

OPINION

Improving software infrastructure in
multidisciplinary research

Short title Improving software infrastructure

Author Jacqueline M. Kory-Westlund​ 1

Author
affiliation

1​Alumni of the MIT Media Lab

Author bio

Dr. Jacqueline M. Kory-Westlund is a mother, artist, writer, and scholar. She earned her
PhD from the MIT Media Lab in 2019, where her research focused on social robotics,
children's learning and relationships, and robot ethics. She blogs regularly at
DeliberatedOwl​.

Author social
links

 ​Twitter​ - ​LinkedIn​ - ​GitHub​ - ​Personal Website

Date published 11 March 2020

DOI 10.5281/zenodo.3702301

Cite as
(APA)

Kory-Westlund, J. Am.. (2020). Improving software infrastructure in multidisciplinary
research​. ​Elephant in the Lab​. DOI: ​https://doi.org/10.5281/zenodo.3702301

http://www.elephantinthelab.org/
https://www.deliberateowl.com/
https://www.deliberateowl.com/
https://twitter.com/jacquelinekory
https://www.linkedin.com/in/jacquelinekory
https://github.com/jakory
https://www.jakory.com/
https://doi.org/10.5281/zenodo.3702301

Juggling software, materials, and people
In my third week of grad school, I found myself metaphorically elbows-deep in my
human-robot interaction lab's codebase. I was porting a robot teleportation interface
from tablet to desktop. The goal: To run a psychology study exploring how ​young kids
learned language skills with social robots​.
But comments were few and far between. Documentation consisted of asking older
students how things worked. While I did eventually get it done, adding that
teleportation interface took a lot longer than I had anticipated.
Unfortunately, this experience is all too common. Software-heavy research projects are
frequently plagued with a lack of documentation, a lack of standardization, poor to no
maintenance, legacy code, and/or reliance on expensive proprietary software. This may
be especially true for projects in highly multidisciplinary fields like mine, since there are
so many different balls to juggle. Dealing with infrastructure---such as code, robots,
methodologies, assessments, domain knowledge, and more----was a huge part of the
challenge.
Interdisciplinary and multidisciplinary researchers like me increasingly rely on a wide
collection of software, materials, and people. And the more software, material, and
people you rely on, the more inevitable it is that something will break.

How do we improve our infrastructure?
First, we acknowledge that we ​will rely on other people and other people's software.
There's no way I could build everything from the ground up (and also, you know,
graduate). Science is built incrementally. We ​must build on the work of those who came
before. As students in my lab group liked to say, "Human-robot interaction is a team
sport."
But even acknowledging that point, the reality is that people move on and software
breaks. At some point, maybe not tomorrow, maybe not this year, but at some point,
critical code won't be maintained. We can put software into containers, such as Docker,
or run the code in a virtual machine on an older operating system, to keep it working
longer. But if you ever need to integrate that code with a new framework or new
project, chances are, something will no longer be backwards compatible. The company
maintaining proprietary software will fold. A library or some other dependency won't
get updated. The senior PhD student who monitored a key repository will graduate and
leave the project behind. So what do we do?

Elephant in the Lab | DOI:10.5281/zenodo.3702301| www.elephantinthelab.org

https://medium.com/mit-media-lab/kids-relationships-and-learning-with-social-robots-9ff662faaccc
https://medium.com/mit-media-lab/kids-relationships-and-learning-with-social-robots-9ff662faaccc

Open Source Software

One answer is open source software: Common tools that you don't have to maintain
yourself and that are available even if someone graduates or doesn't have funding to pay
for a license. Think tools like R, numpy, scipy, QGIS, GIMP, ROS, LibreOffice, Zotero,
Latex…
Problem is, that's a take-take-take model. Open source software still faces maintenance,
compatibility, and documentation issues, and often lacks key features.
For example, the software I used in some early projects to code human behavior (such
as eye gaze) was proprietary and expensive, only ran on one machine, only if the right
USB dongle was plugged in … etc. But it worked pretty well. At some point, we no longer
had a license to that software. I still needed to code gaze. I tried out an open source
variant that didn't work as well (weird bugs and missing features)---but at least my
undergrad research assistants could install it on their laptops.
To make open source truly viable as a research tool, we need to give back---which
doesn't mean you have to volunteer yourself. One easy idea is to add line items to your
grant budgets for donations to critical open source projects. Or go a step farther:
include funding to hire a software engineer who can directly contribute to critical
projects. Investing in the projects we rely on means they'll still be around when we need
them.

Pipelines and Documentation

Documentation and pipelines for transmitting project knowledge from older graduate
students to newer students can be critical. I was dependent on legacy code developed
by earlier generations of grad students. Consider: If your group has a massive, largely
undocumented codebase, at what point will newer graduate students throw it away
(despite its purported many useful features) because they don't understand it and feel it
would be easier to rebuild from scratch? And how do students learn the common
methodologies in your lab group?
Faced with problems like these, part of my mission as a graduate student became
leaving every project I worked on better documented then when I found it. Here are
three key things I did:

- I gave every git repository an extensive readme explaining how to use the repo,
install and run instructions, dependencies, design decisions, etc.

- I documented every process I followed that I felt others might need to replicate,
step-by-step, on our group's wiki site. All students could edit the wiki. For
example, I had one page explaining how I recorded audio for our robots, with

Elephant in the Lab | DOI:10.5281/zenodo.3702301| www.elephantinthelab.org

details about the software I used for recording, cleaning up the audio and noise
removal, shifting the pitch, where to save the files, and how to play the files on
the robot.

- I finished off every project with a public-facing blog post or a project page online,
so people could get the gist without reading the whole academic paper. For
example, here's a blog post about ​kids' relationships and learning with social
robots, from my dissertation work. Here's a project page about my Master's
thesis project, a ​robot that played storytelling games​ with kids.

I can't count the number of times I re-read my own documentation when trying to
remember how or why I'd done different things.
Another idea: In one lab group I observed, every new student was assigned a "buddy"
who had been in the group for a year or more. The more experienced student was
responsible for getting the new student up to speed, answering all their questions about
group methodologies, codecases, materials, and so forth.
I've also seen groups hire someone part-time to do documentation and maintenance
work. Sometimes this kind of stuff is rolled into a lab manager position.

Collaborate

I benefited from collaborations with people who had relevant expertise I lacked---such
as domain knowledge in developmental psychology and education. How do you find
collaborators? My first stop was always to ask friends, colleagues, or my advisor. My
advisor knew many people and was excellent at connecting students with the right
folks.
Find people in other fields who seem to be excited by the same kinds of questions as
you. You can find these people at conferences (browse the talk listing and attend the
ones that pique your interest), on Twitter, by reading papers and looking up the
authors.
Then introduce yourself. Ask questions. I've found that most people in academia are
very happy to talk about their own research field and their area of expertise. I mean, it
makes sense: they wouldn't be in that field if they weren't passionate about it! This is to
your advantage. Be friendly. Take notes.
Be willing to share your expertise as well. Research works better when we help each
other out.

Elephant in the Lab | DOI:10.5281/zenodo.3702301| www.elephantinthelab.org

https://medium.com/mit-media-lab/kids-relationships-and-learning-with-social-robots-9ff662faaccc
https://www.jakory.com/projects/2014/storytelling-robot/

Open source Academia?

I've seen a trend lately toward increasingly open science. Frequently, the conversation
is about open source software and open datasets. We should also talk about open
methodologies, open assessments, and open whatever-else-is-used-in-your-research.
I've made many of my experimental study protocols, assessments, and code repositories
publicly available. I'm excited about the questions my work tries to answer. If someone
else is excited, too, and also wants to work on these questions, then I would love to be
able to help them.

Elephant in the Lab | DOI:10.5281/zenodo.3702301| www.elephantinthelab.org

