicularly to each other [52]. Polar-
ized light microscopy investigations have also led to 
the examination of the MFA between the fibers of cell 
walls and the tracheary elements of basal stems in the 
cleaver of Galium aparine. Interestingly, this angle was 
found to be 8° [53], which is similar to the MFA value 
of self-supporting trees and Bauhinia lianas [57, 72], 
highlighting the similarity of the behaviour and fibril 
functioning in these species.

Further analyses on g-fibers or the microfibril 
organization, combined with a better understanding 
of where and how lignification occurs among differ-
ent species of climbing plants, will provide an in-depth 
knowledge regarding the morphology and circumnu-
tation mechanics in climbing plants. This research will 
also contribute to methods for fabricating advanced 
bio-inspired materials for use, for instance into the 
mechanical actuation of circumnutation in robotic 
grippers and manipulators.

Figure 1.  Structure of the manuscript. The manuscript is divided into three main themes: (i) adaptation, (ii) movements, and (iii) 
behaviour. For each of these topics, we review the methodology and benchmarks. There is also an overview of how these biological 
key principles can be transferred into the artificial world.
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2.3.  Methodologies and benchmarks for 
biomechanics
Biomechanical investigations study the mechanical 
properties and deformation behaviour of materials 
from the macro to microscale, which are relevant for 
underlining the correlation between the structure, 
functioning and movements in climbing plants  
[42, 49, 73]. Biomechanical features are strictly 
correlated to the climbing modes and developmental 
stages during growth [49]. Figure 3 shows the main 
biomechanical tests used to investigate these properties 
of climbing plants.

At the macroscale level, there are several 
biomechanical methods for extracting many material 
parameters, such as the elastic modulus in tension, 

bending, shear and torsion phases [42]. These values 
can be measured using uniaxial or biaxial/multiaxial 
load cells, in tensile, flexural, shear and torsion tests. 
Such tests are often performed using commercial uni-
versal testing machines or customized set-ups [29]. 
Notably, biological materials, including plant stems, 
are not homogeneous but often have multi-com-
pound complex structures [74]. This implies that the 
measurements are strongly affected by the length of 
the samples, the specific section from which they are 
extracted, and the age of the plant.

The elastic modulus in tension, also known as 
Young’s modulus, is a measure of the mechanical 
stress required to axially elongate a material [29]. In 
general, in tensile tests, two extremities of the sam-

Table 1.  The main methodologies used to extract the relevant morphological and biomechanical features in climbing plants for 
investigating their adaptive behaviour.

Features Methodology Objective Extracted features References

Morphology Light microscopy 

in combination 

with histology

To investigate plant structures.  

Histology characterizes tissue morphology 

and anatomy and ensures precise sample 

sectioning. The use of an antibody enables a 

specific target to be recognized

Tissue organization 

in stem and tendrils

[46–49]

G-fiber role and dis-

tribution in tendrils 

and twining vines

[50, 51]

Microfibril orienta-

tion in cell walls 

(polarized light)

[52, 53]

Scanning electron 

microscope

To extensively investigate plant micro/nano 

structures (higher resolution respect to light 

microscope)

Surface characteri-

zation

[47, 54–56]

Internal structure 

characterization

[35]

X-ray analysis To characterize plant cell wall structure  

at the nanoscale

Microfibril orienta-

tion in cell walls

[57]

Biomechanics Tensile test To evaluate the mechanical behaviour of 

material under tension and compression 

conditions

Young’s modulus 

(𝘌) values

[46, 51, 53, 58, 59]

Flexure test To evaluate the mechanical behaviour  

of material under bending conditions  

(e.g. three-point bending test)

Bending modulus 

(𝘌bending) values

[46, 48]

Shear test To evaluate the mechanical behaviour  

of material under shear load conditions, 

when two planes of the same object try to 

slide past one another

Shear modulus (G) 

values

[46]

Torsion test To evaluate the mechanical behaviour  

of material under the application of an 

external torque

Torsional modulus 

(Gtorsion) values

[48]

Pull-off test To measure the resistance to detachment  

of a sample from a substrate under the  

application of a perpendicular tensile force

Pull-off force 

(Fpull-off) of hooks, 

adventitious roots, 

adhesive pads, etc.

[56, 60–62]

Friction test To measure the resistance between two 

surfaces in contact sliding against each other 

under the application of a horizontal force

Friction force (Ffric-

tion) of leaf covered 

with hooks

[54]

In vivo attachment 

test

To measure the in vivo squeezing force of 

plans stems around a sensorized mechanical 

pole (TWIFOR)

Squeezing force (Fin 

vivo) of twining vines

[46, 63, 64]

Micro-contact test To measure the contact separation force 

between a hooked microstructure and a  

loop using a micromanipulator

Pull-off force (Fpull-

off) of a single hook

[54, 65]

Nanoindentation To evaluate the mechanical response of  

small plant material volumes under load, 

using a diamond tip

Young’s modulus 

(E) (e.g. cellulose 

fibrils in cell wall)

[29]

Bioinspir. Biomim. 15 (2020) 031001
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ple are fixed with clamps or chucks, a load is applied 
perpendicularly to the cross-sectional area, and the 
tensile force is recorded as a function of the displace-
ment [29]. On the other hand, the elastic modulus in 
shear, also known as shear modulus, is a measure of 
the stress required to transversely deform the material 
[29]. Unlike the tensile test, in a shear test, a parallel 
load is applied to a cross-sectional area of the sample.

Several works have focused on measuring Young’s 
modulus (e.g. Ebending is the more appropriate value 
to compare different stem’s properties) of a climb-
ing plant’s stem and tendrils, at various development 
stages [46, 53, 70].

Young’s modulus of the woody lianas, such as M. 
scadens and C. guianense, have been, for example, char-
acterized by finding a decreasing value during ontog-

Figure 2.  Gelatinous fibers distribution in coiling tendrils and twining vines. (A) Example of a tendril that coils in one direction 
(left) and schematic view of gelatinous fibers distribution (right). G-fibers are present only on the inner side of the coil as a bilayered 
ribbon of fibers. The tendril coils by preferential contraction of the inner layer, which is more lignified than the outer layer. The 
less lignified layer resists compression and together this results in curving and then coiling of the tendril. (B) Example of tendril 
with adhesive pads (left) and schematic view of gelatinous fibers distribution (right). G-fibers occur near the center of the tendril 
surrounding the vascular tissue. (C) Example of a tendril that coils in many directions (left), and schematic view of gelatinous fibers 
distribution (right). G-fibers occur as a cylinder within the tendril. (D) Example of twining plants in nature (left) and schematic 
view of gelatinous fibers distribution (right). G-fibers occur as isolated cells in the cortex.

Figure 3.  The main biomechanical tests used to investigate a climbing plant’s adaptive mechanical behaviour. (A)–(E) Tensile (A), 
shear (B), torsion (C), three-point bending (D) and nanoindentation (E) tests for investigating the mechanical properties of a plant 
material, such as tensile, shear, torsional and bending modulus. (F)–(H) In vivo attachment test (F), pull-off (G) and friction (H) 
tests for investigating the adhesive behaviour of climbing plants. The arrows indicate the direction of the applied force.

Bioinspir. Biomim. 15 (2020) 031001
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eny, which is different from trees [49, 67, 73, 75]. This 
finding is explained by the fact that young stems with 
narrow diameter need to search for a support to grasp 
onto, and to do that they rapidly develop high rigidity 
or stiffness: consequently, young stems have a higher 
Young’s modulus (E  =  3000–5000 N mm−2) com-
pared to the older stems (E  =  2000–500 N mm−2). In 
fact, when the older stems are already firmly attached 
to a supporting structure, they require less or almost 
no reinforcement from the basal part of the stem, 
which could hang on the support, becoming more 
flexible [75, 76]. However, some climbing plants attach 
less strongly to the support and may still depend from 
basal stem’s rigidity supplied, retaining higher stiff-
ness [77].

Unlike the previously mentioned woody lia-
nas, the stems of twining plants of the air potato 
(Dioscorea bulbifera) have a smaller Young’s modulus 
(E  =  690  ±  100 N mm−2, which however are higher 
than the shear modulus values (G  =  248  ±  33 N mm−2  
in the primary growth zone of D. bulbifera) [46]. The 
extraction of these two parameters in twiners con-
tributed to an understanding of the generation of the 
squeezing force that enables these plants to ascend 
their supports without the use of adhesive or hook-like 
structures.

The results of tensile tests, up to failure, on the basal 
stems of the cleavers Galium aparine have highlighted 
the impressively high extensibility of this plant [53, 78], 
which obtained a breaking strains of 24%  ±  7% and 
a Young modulus of 235  ±  16 MPa [53]. To date, the 
mechanism behind this high breaking strain is not yet 
clearly understood. Nevertheless, ontogenetic factors 
seem to play a relevant role in the adaptation of such 
mechanical properties, as demonstrated by the lower 
stiffness reached by domesticated Manioc with respect 
to its wild counterpart, where the internal wood and 
wall structure produce a stiffer stem, less prone to brit-
tle fracture, with failure occurring at higher bending 
stresses compared with shrub and liana phenotypes of 
the domesticate [71]. Such adaptation seems to be dic-
tated by the needs emerging from different environ
mental habitats, e.g. in agricultural environments, a 
flexible stem can be more easily maneuverable, while 
wild habitats require stiff stems to ensure the survival 
of the plant.

At the microscale level, customized micro-tensile 
testing machines are usually developed to extract the 
Young’s modulus on very fine structures, e.g. in aerial 
roots of Hedera helix (E  =  109 N mm−2) [56] and in 
microhooks of G.aparine fruits (E  =  2020  ±  1500 N 
mm−2) [65, 79].

Other biomechanical studies have evaluated the 
stiffness during bending and torsion of climbing plant 
structures [34, 42, 48, 49, 77, 80]. One of the most inter-
esting works regards the leaf-climbing semi-woody 
monocot Flagellaria indica [48]. This species attaches 
itself to the surrounding vegetation using tendril-like 
leaves. The authors detailed the different mechanical 
properties of this leaf-climber along the stem at dif-

ferent stages of growth, demonstrating an anomalous 
behaviour. The bending (Ebending) and torsional (Gtor-

sion) modulus were evaluated along the stem at different 
developmental stages. Ebending and Gtorsion measure the 
ability of a material to resist bending or twisting when 
a force or torque is applied, respectively. To evaluate the 
Ebending, the authors performed a three-point bending 
test by selecting three different points along the stem. 
On the other hand, to evaluate the Gtorsion, they used a 
testing machine with a set up consisting of a fixed and 
a rotatable chuck; the sample was fixed to the chucks 
and twisted due to the applied force [48]. The results 
show different biomechanical properties for each 
developmental stage. The Ebending values were generally 
higher than the Gtorsion values, with an increase in Ebend-

ing when Gtorsion increased, and a decrease in both val-
ues when the distance from the base increased. Thus, 
in F. indica the bending and torsion abilities dramati-
cally reduce with the age and distance from the apical 
regions, however they are very affective up to about 
1 m from the apex providing high flexibility and, at the 
same time, resistance to structure deformation. Such 
behaviour is the opposite of other climbers, in which 
the increase in stiffness from the basal to apical stem 
regions is expected (as also reported above in M. sca-
dens and C.guianense) [75, 76]. Furthermore, some 
woody climbers, such as Croton pullei, show a shift 
from free-standing growth phase (constant Young’s 
modulus) to supported growth phase (decrease of 
Young’s modulus) during ontogeny, thus moving 
from a typical semi-self-supporting plants patterns to 
non-self-supporting behaviour [76, 80].

An evaluation of such biomechanical properties, 
across different species and regions, is fundamental for 
it to be transferred to the field of bioinspired robotics, 
since it guides the selection of the most appropriate 
biological model for the specific task required.

To evaluate the mechanical response of small vol-
umes of plant materials under load, nanoindentation 
can be used [83, 84], as it is able to reach the cell wall 
scale [29, 85]. In a nanoindentation test, an indenter 
with a fine tip at a certain load is driven into the speci-
men [29]. This kind of instrument can also test the 
mechanical properties of a structure in different 
regions (e.g. outer and inner parts). However, to the 
best of our knowledge, there are currently no stud-
ies using nanoindentation on climbing plant tissues. 
This method has however been used to investigate the 
mechanical properties of Zea mays primary roots [86]. 
Similar investigations on climbing plants would lead 
to new knowledge regarding the properties of biologi-
cal materials for a more effective technology transfer to 
robot body materials and actuators [87, 88].

In terms of the biomechanics of climbing plants, 
the adhesive mechanisms have been studied the most 
[32, 42, 45]. Based on the attachment mechanism 
used to cling to their host, Charles Darwin categorized 
climbing plants into five classes: twining plants, ten-
dril-bearers, leaf-climbers, hook-climbers, and root-
climbers [31].

Bioinspir. Biomim. 15 (2020) 031001
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Pull-off and friction tests are commonly used to 
investigate the adhesion and friction forces in climbing 
plants [42]. TWIFOR is an electronic device used to 
measure in vivo the squeezing force during the growth 
of twining vines [46, 63, 64]. Custom-made and porta-
ble tensile testing machines have been developed to test 
in situ the attachment behaviour of adhesive pads in 
tendrils and roots in root climbers, under natural con-
ditions [61]. Some examples include friction experi-
ments performed on hook-climbers (hooked leaves 
of G. aparine) with a dedicated set-up [53, 54]. The 
separation force between a hooked microstructure and 
a loop was investigated using a micro-contact tensile 
test, equipped with a micromanipulator [54].

In leaf-climbers, the attachment forces of the ten-
dril-like leaf of F. indica were obtained using a dedi-
cated set-up for tension testing [82]. In general, the 
values of the attachment force obtained from climbing 
plants, while ascending to light and adapting to their 
habitats, range from a minimum of 5 mN (measured 
on a single hook of G. aparine) [54] to a maximum of 
38 N (measured on a tendril-like leaf of F. indica) [82] 

(table 2).
Climbing plants select specific supports in their 

habitat particularly on the basis of their diameter and 
surface characteristics (e.g. smooth or rough surfaces). 
These plants are thus able to grasp, coil, or adhere to a 
support, with species-specific behaviour. For example, 
twining plants are able to grow vertically by squeezing 
around trees (large structures) in the tropical rainfor-
est (e.g. the woody vines M. scadens) [75, 76] or poles 
and rods (slender structures) in forests or grasslands 
(e.g. the common twiners D. purpurea and D. bulbif-
era) [46, 81].

Experiments on I. pupurea using the supports of 
two different diameters showed a similar twining force 
of the stems, however a greater normal force was found 
for the unit stem length on slender poles, due to the dif-
ference in their helical geometry, making them unsta-
ble with larger poles [81]. In addition, it seems that the 
stem twists increased with the roughness of the surface 
texture of the support, although the values were not 
quantified [46].

A model of the mechanical action of twining stems 
compared a twining plant to a growing elastic filament 
in contact with a rigid cylindrical support [89]. Based 
on this model, the authors extracted the critical sup-
port radius (R), which can be expressed as a function 
of plant helix parameters. This represents a key fac-
tor behind the ability of a twining plant to coil around 
a cylindrical support—if the support has a radius 
greater than R, the twining plant is not able to coil 
around it [89].

Leaf-climbers of F. indica are monocotyledons and 
therefore lack wood but can nevertheless grow on the 
host vegetation and over poles and rods in tropical 
and subtropical forests. Experiments with this plant 
show that smaller the diameter of the support, the 

higher the attachment forces and the higher number of 
coils [82]. The texture of the host structure also influ-
ences the attachment force: rough surfaces induce a 
higher friction force than a smooth surface (e.g. the 
authors in [82] were using bamboo as rough support 
and aluminum rod as smooth support), due to the 
interlocking of the papillate cells of apical leaves with 
the structures of the support surface [82]. Through 
chemical adhesion, root- and tendril-climbers are able 
to grow over a wide range of smooth and rough sur-
faces such as trees, walls and buildings. This strategy 
enables them to colonize almost all habitats, ranging 
from mountains to forests and coastal areas [58, 61, 
62]. Hook-climbers, such as the cleaver G. aparine, are 
able to climb over micro-rough surfaces by mechanical 
interlocking in different environments ranging from 
forests to hedgerows and arable fields [54].

A general overview of the biomechanical bench-
marks extracted in climbing plants in correlation with 
the type of support and habitat is reported in table 2. 
This overview underlines the wide diversity of strate-
gies adopted by climbing plants in different environ
ments and helps in understanding the most efficient 
approach possible when exploiting plant features in 
artificial solutions, taking into account the environ
ment where the robot is designed to move.

3.  Movements

3.1.  Overview
The main difference between animals and plants is the 
sessile, but nevertheless mobile nature of plants. This 
movement involves many different organs, including 
stems, roots, flowers and leaves [90]. They can be active 
(requiring metabolic energy) or passive (not requiring 
metabolic energy after formation of the structure), 
reversible or irreversible, nastic (if not dependent on 
the direction of a stimulus) or tropic (if the movement 
is a directional response to a stimulus) [91–93].

Climbing plants are also particularly active in cir-
cumnutation movements. Circumnutation is defined 
as ‘a particular class of nutations present in plant organs 
that are actively growing, which generate elliptical/
spiral trajectories’ [93]. They represent a remarkable 
strategy adopted by plants for navigating towards sup-
ports, and they have been characterized in a variety of 
species among a variety of plant organs [93, 94]. Cir-
cumnutations in tendrils and shoots of twining vines 
are particularly evident [32, 74, 90]. Circumnutation 
and thigmotropism are strongly connected in twin-
ing plants, and the particular circumnutation strat-
egy adopted by a specific plant can define its success 
or failure in colonizing a certain area [95]. Studying 
this movement reveals how a plant can adapt in certain 
environments. Experimental set-ups with cameras for 
recording plant movements with tracking methods 
and software can be used to investigate this feature of 
climbing plants [90, 96].
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3.2.  Methodologies and benchmarks for 
circumnutation studies
Since Charles Darwin’s time, circumnutation has 
been widely investigated in the plant kingdom. 
However, the first methods for tracking and recording 
plant movements were not reliable, due to a lack of 
standardization and the poor accuracy of the recording 
methods (e.g. often plant motion was recorded by 
periodically monitoring the plant organ position 
by the human eye or mechanical recording systems) 
[93]. Digital time-lapse recording systems have since 
opened up incredible opportunities for investigating 
circumnutation movements in plants [90]. A plethora 
of studies on the growth kinematics of plants have 
been performed to understand their behaviours (e.g.  
[97–99]. These experiments require autonomous or 
semi-autonomous methods for image analysis, leading 
to the recent trend in developing new tools for studying 
plant kinematics and extracting relevant features. 
These tools typically follow the path taken over time 
and space by a recognizable part of the observed plant 
organ [45, 100–102].

Among climbing plants, the most studied bio-
logical models are the twining shoots of the common 
bean (e.g. Phaseolus vulgaris L.), and tendrils in Pisum,  

Passiflora and Sicyos [90, 103, 104]. The parameters 
characterizing circumnutation movements are (1) the 
amplitude (radius of the helix), (2) the period (time 
needed to perform one complete cycle of movement), 
(3) the shape (circular, elliptical, pendulum or irregular) 
and (4) the direction of motion, which can be clockwise 
(cw) or counterclockwise (ccw) [90]—see figure 4.

Circumnutation parameters vary among different 
plant species and organ morphologies. For example, 
studies on Phaseolus vulgaris L. have shown that the 
amplitude for a shoot movement is generally about 
10 cm [105, 106]; the period ranges from 90 to 100 min 
[105, 106]; the shape is predominantly elliptical or cir-
cular [105, 106]; and the direction of the movement is 
typically counterclockwise [107]. In Phaseolus multi-
florus, temperature affects the periodicity of nutation, 
with a decrease in the cycle length if the temperature 
increases (27 min/15 °C; 12 min/27 °C) [103]. Cur
rent automated methods including digitalized record-
ing devices coupled with computer and data analysis 
systems provide an accurate analysis of the trajectory 
along the three-dimensional axis of the shoot apex 
[106]. A typical set-up for investigating circumnuta-
tion in twining bean stems consists of a support, such 
as a pole, used for the plant to climb around, and two 
cameras, one positioned at the bottom of the pole, the 
other laterally [104].

Although circumnutation is known to be induced 
by variations in cell volume, the complete mechanism 
chain is still not completely understood [90, 94]. A 
dedicated experimental set-up has been developed for 
investigating cell elongation and revolving movements 
in P. vulgaris L. shoots [98]. In that study, a picture of 
the epidermal cells (marked with a dye droplet) in the 
bending zone was taken every ten minutes using a hori-
zontal inverted microscope (time-lapse microphotog-
raphy methods); at the same time, the revolving move-
ment of the shoot was recorded using a video-camera 
placed above the shoot with the images observed on a 
monitor [98]. Interestingly, the researchers discovered 
that during growth and at the same time as the revolv-
ing movement, some cells in the bending zone of the 
bean shoot displayed reversible and rhythmic changes 
in length variations. This behaviour clearly suggests 
that circumnutation is driven by variations in turgor 
pressure, due to cell shrinking/swelling phenomena in 
the bending zone [98].

Several studies have investigated the influence of 
light, darkness, mechanical stress, temperature and 
gravity on circumnutation [90]. A simple dedicated 
device equipped with photoelectric sensors was devel-
oped to investigate the effect of external conditions, 
such as light, temperature and humidity, on P. vulgaris 
L. [108]: temperature, rather than light and humidity, 
was found to strongly affect the duration of circumnu-
tation [108]. Another study [99], exploiting time-lapse 
monitoring using infrared imaging, demonstrated a 
strong influence on the frequency of nutation of dark 
treatments in Arabidopsis thaliana stems. This plant 

Figure 4.  Example of circumnutation. A simplified example 
of Phaseolus vulgaris L. circumnutation movement. The 
main parameters, including the amplitude, period, shape and 
direction, are reported directly in the picture.

Bioinspir. Biomim. 15 (2020) 031001
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model has been widely used for investigating and char-
acterizing circumnutation by setting several different 
ambient conditions, and producing results on a wider 
spectrum for the movement [94, 109]. Similar experi-
ments on different varieties of climbers could be of 
interest for a better characterization of this motion, 
including the vine family.

Mechanical stress can also affect circumnuta-
tion in P. vulgaris L. [110]. Beans stimulated with 10 
rubs showed an increase in circumnutation from 1.4 
to 2.0 h. A similar effect was found in plants subjected 
to thermal stress, including high (45 °C) or low (0 °C) 
temperatures [110], confirming previous results [108]. 
An improved version of the same device [108] was 
developed for the continuous measurements of cir-
cumnutation in tendrils [111].

Experiments on earth and in space have shown a 
relationship between gravity and circumnutation 
[103, 112]. Although the origin and the role of circum-
nutation are not completely clear, the most accepted 
theory proposes that circumnutation is induced by the 
interaction between an internal oscillator and gravit-
ropism [94].

Software has been developed for plant analy-
sis from images or videos (a collection is available at 
www.plant-image-analysis.org), which captures spe-
cific characteristics: leaves (e.g. [113, 114]), roots (e.g. 
[115–117], and shoots (e.g. [118]. For example, the 
Circumnutation Tracker [96] uses time-lapse images 
as input, obtained by observing the plant from the top, 
and provides period, length, rate, shape, and direction 
of movements. The software was tested on Helianthus 
annuus L. seedlings, which, however, have a quite dif-
ferent shoot apparatus from vines, thus the software 
still needs to be verified on climbing plants.

Once a shoot or tendril tip position is obtained 
over time, a Fourier analysis can be performed to 
evaluate circumnutation period and amplitude [98], 
and the trajectories analyzed with a geometry of three 
dimensional curves [119–121]. These kinds of invest
igations may lead to the discovery of new features in 
the growth mechanism, which can also be exploited 
for the control of robots. In fact, the growth mechan-
ics of plants has already inspired kinematic models of 
a plant-inspired robot [122]; while, circumnutation 
has attracted research into formalizing the kinematics 
[123], applying such movements for driving the search 
of a support in tendril-like inspection robots [124], or 

for investigating the role of circumnutation in plant 
roots with a robo-physical approach and analyzing 
the resulting behaviour by using observable and sen-
sorized artificial roots [125, 126]. However, such work 
is only possible through a preliminary and accurate 
data analysis of the biological model.

4.  Behaviour

4.1.  Overview
Plants act constantly in a dynamic environment, which 
subject the plant to a multitude of different stimuli. In 
order to survive, plants need to perceive, to propagate 
the external signals and to process the incoming data. 
These abilities are known as plant cognition [121], 
which define their phenotype and survival without 
a central brain control system. Studying climbing 
plants would be particularly interesting in terms of 
two main features: (i) the ability to differentiate and 
process different stimuli, and (ii) the ability to localize 
the surrounding items and different external supports. 
Investigations on the strategies used by climbing plants 
to localize and perceive a support require dedicated 
sets of experiments, appropriate touch testing set-ups, 
and a multidisciplinary approach.

4.2.  Methodologies and benchmarks for perception 
studies
The adaptive growth of plants is grounded on 
the ability to perceive, differentiate, and respond 
to environmental stimuli. Sensitivity to contact 
stimulation is vital for climbing plants because 
they need to rapidly find an external support and 
understand whether or not it will facilitate their 
growth, otherwise they perish [34, 41]. In many 
lianas of the tropical rainforest, the apical part act 
as a ‘searcher’ looking for a suitable support or 
growing towards light [34]. Investigations into the 
effects of the mechanical perturbation induced 
by stimuli, such as touch, gravity, rain or wind, 
on plants need to be performed at different levels, 
using anatomical, biomechanical, biochemical and 
molecular methods [41].

The most common biological model used for inves-
tigating plant response and/or mechanical stimuli dif-
ferentiation is Arabidopsis thaliana [37, 130–132].  
There are fewer studies on climbing plants, and these 
mainly use tendril-bearers to analyze their mechano-

Table 3.  Examples of tendril-bearer species. Description of the site of irritability (ventral or dorsal), the sensitivity (minimum weight 
needed for a response), and the reaction time of a given species. Adapted from [39].

Species (family) Irritability (dorsal and/or ventral)

Sensitiv-

ity (mg) Reaction time References

Passiflora gracilis (Passifloraceae) Ventral 1.0 25 sec [31, 127]

Cissus discolor (Vitaceae) Ventral and dorsal 9.3 35 min [31, 128]

Pisum sativum (Leguminosae) Ventral 9.3 2 min [31, 40, 129]

Sycyos angulatus (Cucurbitaceae) Ventral 3.5 30 sec [127, 128]

Corydalis claviculata (Fumariaceae) Not available 8.1 18 h [31, 127]

Bioinspir. Biomim. 15 (2020) 031001
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sensing (e.g. Bryonia dioica Jacq.) [133–136]. In the 
early studies, a climbing plant was stimulated by apply-
ing a mechanical stress, such as touching, rubbing or 
flexing using weights [31, 39, 41, 134]. A rough sup-
port, applied along the tendril surface, was generally 
found to elicit a better response than a smooth support 
[133, 137].

Key features during artificial translation are the 
shape and the mechanical aspects of a given specialized 
sensory organ.

The most studied mechanosensory organ in climb-
ing plants is the dome-shaped structure present in the 
epidermal cells of B. dioica Jacq. tendrils, called ‘tac-
tile bleps’ [136]. SEM investigations showed that they 
are homogeneously distributed on both the upper 
and lower side of the tendril, with a basal size of about  
4–5 µm [136]. Tactile bleps are composed of hetero-
geneous materials, including cellulose, callose, cyto-
plasm and cell walls, and they are more sensitive to 
shear than normal stimulation [136]. The calcium-
related cytological pathway with calmodulin protein 
is the most common touch-sensitive process in plants 
[37, 138]. In tactile bleps, the membrane-associated 
calcium was localized using CTC (chlortetracycline) 
fluorescence and investigations into the biochemical 
assay, demonstrating that tactile bleps are the site of 
calcium accumulation [136].

Similar mechanosensing structures are found in 
the tendrils of P. tricuspidata [59]. Its shoot surface is 
covered with small hooks showing patterns of pro-
trusions and socket cells at the base of the hook. The 
authors suggested that the socket cells may trigger con-
tact recognition, while the protrusions act as mecha-
noreceptors, as in the case of the tactile bleps found in 
B. dioica [59, 136]. Besides tactile bleps, many other 
types of epidermal cells may act as mechanoreceptors 
in climbing plants, and these still need to be classified.

Other benchmarks that could be useful for the arti-
ficial translation of plant perception include the type 
of stimulus, reaction time, irritability area (e.g. dor-
sal or ventral), sensitivity (e.g. the minimum weight 

needed for a response) and the type of response. Early 
studies extracted some of these benchmarks from the 
tendrils of different species, which were mechanically 
perturbed [31, 39]. Table 3 summarizes the character-

istics of selected examples of tendrils species.
The irritability of tendrils occurs on the ventral 

and/or dorsal surfaces [39]. Some tendrils of plants 
such as P. gracilis (Passifloraceae), P. sativum (Legu-
minosae) and S. angulatus (Cucurbitaceae), are only 
sensitive on the ventral surface, while others, such as  
C. discolor (Vitaceae) are sensitive on both sides [38]. 
The sensitivity ranges from 1.0 mg in P. gracilis to 
9.3 mg in P. sativum and C. discolor [37].

The minimum weight for promoting coiling is 
0.25 mg [134]. The reaction time ranges from a few 
seconds to many hours in relation to different spe-
cies [39]. The response to touch in climbing plants is 
a positive thigmotropism, which means that bending 
follows the direction of the stimulus [37].

Given that these experiments were performed 
several decades ago, many parameters still need to be 
analysed. For example, the kinetics of the stimulus-
response in climbing plants could be better inves-
tigated using an accurate feedback system for angle 
determination, as in the studies on Arabidopsis thali-
ana roots [142]. In addition custom-made tools could 
be used to control the force, area and frequency of the 
induced mechanical stimuli [143].

Plants are probably also able to differentiate 
between different mechanical stimuli. For instance, in 
[144], the authors investigated the effects of wind and 
an artificially-induced mechanical stress on leaf traits 
in Plantago major plants, and observed different mor-
phological and biomechanical changes (e.g. slender/
thicker petioles). They used a rotating table at a fixed 
speed, on top of which the plant was placed. While 
rotating, the plants were randomly stimulated by 
brush or wind, which was measured with an anemom-
eter [144].

We are still far from understanding the percep-
tion mechanisms in plants. Identifying which types 

Table 4.  Main approaches and discoveries concerning the recognition of a support in climbing plants.

Selected 

plant Stimulus Target Methodology Discovery

Refer-

ences

Monstera 

gigantea

Darkness Host trees Measure of average angle 

and standard deviation of 

growth towards the host

Growth toward the target is due 

to darkness caused by tree’s host 

shadow (skototropism)

[139]

Cuscuta 

pentagona

Volatile 

cues

Natural and artificial 

plants, grasses of 

different colours and 

most soil types

Tracking methods in asso-

ciation with a dedicated set 

up and gas chromatography

Growth toward the target is due to 

emission of volatile cues (which 

mediate ecological interaction 

among plant species)

[140]

Ipomea 

hederacea

Colour of 

the support

Black, blue, red, 

white, green, and 

yellow stakes/painted 

structures or corn

Measure of photon densi-

ties and frequency (%) of 

plants that successfully 

climb over a given object

Growth path is preferentially 

toward given coloured structure 

(green, yellow, white) or corn plants

[141]

Boquila 

trifoliolata

Undiscov-

ered

Host trees Leaf phenotype analysis of 

all leaf traits

Leaf morphing by mimicking 

several hosts for protection against 

herbivores

[43]
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of sensory organs are involved in the response to 
touch stimulations, would help to clarify how climb-
ing plants differentiate between useful stimuli from 
perturbations. Research in this field would open new 
opportunities for developing new sensors and multi-
functional materials for soft robotics.

4.3.  Methodologies and benchmarks for decision-
making studies
Although a random motion may be involved in the 
search for a support in some species of climbing plants 
[33], some studies have also considered decision-
making abilities in plants [43, 133, 139–141], as already 
reported for other organisms lacking a central brain 
(e.g. [145–147]).

Table 4 summarizes the main approaches and 
discoveries concerning the recognition of a sup-
port in climbing plants. The experimental targets of 
the selected experiments include natural host trees 
or plants, artificial plants or different coloured sup-
ports. Various studies have used different targets and 
approaches, and have discovered which type of stimu-

lus is involved in the preferential choice of a support.
One of the oldest works regards the tropical twining 

vine Monstera gigantea, which lives in Caribbean low-
land forests [139]. The authors considered two main 
variables: (i) the average angle of growth, and (ii) the 
standard deviation in the growth of the elongating stem 
of M. gigantea seedlings towards the host tree. If the 
angle and the standard deviation were 0°, it meant that 
the average growth of the selected models was directed 
towards the target and all the selected seedlings were 

growing in the same direction. The authors thus dem-
onstrated that all seedlings, coming from all directions, 
move by growing towards the shadow sector of the 
horizon (skototropism), produced by the host trees (or 
panel supports). This type of attraction was observed 
to decrease with the distance to the tree, and to increase 
with an increase in tree diameter [139].

Another very interesting work investigated the 
ability of the twining vine Ipomoea hederacea (Ivyleaf 
morning glory) to differentiate between objects of var-
ious colours and plants [141]. The experiments were 
conducted in a greenhouse and in the field, evaluating 
whether and how many morning glory plants exhib-
ited climbing or non-climbing on coloured objects 
(e.g. black, red, blue, yellow, green and white stake or 
painted structures), or on corn plants as hosts. A radio 
spectrometer was used to measure the spectral qual-
ity of the reflected solar radiation of each stake/painted 
structure. The frequency (%) of morning glory plants 
that successfully climbed over a given object was cal-
culated. In addition, objects were placed at different 
distances to evaluate whether plants responded to the 
spatial distribution of the objects. Greenhouse experi-
ments showed that morning glory plants grew pref-
erentially on corn plants (92%), and over green and 
yellow stakes (75%), while field experiments showed 
that plants grew preferentially on green (67%) and 
white (64%) structures, and corn plants (61%). In 
both environments, only a few vines grew over black 
stakes (10%–17%). In addition, Ivyleaf morning glory 
plants seemed to respond to the spatial distribution of 
the objects and probably used reflectance to preferen-

Figure 5.  Leaf mimicry in the woody vine Boquila trifoliolata. Reprinted from [43].
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tially direct their growth towards an object for climb-
ing [141]. Future studies could focus on performing 
similar experiments with other climbing plants spe-
cies to verify the level of variety among species and to 
validate the presence of other stimuli and mechanisms 
involved in support identification.

Experiments on the parasitic climbing plant Cus-
cuta pentagona (dodder) elucidated the role of differ-
ent stimuli on the preferential growth direction of the 

plant apex [140]. The authors monitored the growth of 
the dodder placed near a piece of filter paper towards 
a stimulus (e.g. natural tomato, glasses with a differ-
ent colour, moist soil, volatiles or artificial plants) 
at the opposite side. The final position of the apexes 
was marked and the percentage of success in reach-
ing the target was calculated [140]. Comparing the 
response to natural tomatoes and artificial plants, the 
dodder was more responsive to natural (73%–80% 

Table 5.  Main examples of how climbing plant features have been transferred into real-world applications.

Artificial 

systems Bioinspiration Translation

Real-world  

applications References

Growing robots Cell elongation and/or division  

at the apical tips in plants

Skin eversion for lengthening from 

the tip. The relative length of opposite 

sides were controlled by launch/un-

launch of pitches

Exploration,  

monitoring, search 

and rescue

[153, 154, 174]

Symmetric deposition of PLA using a 

miniaturized 3D printer at tip level.  

Tip is sensorized

[27]

Differential cell distribution at  

the opposite sides of tips for  

bending in plants

Asymmetric deposition of PLA using 

a miniaturized 3D printer at tip level 

(e.g. printing different thickness layers 

or variable number of layers). Tip is 

sensorized

[122, 152]

Continuum 

robots

Tendril-like behaviour (e.g. the  

capacity to go into tight spaces) 

Spring-loaded modular bending  

segments (1)

Minimally invasive 

inspection in space

[156]

Improved design of (1), with an  

increase in the length (increased  

number of springs in series) and a  

decrease in spring stiffness

[157–159]

Programmable 

materials

Reversible plant movements  

(e.g. circumnutation and coiling  

in tendrils)

Models, simulations and fabrication  

making use of SMA

Manipulation and 

grasping

[162]

Electrosorption of ions on flexible 

carbon electrodes driven by low  

input voltages

[166]

G-fibre asymmetric contraction  

during tendril coiling (different  

reinforcement level)

3D printing of an active polymer  

material on a paper substrate, resulting  

in a bilayer structure with an active and  

an inactive part

[165]

Biomimetic design of natural  

prickles of the hook-climber Rosa  

arvensis Splendens

3D Laser Lithography, molding of 

PDMS, and casting of PCL@Au NPs  

for actuation

Remote control  

device (e.g. to release 

objects)

[167]

Biomimetic design of natural  

hooks of the hook-climber Galium  

aparine

3D prototyping technique and Fe3O4  

NPs for actuation

Dry adhesives 3D Laser Lithography technique Mechanical interlock-

ing for attachment 

with micro-rough 

surfaces

[169]

Biomimetic replica of natural  

surfaces of the hook-climber  

Galium aparine

Resin replica molding technique [168]

Wet adhesives Biomimetic of the honey-comb  

like microstructure of the tendril-  

bearer Parthenocissus tricuspidata

Hierarchical anodic aluminum  

oxide template

Adhesive for high 

water adhesion  

(e.g. industry)

[170]

Nanoparticles Arabinoglactan protein-rich  

nanoparticles obtained from the  

sticky exudates of the adhesive  

roots (INPs) of the root-climber 

Hedera helix

Production, isolation, purification,  

and characterization of INPs.  

Formation of INP-drug conjugates

Biocompatible  

nanomaterial for 

medicine (e.g. drug 

delivery)

[151]

Sensors Sensory organs for  

mechanoperception (tactile blep)  

in tendrils of Bryonia dioica

Tactile blep design used in FEM  

simulations

Electronic skin  

(e.g. soft robotics)

[25]

Distribution and structure of  

the sensory organs (tactile papillae)  

in tendrils of Cucumis sativus

Tactile sensors based on fiber optic  

light modulation

Surgical soft  

manipulator

[172]
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of seedlings grown towards the target) with respect to 
artificial plants (40% of seedlings grown towards the 
target), demonstrating the role of chemical volatile 
cues in host localization [140].

One of the most fascinating, yet unclear and still 
mysterious, findings involves the woody vine climb-
ing plant Boquila trifoliolata living in the temperate 
rainforest of southern Chile [43]. The authors dis-
covered that the leaves of this species can morph and 
mimic its host. In fact it seems that the leaves of this 
plant can change colour, as well as shape, orientation, 
petiole length and/or tip spininess in order to protect 
itself against herbivorous (figure 5) [43]. The authors 
observed this phenomenon in the climber’s natural 
habit, and performed a phenotype analysis of plant 
leaf traits to investigate how this plant finds host trees 
[43]. They did not identify the stimulus involved but 
speculated that the host emits volatile cues that can 
be detected by B. trifoliolata, or alternatively that the 
leaf morphing might entail a horizontal gene transfer 
between plants. Leaf morphology change is a well-
known phenomenon in other climbing plants, such as 
English ivy, induced by developmental evolution (het-
erophylly) [44]; however, the morphological change 
occurring in the B. trifoliolata seems to differ in the 
mimicking ability that this plant appears to show for 
its host, with an underlying mechanism still unknown 
(e.g. whether the change is intrinsic to the develop-
mental trajectory or induced by external cues) [43]. 
Recent insights into how gene activity directs organ 
shape suggest the existence of a feedback system for 
the mechanical regulation of morphogenesis in leaves, 
which means that mechanical heterogeneity within 
the tissue may be necessary for organ shape morpho-
genesis [148]. Biological investigations on this specific 
plant model could provide a deeper understanding of 
the mechanisms behind plant responses to signals. If a 
plant is able to mimic its host, it has some undiscovered 
ways of acquiring and processing information on the 
shapes and forms of the host plant which might conv
erge into recognition ability behaviour [149]. Further-
more, discovering the mechanisms driving this mor-
phogenesis opens up new opportunities in the artificial 
world for developing controllable morphing devices 
and robots that are able to autonomously adapt and/
or change their body, if necessary, with respect to any 
objects and/or context.

5.  How knowledge of plant can be 
transferred to the artificial world

The last few years have witnessed an increase in the 
number of artificial systems inspired by plants [150], 
particularly by climbing plants [30, 45]. Since this 
review aims at providing methodological guidance 
for biological investigations useful for technology and 
not to review plant-inspired artificial systems, here 
we provide an overview of the main plant-inspired 
implementations available to date. Table 5 summarizes 
such systems, which include innovative growing and 
continuum robots, programmable materials, dry and 
wet adhesive surfaces, and nanoparticles and sensors, 
for applications spanning from space to robotics and 
medicine [124, 126, 151]. Figure 6 shows a selection of 
the main climbing plant-inspired robots developed in 
recent years.

Growth ability is one of the most interesting fea-
tures for designing innovative artefacts acting in real 
and unstructured environments. Plant roots have been 
investigated to develop the first autonomous robot 
able to move in soil by growing [26, 27]. This robot, 
named Plantoid, embeds a miniaturized 3D printer in 
the tip of the root-like robotic system and moves in the 
environment by adding new thermoplastic material 
layers [122] (figure 6(A)). The robotic tip integrates 
sensors to detect environmental stimuli (e.g. humid-
ity, gravity, temperature and touch) and implements 
a tropic-like behaviour to direct its motion [26, 152]. 
Other examples of artificial growth include soft robots 
that elongate by skin eversion in order to lengthen 
themselves from the tip by pressurizable chambers, 
and bending by launch/unlaunch of pitches (figure 
6(B)) [153, 154]. An overview of artificial systems 
implementing growth or eversion abilities is reported 
in [155].

The first continuum robot inspired by the biology 
of tendrils was developed at NASA’s Johnson Space 
Center for minimally invasive inspection in space 
[156]. This tendril-like robot is a long slender manip-
ulator, designed with multiple bendable segments 
containing compression and extension springs [156]. 
Improved versions of this robot accounted for an 
increased number of springs and a decreased stiffness 
of the spring (figure 6(C)) [157–161]. Another work 
on plant-like systems focused on circumnutation 

Figure 6.  Selected examples of plant-inspired robots. (A) The first self-adaptable growing robot inspired by plant roots. (B) 
Soft robots inspired from apical extention in filamentous structures. Adapted from [173]. (C) Vine-inspired continuum robot 
(OCTARM). Adapted from [161]. (D) Tendril-like soft robot based on reversible osmotic actuation.
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movements and coiling as strategies for grasping 
objects [162]. The authors proposed a simplified kin-
ematic model that was implemented on a prototype 
actuated by shape memory alloys (SMA) to perform 
coiling [162]. The coiling mechanism in tendrils has 
been widely mimicked for developing new innovative 
programmable materials [163–165].

A very interesting example of this type of transfer-
ence includes a tendril-inspired soft gripper with pro-
grammable deformations that can bend, perform spi-
ral and helical motions for grasping [165]. This device 
was fabricated via a 3D printing approach of a ther-
mal-responsive polymer material on a paper substrate, 
resulting in a bilayer structure with different patterns 
with an active and an inactive layer [165]. A variable-
stiffness tendril-like soft robot based on osmotic 
actuation has been developed through the use of the 
electrosorption of ions on flexible carbon electrodes 
driven by input voltages (figure 6(D)) [166].

New dry and wet adhesive materials have been 
inspired by the attachment and anchoring mechanisms 
of climbing plants [45, 151, 167–170]. Some recent 
works regard the hook-climber G. aparine [167–169]. 
This plant shows a unique ability to adhere to several 
micro-rough objects, above all via its leaves, using 
hooks for mechanical interlocking [54]. G. aparine has 
been used as a model for developing new soft dry adhe-
sive devices based on epoxy resina molding [168]. Arti-
ficial arrays of hooks at different scales were designed 
by extracting the morphological parameters from the 
abaxial and adaxial hooks in the real plant and fabri-
cated using direct laser lithography (DLL) for the rapid 
prototyping of 3D microstructures [169].

Novel control devices for the remote release of 
objects at different scales have been inspired by hook 
climbers [167, 171]. Specifically, a rose-inspired biomi-
metic device with micro-prickle-like hooks with vari-
able stiffness was developed using a combination of 
different techniques, such as DLL, molding of PDMS 
and casting of polycaprolactone with embedded gold 
nanoparticles (PCL@Au NPs) [171]. Also, a 3D printed 
biomimetic surface has been fabricated with tunable 
frictional anisotropy, containing hooked structures 
made of rigid PLA embedded in Fe3O4 nanoparticles, 
capable of supporting layer rigidity variation [167]. 
Observations of the biological adhesion of P. tricus-
pidata and their microstructure, led to an advanced 
composite adhesive material for high water adhesion 
that was made into a polystyrene honeycomb-like 
microstructure [170]. Nanoparticles composed of 
arabinogalactan proteins (INPs) were obtained from 
the sticky exudates of the adhesive roots of H. helix in 
order to develop biocompatible nanomaterial for drug 
delivery [151].

The sensory organs of tendrils have inspired 
the innovative sensors for soft robotics and surgical 
applications [25, 38, 172]. Blandin’s work focused on 
the tactile bleps of B. dioica [25], in which the shape and 

biomechanical properties were mimicked in a simpli-
fied design, and FEM simulations were performed to 
evaluate the deformations achievable in the natural 
bleps [25]. Finally, by mimicking the papillae (sensory 
organs) design of cucumber tendrils, a tactile sensor 
based on fiber optic light modulation was built [172].

6.  Concluding remarks and future 
outlooks

This review has outlined the biological tools and 
approaches used in biology for extracting benchmarks 
from climbing plants in order to: (i) improve the basic 
knowledge of their properties and behaviour, and (ii) 
develop innovative artefacts. We have highlighted 
the main methodologies adopted to investigate the 
morphological and biomechanical adaptive properties 
of climbing plants, their circumnutation movements, 
and their perceptive and recognition behaviours.

Several studies have been performed on climb-
ing plants revealing the structural and biomechanical 
changes in organization for several lianas and vines 
[49]. Despite all of these, many aspects remain unre-
vealed. For instance, there is a lack of data about adhe-
sive roots of vines and lianas (except for few examples 
[47, 56, 58]). Also, it is still unclear how stems of some 
species can reach high breaking strain (e.g. strain of 
G.aparine stem does not show correlation with micro-
fibril orientation [53]). A broader dynamic invest
igation of how mechanical properties and structural 
arrangements vary along climbing plant bodies from 
the macro- to the nanoscale could open new opportu-
nities for a deeper understanding of these mechanisms 
and could lead to the development of bio-inspired soft 
robots with a high strain capacity and new adhesive 
devices. One of the main limitations for developing 
soft climbing plant-inspired growing robots is the type 
of artificial material available to enable growth, which 
has to be suitable for managing e.g. deposition or infla-
tion, but at the same time it is desirable to embed both 
sensing and actuation ability. A deep 3D reconstruc-
tion of the climbing plant organs can lead to fiber-ori-
ented innovative materials for sensing and actuators in 
soft robotics.

Further research on circumnutation in twining 
vines and tendrils could help to improve our knowl-
edge of growth-induced motions in plants. New soft-
ware is needed to perform accurate analyses of circum-
nutation in order to obtain kinematic control theories, 
which would be useful in robotics. Also, only a few 
sensory organs in climbing plants have been inves-
tigated (e.g. tactile bleps in B. dioica, [136]). Further 
research needs to focus on the characterization of sen-
sory organs of various species and on the mechanisms 
behind the identification and recognition of several 
stimuli, for developing new multifunctional materials 
and sensors. Finally, we still have a limited knowledge 
on how climbing plants direct their growth preference 
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towards different targets (e.g. through the detection of 
volatile cues [140]).

The discovery of the morphing abilities of B. trifo-
liolata [43] has opened up new issues, such as whether 
and how a plant can recognize shape and forms with-
out a brain or vision. This morphing capability is 
unique among living organisms and it could be corre-
lated to structural and biomechanical internal changes. 
A recent discovery suggests that simple changes in cell 
wall stiffness in plants can induce morphogenesis dur-
ing the shape of organ development [148].

A deeper understanding of these mechanisms will 
open up new opportunities in the artificial world for 
developing autonomous intelligent systems that can 
morph and adapt their body to unpredictable sce-
narios. Disruptive innovations will come from the 
pioneering research on climbing plant-inspired soft 
robots, which could be applied to a wide range of fields, 
including architecture and urban environment main-
tenance and development (e.g. self-repairing growing 
structures), in exploration and inspection applica-
tions (e.g. in archaeological sites or other and delicate 
confined spaces), or for continuous monitoring in 
unstructured environments.
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