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Definition from Lenton et al. (2008): The term ‘‘tipping point’’
commonly refers to a critical threshold at which a tiny
perturbation can qualitatively alter the state or development
of a system. Here we introduce the term ‘‘tipping element’’
to describe large-scale components of the Earth system that
may pass a fipping point.
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« Within an ensemble of simulations,
some members can cross the
threshold, other not: stochasticity
matters

« Potential of early warning from
analysis of changes in statisical
properties in fime windows
(variance, AR1 model...)

At bifurcation point:

No recovery
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Interactions between tipping
elements (Cai et al. NCC 2017)
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Catalogue of abrupt shifts in Intergovernmental Panel
2on Climate Change climate models
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Are the model showing abrupt changes in the subpolar gyre trustiworthy?

39 abrupt events (in 36% of the realizations)
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Abrupt cooling over the North Atlantic in modern
climate models

Giovanni Sgubin1'2, Didier Swingedouwz, Sybren Drijfhout3'4, Yannick Mary2 & Amine Bennabi®
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SPG convection collapse GMT trend = 1.52 °C 1072 yr!
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Potentially large
climatic impact
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High-Resolution Greenland Ice Core
Data Show Abrupt Climate Change
Happens in Few Years
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» Boulton et al. (2014):
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Consequences of rapid ice sheet melting on the

Sahelian population vulnerability

Dimitri Defrance®®?, Gilles Ramstein?, Sylvie Charbit®, Mat
Didier Swingedouw®, Christophe Dumas®, Frangois Gement

Adding GrlS freshwater in

the North Atlantic...
itation changes in Sahel region
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Basic mechanism for abrupt monsoon transitions

Anders Levermann®®1, Jacob Schewe??, Vladimir Petoukhov?, and Hermann Held?

2Earth System Analysis, Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany; and ®Institute of Physics, Potsdam University, 14473 Potsdam,
Germany

Edited by Hans Joachim Schellnhuber, Potsdam Institute for Climate Impact Research, Potsdam, Germany and approved August 18, 2009 (received for review
February 11, 2009)

A

AN

W R

Land-ocean
temp. diff.

Latent heat
release P

Monsoon
winds W

Near-linear response of mean monsoon strength to a
broad range of radiative forcings
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IDCC Special Report on the Ocean and

he Cryosphere in a Changing Climate

Chapter é: Exiremes, Abrupt Changes and Managing Risks
® Risks of abrupt change in ocean circulation and cryosphere
and potential consequences

Extreme ENSO events and other modes of variability and their
ivplications

arine heat waves and implications

Changes in tracks, intensity, and frequency of tropical and
extra-tropical storms and associated wave height

Cascading risks (e.g., storm surge and sea level rise),
irreversibility, and tipping points

Monitoring systems for extremes, early warning and
forecasting systems in the context of climate change

Governance and policy options, risk management, including
disaster risk reduction and enhancing resilience




What is worth achieving

» Making a clear focus on process analysis in complex
models, since this is usually missing for tipping
elements analysis, with an in depth analysis of
physical and biogechemical processes at play (this
IS a necessary step to « resulf in better understanding
of abrupt climate change »

= North Atlantic as a key fipping element, but
interesting in evaluating other elements as well and
Cross expertise in a project.

» |nclude monitoring systems and paleo to have real
data in our scientific approach and not only models
=> reaching multiple line of evidences




Potential key activities/ideas
and novelty

CMIPé analysis for abrupt changes
Abrupt changes in large ensembles of simulations

Emerging constraints in decadal prediction systems and
ojections, using PMIP4 simulation as well

Early warning signals for in situ oceanographic
observations

AMOC reconstruction (data assimilation) over the last
millennium

Lessons from Holocene and DO syntheses

Interactions between tipping point (monsoon, Amazon
dieback...)

Impact of abrupt changes on human and mitigation
Threshold in the Nordic Seas, critical stratification in the SPG



