
An Overview of Lidar-Assisted 
Control Part I

Main questions today
Ø Part I: How can we obtain useful information for controls 

from lidar systems? 
Ø Part II: How can these signals be used to improve wind 

turbine control?
Ø Part III: What are practical considerations when 

implementing lidar-assisted control in the field? 
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Wind Field Reconstruction
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• Lidar direction vector

• Lidar line-of-sight velocity
• Projection of wind vector 

onto lidar direction

• Want to estimate wind field 
parameters relevant to control
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• Wind field model: 
• Horizontal and vertical shear 

with v = w = 0

• Linear shear slopes: Δ), Δ*

• Line-of-sight velocity

Wind Field Reconstruction: 3-Beam Shear Example
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• Wind field model: 
• Horizontal and vertical shear 

with v = w = 0

• Wind field reconstruction

Wind Field Reconstruction: 3-Beam Shear Example
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Measurement Coherence

• Quality of a lidar measurement signal 
often determined using measurement 
coherence

• Magnitude-squared coherence
• Correlation between two signals as a 

function of frequency

• 0 → no correlation
• 1 → perfect correlation

Wind

Setpoint
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Measurement Coherence Example

f = 0.025 Hz

Coherence “bandwidth”: 𝛾3!""43!""
% 𝑓 = 0.5

Lidar measurements compared to 
rotor average wind speed
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Measurement Coherence Example

f = 0.025 Hz f = 0.22 Hz

Lidar measurements compared to 
rotor average wind speed
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Measurement Coherence Example

f = 0.025 Hz f = 0.22 Hz

Lidar measurements compared to 
rotor average wind speed
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Measurement Filtering

• Lidar measurement filter used to remove 
uncorrelated high frequency content 
from measurement

• Optimal measurement filter minimizes 
mean square error of measurement [1,2]
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Measurement Coherence Calculations

• Measurement coherence calculated using 
frequency domain techniques [2-4]

• Assumptions
• Lidar measurement and rotor effective wind 

speeds are a linear combination of point wind 
speeds

• Inputs to measurement coherence model
• Scan pattern
• Wind field reconstruction equation
• Lidar weighting function (from literature)
• Turbulence model

• Power spectra (from IEC standard)
• Spatial coherence (from IEC standard)
• Longitudinal coherence wind evolution 

model (from literature)
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Scan Pattern Optimization - Objectives

• Maximize coherence bandwidth
• Frequency where coherence = 0.5

• Minimize measurement error [1]
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Circularly Scanning Lidar Optimization Example

• Optimal scan parameters
• Scan radius r: 60-65% rotor radius
• Preview distance d: 60-70% rotor diameter

• Details in [5] 
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Lidar Scan Pattern Optimization Study

-50

50

0

z 
(m

)

0

y (m)

50

(a) Point Measurement

0

x (m)
-50-50 -100

-50

50

0

z 
(m

)

0

y (m)

50

(b) 2-Beam CW Lidar

0

x (m)
-50-50 -100

-50

050

0

z 
(m

)

(c) 2-Beam Pulsed Lidar
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(f) Circularly Scanning CW Lidar
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• Scan patterns optimized for 
rotor effective wind speed 
measurements [5]

• Preview distance and opening 
angle optimized
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Lidar Scan Pattern Optimization Study

Details in [5] 
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Conclusions

• Line-of-sight measurements fit to a wind field model to estimate relevant wind 
parameters – wind field reconstruction 

• Coherence can be used to determine lidar measurement quality

• Lidar measurements should be filtered to remove uncorrelated frequencies

• Measurement coherence can be calculated using a frequency domain wind field 
model to optimize scan patterns

• Scan patterns that cover more of the rotor area result in higher measurement 
coherence
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