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The FIERCE mission concept
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Focusing Optics X-ray Solar Imager (FOXSI)
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Spectrometer for
Temperature and

Thermal and Dynamic
Imager for the Sun (THADIS)

Led by the Smithsonian Astrophysical Observatory (SAO), Com pgsitio N (STC)

THADIS images coronal-plasma structures in two EUV

passbands (284 A and 133 A). THADIS captures images at fast Led by the Polish Academy of Sciences (PAS),

cadence and short exposure times to track quickly evolving STC provides detailed thermal and elemental-
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Fundamentals of Impulsive Energy

Now is the time for FIERCE! To-yer prime mision
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What are the physical origins of

space-weather events?

e Determine the dominant initiation
mechanisms for flares and CMEs

e Determine the solar origins and
properties of electrons escaping the ol
Sun
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Right: FIERCE images EUV emission (orange
background) and HXR emissions from the
above-the-loop-top (ALT) source at the bottom
end of the current sheet (purple contours) and
from the CME core (green contours) even in the
presence of intense HXR footpoints (FP, blue
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Below: FIERCE will distinguish among different models of the initiation of solar eruptive
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events by observing the differences in the timing and locations of X-ray sources from

accelerated electrons and X-ray and EUV emission from heated plasma during the early

rise phase of the eruption.
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How is impulsively released energy

transported throughout
the solar atmosphere?
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e Determine how and where accelerated ¢ Test theories of the production
electrons lose their energy in the and evolution of hot flare

corona and chromosphere plasmas

Below: FIERCE will observe flare arcades with exceptional sensitivity, resolution, and
dynamic range. Panels (A) & (B) show synthetic THADIS 284 A and 133 A images,

respectively, from an M3 flare arcade model, with 2 ms exposure times to avoid saturation.
Contours show the X-rays imaged with FOXSI with an exposure time of 3 s. Both the
footpoint and looptop sources (marked by the purple and red boxes, respectively) of the
most recently activated loops are imaged simultaneously, and their spectra can be

obtained independently. Panel (C) shows that STC observes the thermal continuum and

diagnostic X-ray lines with good statistics at an integration time of 3 s.
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How are particles accelerated
at the Sun?

» Determine where and when electron e Test model predictions for the
acceleration and local plasma efficiency and sustainability of
heating occur in evolving structures electron acceleration

Below: FIERCE will distinguish between different models of flare electron acceleration. In
these 2D flare cartoons, the locations and chronological order of various X-ray- and EUV-
producing processes differ between the two most likely models of electron acceleration in
eruptive flares: magnetic island-merging acceleration (left) and stochastic (second-order
Fermi) acceleration (right). Simulated FOXSI images of nonthermal electrons (blue) and
thermal plasma (orange) are shown as insets.
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How is the solar corona heated?

* Determine whether energy release
in small flares is fundamentally

different from that in large flares M ST — 1]
] ] - - - - Most probable fit and 90% confidence limits | -

* Determine the ensemble properties ol — Steady heating ]
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Below: THADIS reveals the spatial structures in the ) mo?_ e ;
active region, and FOXSI detects hot thermal plasma 1L ;
in loops and footpoints with sufficient statistics to i
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enable reconstruction of the spatial and thermal fergy (kel) 10
distribution of the hot plasma.
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