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The problem

Characterization of large-scale, turbulent, coherent
atmospheric structures from long-range pulsed lidar
measurements.

Characterizing these structures requires a large
measuring area.

Long-range lidars are good at this, but data often show
noisy/low CNR values in the far region.

Is it possible to identify reliable lidar observations that
have a relatively low CNR value?
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Filtering using a CNR threshold, the comb shape
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Filtering using a CNR threshold, the comb shape

CNR thresholds may vary as well as the location of the
”center” of the comb. There is an important number of
reliable and non reliable observations in the intersection
of this center and the base of the comb.
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Filtering using a CNR threshold, the comb shape

Reliable observations in the low CNR region are placed
close together in a limited region.

These high density regions are evidence of a smooth
radial wind speed field.

Part of the high density region is located in a noisy
region due to the decrease of CNR along the lidar’s
beams.

Data density, radial wind speed smoothness and spatial
location are then complementary to CNR values.
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Radial wind speed field smoothness, median filter

Median filter is usually recommended for image
processing.

Here it is adapted to identify and reject anomalous
values of line-of-sight wind speed, VLOS , no replacing.

Four parameters: window size, nr and nφ, and a radial
wind speed threshold, ∆VLOS,median.
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Radial wind speed field smoothness, median filter

This approach is:

Fast.

Excellent in recovering data from reliable areas (high
CNR values) of the scan.

Arbitrary. Threshold and window size that may be
adjusted to flow characteristics and measurement height
for instance.

Not very reliable in noisy regions that are too extended.

Easy to implement in a few lines of code. In Python,
pandas library includes an specially fast moving median
function.
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Density of the data

High density regions can be identify with kernel density
estimation (KDE) (Beck and Kühn 2017), needs to
define a density threshold to isolate noise/low density
regions.

The more features we consider in the KDE, the greater
the distance between high density clusters and noise,
but unbearable for higher dimensions/features.

What to do then? How to avoid KDE in higher
dimensions?
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Density of the data, a clustering algorithm

Clustering algorithms are very efficient and there are
many algorithms out there: centroid models,
connectivity models, density based models, etc.

Density-based Spatial Clustering for Applications
with Noise, DBSCAN (Ester et al. 1996).

Spatial distribution of data, previous knowledge of the
number of clusters in the data is not necessary
(k-means) and introduces the concept of noise.

A robust filter needs few parameters to be defined by
the user. DBSCAN needs in practice just one.
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DBSCAN, how does it work?

(a) DBSCAN definitions: direct density reachable point p (reachable by the core
point q) and density reachable and density connected points p and r. Here point n
is noise. DBSCAN working: (b) The current point have the required number of
nearest neighbours, NN, within ε, then a core point (red) (c) The next point have
less than NN neighbours, but one of them is a core point and becomes a border
point (yellow) (d) A point with neither NN neighbours, nor core points within ε,
classified as noise (brown) (e) The final cluster and noise.
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Filtering using a density approach, DBSCAN

NN can be fixed (to 5 in this case) and ε estimated
automatically according to the structure of the data.

We end up choosing the number of features to consider
and the amount of data/scans to filter per batch.
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Filtering using a density approach, DBSCAN

What do I mean by data structure?
The figure below shows the sorted k-distances, or the
distance from each observation to its k-nearest
neighbour.
As we move from a cluster to low density areas this
distance increase rapidly, showing a knee and a limit for
ε.
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Filtering using a density approach, DBSCAN

Slower than the median-like filter, more accurate in
noisy areas, some data is lost in good CNR regions.

Several implementations of the algorithm,

In Python, the library scikit-learn includes also
OPTICS an improved DBSCAN for clusters with large
differences in density.
In R the package dbscan also includes OPTICS and the
local outlier factor (LOC) algorithms.
DBSCAN is also included in the Machine Learning and
Statistics toolbox of Matlab.
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Performance comparison on synthetic data

Both filters were tested on synthetic data, sampled from
2-D Mann-turbulence box via a numerical lidar.

Numerical lidar mimics the beam averaging and the
accumulation of information on azimuth direction.

Synthetic scans contaminated with procedural (smooth)
noise. Contaminated area increases with distance.

No CNR.
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Performance comparison on synthetic data

Features of the clustering filter:

VLOS

Position, r and φ.
∆VLOS = median(VLOS,i - VLOS,NN )

Fair comparison, the optimal set of nr, nφ and
∆VLOS,median comes from maximum values of:

ηnoise: fraction of noise detected.
ηrecov: fraction of good measurements recovered.
ηtot = fnoiseηnoise + (1− fnoise)ηrecov.
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Performance comparison on synthetic data

The clustering filter performs better in noise detection,
while keeping a good recovering rate.

IAE Task 32 Filtering of long-range pulsed lidars data April 7, 2020



Performance on real data

Wind speed data in space-time from two scanning lidars
in Østerild Wind Turbine test centre (Karagali et al.
2018), at 50m (Phase 1) and 200m (Phase 2).
High resolution is space (range gates each 35 m.) and
in time (45 seconds per scan). The lidars are not
synchronous.
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Performance comparison on real data

Filters performance on less reliable areas of the scan
(CNR values less than -24 dB).

The recovery rate on reliable areas is also studied (CNR
values greater than -24 dB).

The features used: VLOS , r, φ, ∆VLOS and CNR.

IAE Task 32 Filtering of long-range pulsed lidars data April 7, 2020



Performance comparison on real data

Distribution of recovery fraction per wind speed bin for phase 1 of the
experiment of (a) reliable observations (−24 < CNR < −8) and (b) non
reliable data (CNR < −24 or CNR > −8) for the three types of filter.
Shadowed area in both graphs corresponds to the region where observations
exceed the 99.7% of probability (or 3-σ limit) in the pdf of reliable observations.
The darker shadowed areas highlights the additional fraction of extreme values
non-filtered by the median-like and CNR filters, when the former uses the
optimal input set nr = 5, nφ = 3 and ∆VLOS, threshold) = 2.33 m/s.

IAE Task 32 Filtering of long-range pulsed lidars data April 7, 2020



Performance comparison on real data

Spatially, the clustering filter tends to reject more data
in the far region of the scan.
A fraction of reliable values are rejected in the near
region. It can be combined with a CNR threshold.

Total recovery fraction for phase 1 of the experiment. The noisy and far region
of the scans show a high recovery, above 80%, for (a) the CNR > -29 dB
threshold filter and (b) the median-like filter and below 75% for (c) the
clustering filter. Highlighted, hard targets (turbines and one meteorological
mast, close to the lidar), which are identified by the median and clustering filter
with recovery rates below 20%.
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Final remarks

Clustering filter uses the best of two approaches: VLOS
field smoothness and CNR information.

For this data set, recovery increased by around 38%
compared to CNR filters.

Little user intervention, mostly in the definition of
relevant features and the amount of data needed (more
features, more observations are necessary).

Need to be tested on different scanning patterns.

Computational complexity. DBSCAN’s goes form
O(nlog(n)) to O(n2). Very efficient median filters,
down to O(n).

Dont hesitate to use this technique on your own data. I
uploaded a repository to github:
https://github.com/lalcayag/Lidar_filtering
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Wraping up

Filtering with a CNR threshold can be tricky and
depends on many variables that the data user might be
not familiar to.

The proper selection of this threshold might have a big
impact in wind energy resource estimations.

Information beyond CNR is available and can be used to
increase data availability keeping good quality of the
data.

The main idea is to keep the number of decisions made
by the user low, specially if the amount of data to use is
large and extend for a long period of time.

Here, two alternative approaches are presented with
different computational cost and implementation
complexity. Try them!. More details in,
https://doi.org/10.5194/amt-2019-450
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Questions?
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