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ABSTRACT 

The present study proposes a novel method for simulation of flows by a compressible LB 

model in order to enhance the robustness using Qadyan numerical method. The Qadyan 

method is a combination of semi-discrete schemes to create a system of ordinary differential 

equation and differential quadrature method. To illustrate the validation of the proposed 

method a benchmark is used to solve the mesoscopic variables of lattice Boltzmann (LB) 

model in Riemann problem and good agreements for inviscid flows have been obtained. 

 

Keywords:-LBM; Ghost field; Gibbs oscillations; Qadyan method; Mesoscopic variables; 
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INTRODUCTION 

The original LB model by Kataoka and 

Tsutahara (KT) [1] uses general finite 

difference scheme with first-order forward 

in time and second-order upwinding in 

space. In order to obtain higher-order 

accuracy in the LBM, some researchers 

were employed the ghost field distribution 

functions to remove the non-physical 

viscous parts [2]. They also were used the 

conditions of the higher moment of the 

ghost field equilibrium distribution 

functions to obtain the new equilibrium 

distribution functions. Some numerical 

experiences show that the second-order 

finite difference scheme for calculation of 

space derivative, causes the Gibbs 

oscillations around the discontinuities [3]. 

Differential quadrature method (DQM) has 

been projected as a potential alternative to 

the conventional numerical solution 

techniques such as the finite difference and 

finite element methods [4]. Lattice 

Boltzmann method (LBM) unlike the 

traditional methods which solve the 

NavierStokes or Euler Equations directly, 

this method is based upon solving 

mesoscopic kinetic equation (Boltzmann 

Equation) for the particle distribution 

function [5]. Solution of the Riemann 

problem is a key ingredient of the 

conservative schemes to solve the Euler 

equations [6]. The exact solution of 

Riemann problem is useful in a number of 

ways. The solution contains the 

fundamental physical and mathematical 

character of relevant set of conservation 

laws subject to the initial conditions [7]. 

The exact Riemann problem solution is 

often used as a benchmarking case in 

assessing the performance of numerical 

methods [8]. Several solution techniques 

have been suggested in the literature to 

solve of initial and/or boundary problems. 

The differential quadrature method is one 

of the numerical methods. In this paper, a 

novel solution named Qadyan method is 

introduced by using of semi-discrete 

scheme and DQM. This numerical method 

confirms that macroscopic parameters 

(velocity, pressure, temperature and 

density) obtained by solving LBM reduce 
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oscillations and satisfy the fluid dynamics 

equation (Euler Equation). The following 

parts of the paper are planned as follows. 

Next section describes briefy the Riemann 

problem and discontinuous solutions. 

Derivation details of the discrete velocity 

model are available in KT [1] so, they are 

not repeated here. However, for the sake of 

completeness, a brief description of 

governing equations of lattice Boltzmann 

model are given next. Then Qadyan 

numerical method is described. Results 

and discussion is presented in next section. 

Final section makes the conclusion for the 

present paper. 

 

Riemann Problem and Discontinuous 

Solutions 
In the context of Euler equations, Riemann 

problem is a slight generalization of the so 

called shock tube problem in which two 

stationary gases are separated by a 

diaphragm and the rupture of diaphragm 

generates a wave system. Elementary 

waves such as rarefaction waves, contact 

discontinuity waves and shock waves will 

be described and basic relations across 

these waves will be established. These 

relations are used to determine the 

complete solution of the Riemann 

problem. There is no closed-form solution 

to the Riemann problem and iterative 

schemes are used to arrive at the solution 

with a desired accuracy. In Riemann 

problem, the initial state of gases need not 

be stationary. The Riemann problem for 

the one-dimensional time dependent Euler 

equations is the initial value problem 

0)(  xt WFW                                        (1) 

with initial data RL WW , as bellow 
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Data consists of two constant states, which 

in terms of initial variables are 
T

LLLL puW ),,( to the Ileft of  5.0x and 
T

RRRR puW ),,( to the right of 5.0x , 

separated by a discontinuity at 5.0x . For 

the case in which no vacuum is present 

(presence of vacuum is characterized by 

the condition 0 ), the exact solution of 

Riemann problem as shown in Fig. 1 has 

three waves. These three waves separate 

our constant states which from the left to 

right are T
LLL pu ),,(  (data on left hand 

side), T
L pu ),,( *** , T

R pu ),,( *** , 
T

RRR pu ),,(  (data on the right hand side). 

The unknown region between left and right 

waves is the ‘Star Region’ which is 

separated into two sub-regions i.e. Star left 

)( *
LW  and Star right )( *

RW . The middle 

wave is always the contact discontinuity 

wave while the left and right waves may 

be shock or rarefaction waves. 

  

 
Fig.1:-Schematic Riemann problem and 

three waves 

 

Pressure *p and velocity *u do not vary 

across the contact discontinuity wave 

while the density takes two different 

values *
L  and *

R . A solution procedure is 

now explained to compute the parameters 

in the Star region. In the following, we 

limit the discussion to the case in which 

the left wave is a rarefaction wave and the 

right wave is a shock wave.  

 

The solution for pressure *p  of the 

Riemann problem is given by the root of 

algebraic equation 
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The unknown pressure *p is obtained by 

solving the above algebraic equation 

which has the monotone and concave 

down behavior. Since behavior of the 

function is particularly simple and 

analytical expression for its derivative is 

also available, finding the equation roots 

numerically is straight forward. For 

example Newton-Raphson iterative 

procedure may be employed to find its 

root.  

The solution for velocity *u  is given by 
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where LLL pa  /  is sound speed with 

data on left hand side the tube. Note that 

The wave speed of contact discontinuity 

wave is .*u In the case of rarefaction wave 

at left and shock wave at right, three waves 

from left to right are left rarefaction wave, 

contact discontinuity wave and right shock 

wave, respectively. Density *
L is obtained 

from the relation 

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and density *
L is obtained by 
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The solution for T

fanfanfan
pu ),,( , inside the 

rarefaction fan is given by 
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The rarefaction wave is enclosed by the 

Head and the Tail, and the speeds of these 

Head and Tail are given by 

LLH auS                                              (8) 
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and the shock wave speed is computed 

using the relation 
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The complete solution set in terms of 

macroscopic variables ),,( pu  to this case 

is 
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Governing Equations of the Lattice 

Boltzmann Model 

The one-dimensional LB model by 

Kataoka and Tsutahara (KT) as considered 

in ref. [1] uses 5-particle discrete velocities 

model that is proposed for a compressible 

perfect gas. In this model, the equilibrium 

distribution function was proposed as 

though the compressible Euler equations 

are obtained. Figure 2 illustrates the sketch 

of this discrete-velocity-model. The model 

uses a lattice with 4 links that connect the 

center node to 4 other nodes. Here is 

assumed that particles are divided into 

three kinds that move the link with 

velocities 0 (the rest particle) 1c  and 2c . 

The amounts of 1c and 2c does not seem 

unrelated to the flow velocity u  and 2c is 

generally chosen 1.0 ~ 3.0  times of 1c . 

 

 
Fig.2:-The lattice of 5-particle discrete 
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velocities model 

 

Consider the ( , )if tx  as the distribution 

function at site x  and time t , with velocity

iv , we define the initial-value problem of 

the Bhatanger-Gross-Krook-type kinetic 

equation 

eq1
v [ ( , , ) ]i i

i i i

f f
f u T f

t
 






 
  

 x  
     (12) 

with the initial condition 
eq 0 0 0( , , ) at 0i if f u T t            (13) 

where eq
if  is the discrete version of the 

local equilibrium distribution function; 

index 1,2   corresponding to yx,  

respectively; iv  the i th discrete velocity, 

0,..., 1i N  ; N is the total number of the 

discrete velocity; and   is the single 

relaxation parameter that  expresses the 

rate at which the local particle distribution 

relaxes to the local equilibrium state. This 

parameter determines how the momentum 

is transferred between the fluid particles in 

the collision process.  

The local particle density  , 

hydrodynamic velocity u  and 

temperature T  are defined by 

i

i

f                                              (14) 

vi i

i

u f                                       (15) 

2 2 2( ) (v )i i i

i

bRT u f                  (16) 

where R  is the specific gas constant, b  

relates to the specific-heats ratio   as 

follows, 2 / ( 1)b    to make it flexible 

and i  is another variable introduced  

0 0

0 1, ...,4
i

i

i





 


                               (17) 

Perfect-gas equation relates between the 

temperature T and pressure p  as follows 

p RT                                                (18) 

Considering L , 0 , 0T  as the reference 

length, density, temperature, and the 

reference speed   5.0
00 RTe   the non-

dimensional quantities are defined as 

L/xx̂   , )//(ˆ
0eLtt  , 0/vv̂ eii   , 

0/ˆ ii ff  , 0/ˆ eq
i

eq
i ff   which lead to non-

dimensional form of the evolution LB 

equation 

]ˆˆ[
ˆ
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 x
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where parameter Le /ˆ
0   is the Knudsen 

number. The non-dimensional form is used 

for further discussion, but for the sake of 

convenience we drop the hat mark from 

henceforth. In the one-dimensional case, 

discrete velocities (Fig. 2) are defined as 

1 1

2

0, 0

v cos[( 1) ], 1,2

cos[( 1) ], 3,4

i

i

c i i

c i i
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The equilibrium distribution function eqf   

is calculated in the following ways, 
eq

1( v ) , 0,1,...4i i i if A B u i        (21) 

where coefficients ii BA ,  are determined by 

a set of reasonable requirements. The 

following constraints are imposed on the 

moments of eq
if (Here, the summation 

convention is not applied to the subscript 

i representing the kind of particles). Note 

that, besides the non-dimensional 

quantities as defined before the 

macroscopic variables  , u , p  and T  

actually are in non-dimensional form 

regarding to reference length, density, 

temperature, and the reference speed      (

0/ˆ   , 0/ˆ euu   , 0/ˆ TTT  , and

)/(ˆ 2
00epp  , also 0/ˆ eii   ). 
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The complete solution set for the 

distribution functions is 

1
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In the lattice Boltzmann model, if we 

assume that the gas is near-vacuum 

condition, the collision does not occur in 

the range of the mean free path. Therefore, 

we define the vacuum as a region where 

there is no particle collisions in the interval 

of t  to t t  . On the other hand, if we 

delay the time, i.e. increase the collision 

time, collisions will surely occur.  Thus, 

the phrase of    corresponds to
eqf f  and in the numerical solutions 

when 0t  at time-marching ( , )if tx can 

be approximated by ( , ).eq
if tx  Therefore, 

the following moments of ( , )eq
if tx can be 

used to obtain the macroscopic variables 
, , .u T  

  eq
i

i

f                                         (25) 

eq
1vi i

i

u f                                      (26) 

2 2 2
1( ) (v )eq

i i i

i

bRT u f                (27) 

 

Qadyan Numerical Method 
To reach second-order accuracy in the 

LBM, some researchers were employed 

the ghost field distribution functions. 

However this method is not discussed 

here. Although KT model uses general 

finite difference scheme with first-order 

forward in time and second-order 

upwinding in space, the numerical 

experiences showed the second-order finite 

difference scheme for space derivative 

calculation causes the Gibbs oscillations 

around the discontinuities. Here without 

going into the mathematical basis of the 

differential quadrature method, we 

introduce Qadyan method. This method is 

obtained by semi-discrete schemes. It 

means that one solves the system of 

ordinary differential equations: 

(x, ) (x, ) v [ (x, ) f (x, )]eqi
i i i i i

f t
f t t f t t f t t

 

 
     

x

(28) 

Here the space derivative if





x
 

approximates by DQ method as follows. 

In the case of 1 1v 0i c  , or 1 2v 0i c   
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In the case of 1 1v 0i c   , or 1 2v 0i c     
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RESULTS AND DISCUSSION 

A benchmark is used to validate the 

proposed method. The problem is the 

solution of the well-known test, namely 

Sod’s shock-tube problem [9] which 

consist of initial data as 

5.0,)1.0,0,125.0(),,(

5.0,)1,0,1(),,(





xpu

xpu

R

L




     (31) 

The shock Mach number of the Sod’s test 

is 1.656 (which is defined as the speed of 

shock divided by the speed of sound ahead 

of the shock). All the above phenomena 

consist of rarefaction wave, contact 

discontinuity, and shock wave are included 

in the Sod’s problem. Therefore this test is 

the proper one in order to fulfill results in 

the combined phenomena problem. The 

comparison between the numerical results 

and the analytic results for distribution 

functions are plotted in figures 3 and 4. 

The grids size used in the simulation is 

, 0.02x  time step  105.0 4t and the 

results are plotted after 0.15 t second past 

initial state. The parameters used in the 

simulation are 11 c , 32 c ,  and .20 

The solutions are obtained with lattice size 

500 after 3000 time-steps. 

 

 
Fig.3:-The comparison between analytical and numerical results of eqf0 and   with 

.3,1 21  cc  
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Fig.4:-The comparison between analytical and numerical results of eqf1 to eqf4  with 

.3,1 21  cc  

 

The comparison between the numerical 

results and the analytic results for 

distribution functions are plotted in 

Figures 5 and 6. All the parameters used in 

the simulation are same unless 21 c , 2 6c  . 

The solutions are also obtained with lattice 

size 500  after 3000 time steps.

 

 
Fig.5:- The comparison between analytical and numerical results of eqf0 and   with 

.6,2 21  cc
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Fig.6:-The comparison between analytical and numerical results of eqf1 to eqf4  with 

.6,2 21  cc  

CONCLUSIONS 

In this paper, we report the numerical 

solving of the mesoscopic variables of 

LBM and compare analytic solution by 

Qadyan method. The Euler equation's 

solutions may contain discontinuity waves 

such as contact discontinuity and shock 

waves. Some stringent requirements are 

posed by such discontinuities on the 

numerical schemes or the mathematical 

formulation of equations to solve the 

governing formulations. The non–

conservative equations may fail at 

discontinuities and give wrong shock 

strength or shock speeds. It has been 

established that conservative numerical 

methods do converge to the weak solution 

of the conservation law. The validity of the 

procedure has been investigated for Sod’s 

Shock-Tube Problem and good agreements 

have been obtained. The amounts of  

particle velocities 1c and 2c in LB model 

does not seem unrelated to the flow 

velocity u or othe macroscopic flow 

variables and amounts of   them change the 

mesoscopic variables.  
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