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Abstract

Background: The current novel coronavirus outbreak appears to have originated from a point-source
exposure event at Huanan seafood wholesale market in Wuhan, China. There is still uncertainty around the
scale and duration of this exposure event. This has implications for the estimated transmissibility of the
coronavirus and as such, these potential scenarios should be explored.

Methods: We used a stochastic branching process model, parameterised with available data where possible
and otherwise informed by the 2002-2003 SARS outbreak, to simulate the Wuhan outbreak. We evaluated
scenarios for the following parameters: the size, and duration of the initial transmission event, the serial
interval, and the reproduction number (R0). We restricted model simulations based on the number of
observed cases on the 25th of January, accepting samples that were within a 5% interval on either side of
this estimate.

Results: Using a pre-intervention SARS-like serial interval suggested a larger initial transmission event and
a higher RO estimate. Using a SARs-like serial interval we found that the most likely scenario produced
an RO estimate between 2-2.7 (90% credible interval (CrI)). A pre-intervention SARS-like serial interval
resulted in an RO estimate between 2-3 (90% CrI). There were other plausible scenarios with smaller events
sizes and longer duration that had comparable RO estimates. There were very few simulations that were
able to reproduce the observed data when RO was less than 1.

Conclusions: Our results indicate that an R0 of less than 1 was highly unlikely unless the size of the initial
exposure event was much greater than currently reported. We found that RO estimates were comparable
across scenarios with decreasing event size and increasing duration. Scenarios with a pre-intervention SARS-
like serial interval resulted in a higher RO and were equally plausible to scenarios with SARs-like serial
intervals.

Introduction

The ongoing outbreak of novel Coronavirus appears to have originated from an initial point-source exposure
event at Huanan seafood wholesale market in Wuhan, China, which was closed on the 31st of December
2019 [1,2]. As of the 26th of January 2020 there have been over 2000 confirmed cases with the majority in
China [3]. Globally, countries are on high alert, with wide implementation of airport checks and contact
tracing find and quarantine infected individuals. In China, officials have restricted travel across a wide area.
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There is still uncertainty around the precise scale and duration of the initial exposure event [4]. The nature
of the initial exposure has implications for estimates of the transmissibility of the coronavirus, as such it is
important that these potential scenarios are further explored.

We used a stochastic branching process model to simulate the Wuhan outbreak, parameterised with available
data where possible and otherwise informed by outbreaks of other coronaviruses, such as the 2002-2003
outbreak of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and multiple outbreaks of Middle
East Respiratory Syndrome Coronavirus (MERS-CoV). We considered a realistic range of parameters where
data were not available, quantifying how likely these scenarios were to occur using reported cases. We
focused on the size and duration of the initial exposure event in particular, and the impact that this has on
the estimated level of human-to-human transmission. We aimed to provide decision makers, and researchers,
with probability estimates for each scenario considered, along with estimates of the reproduction number
(RO) across all scenarios.

Methods

Branching process model

We modelled the outbreak using a stochastic branching process model comparable to those used elsewhere
to model the dynamics of this outbreak [4]. We assumed that cases from the initial transmission event were
uniformly distributed over the duration of the event. Each case then resulted in a subsequent generation of
cases with the number of cases that each case generated being drawn from a negative binomial distribution,
to account for overdispersion, with a dispersion parameter k of 0.16 (assuming SARS-like dispersion) [5]. The
mean number of cases generated by each case (R0) was sampled from a uniform distribution once per model
simulation with a lower and upper bound determined by the scenario being evaluated. New generations of
cases were then sampled iteratively until the maximum simulation time was reached. We used three scenarios
for the serial interval distribution informed by previous outbreaks of coronaviruses: SARS-like, with a mean
of 8.4 days and standard deviation of 3.8 days [5]; SARS-like before interventions, with a mean of 10 days
and standard deviation of 2.8 days; and MERS-like, with a mean of 6.8 days and standard deviation of 4.1
days [6]. Both SARS-like serial interval scenarios used a Weibull distribution, whilst the MERS-like serial
interval scenario used a Gamma distribution [5,6]. After the simulation of the branching process, reporting
delays were added as reported in a line-list of cases compiled from media and other reports [7]. We fitted a
geometric, Poisson, and a negative binomial distribution to these observed delays and selected the best fit
using the Chi-squared statistic. If no good fit was determined using a p-value threshold of 0.05, then the
reporting delay was instead sampled from the empirical delays in the line-list.

Scenario analysis

We simulated the branching process model 10,000 times for all combinations of the following parameters:
number of confirmed cases resulting from the initial exposure (20, 40, 60, 80, 200, 400), initial exposure
event duration (1 day, 7 days, 14 days, 21 days, and 28 days), the serial interval distribution (SARS-like,
initial SARS-like and MERS-like), and RO (lower and upper bounds of a uniform distribution: 0-1, 1-2, 2-3,
3-4). We ran the model from the beginning of the outbreak for each scenario until the 25th of January 2020.
The start date was determined by combining the duration of the transmission event with the date the fish
market in Wuhan, the source of the outbreak, closed (31st of December 2019). We evaluated the samples
from each scenario based on how closely their trajectories matched the 1,975 confirmed cases observed on
the 25th of January [7]. Samples were rejected if their simulated cumulative case estimates were outside a
5% interval on either side of this (1,876 - 2,074) . Outbreak simulation was stopped if a sample exceeded
the upper bound on the number of observed cases.

Analysis

We visually compared the percentage of samples that were accepted for each combination of transmission
event size, transmission event duration, mean serial interval, and R0 using a heat map. We then compared
the distribution of RO for accepted samples by transmission event size, transmission event duration and mean
serial interval. We reported 90% credible intervals (CrI) for RO, stratified by the transmission event size,
transmission event duration and the assumed mean serial interval.



Implementation

All analysis was carried out using R version 3.6.2 [8]. The branching process model was implemented using
the bpmodels 0.1.0 package [9]. The analysis is available as an open-source R package [10]. A dockerfile
has been made available with the code to ensure reproducibility [11].

Results

Percentage of outbreak simulations accepted

Overall, the highest acceptance rate was for scenarios with a large event size (200), short duration (1 day), an
RO between 3 and 4, and a pre-intervention SARS-like serial interval (Figure 1). Scenarios with a SARS-like
serial interval, an RO bounded between 2 and 3, a short duration, and a relatively large event size (100) also
had a high acceptance rate. Across all scenarios a higher acceptance rate was correlated with a larger event
size, a shorter event duration, and a larger mean serial interval. This may be related to the influence these
parameters have on the degree of volatility in outbreak simulations. Based on this, trends in Figure 1 should
be interpreted with care using prior knowledge. For example, if the event size, serial interval, and event
duration is assumed, then the percentage of acceptance may be used to infer the most likely RO scenario.

There were very few scenarios where an RO smaller than 1 resulted in scenarios that were accepted after
conditioning on observed data, this was true regardless of the corresponding serial interval distribution, event
size, or event duration. A very large event size (400) was required for scenarios with an R0 upper bound of 2
to have a moderate percentage of samples accepted if they had a short duration. Acceptance rates increased
as the duration of the initial transmission event increased, and as the mean serial interval increased. For
a MERS-like serial interval, the percentage of accepted samples was low for all scenarios, with the highest
accepted proportion for scenarios with an upper bound on the R0 of 3 and a moderate event size, or an R0
upper bound of 2 and a larger event size.
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Figure 1: Heatmaps of the percentage of samples accepted for each combination of parameters. Within each
heatmap, the x-axis represents the duration of the initial seeding event and the y-axis represents the size of the
initial seeding event. The figure is stratified by the RO scenario (columns) and the serial interval distribution
(rows).

Estimated reproduction numbers

Uncertainty in the RO estimate increased both as the event size decreased, and decreased as the mean serial
interval increased (Figure 2). Large event sizes resulted in the lowest RO estimates across all scenarios
evaluated. The estimated RO decreased as the event size decreased and duration increased for all serial
interval scenarios (Table 1, Table 2, and Table 3). The most likely scenario with a MERS-like serial interval
had an event size of 80 and a duration of a day, resulting in an estimated R0 between 2 - 3 (90% CrI, Table
1). For the SARS-like interval the most likely scenario had an event size of 200 and a duration of a day
(Figure 1), this resulted in an estimated RO between 2 - 2.7 (90% Crl, Table 2). The most likely scenario
with a pre-intervention SARS-like serial interval also had an outbreak size of 200 and a duration of a day,
resulting in an estimated RO between 2.8 - 3.8 (90% Crl, Table 3). Assuming a MERS-like serial interval



resulted in an approximate decrease of 0 - 0.5 in the RO estimates across all scenarios when compared to the
SARS-like serial interval. Assuming a pre-intervention SARS-like serial interval resulted in an approximate
increase of 0.5 - 1 in the RO estimates across all scenarios when compared to the SARS-like serial interval.
Across all serial interval scenarios R0 estimates were comparable when event size was decreased and event
duration was increased in tandem.
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Figure 2: Density plot of reproduction number (R0) estimates from each accepted sample stratified by trans-
mission event size, event duration (columns), and the serial interval distribution used (rows). The black lines
on each density plot represent the 90% credible interval

Table 1: Estimated reproduction numbers (90% credible intervals) for the Wuhan outbreak conditioned on
case data from the 25th of January, for scenarios with a MERS-like serial interval. Stratified by initial
transmission event size and duration.

Transmission event size vs. Transmission event duration (days) 1 7 14 21

28

20 28-4 24-39 21-38 18-37

1.7-3.5



Transmission event size vs. Transmission event duration (days) 1 7 14 21 28

40 24-38 21-35 18-32 17-27 15-24
60 22-34 19-3 1.7-26 15-24 14-22
80 2-3 1.8-26 16-23 14-21 13-19
100 1.9-27 17-24 15-21 13-19 13-18
200 1.5-2 14-18 12-16 11-15 11-14
400 11-14 1-13 09-12 09-11 09-11
Table 2: Estimated reproduction numbers (90% credible intervals) for the Wuhan outbreak conditioned on

case data from the 25th of January, for scenarios with a SARS-like serial interval. Stratified by initial
transmission event size and duration.

Transmission event size vs. Transmission event duration (days) 1 7 14 21 28

20 3.6-4 3.1-4 27-39 23-39 21-38
40 32-4 28-39 24-38 2-36 1.8-3.2
60 3-4 25-38 21-35 18-3 1.7-2.6
80 28-39 23-36 19-31 17-27 15-24
100 26-37 22-32 18-27 16-24 15-22
200 2-2.7 1.7-23 15-2 1.3-1.8 1.2-1.7
400 14-18 12-16 11-14 1-1.3 09-1.2
Table 3: Estimated reproduction numbers (90% credible intervals) for the Wuhan outbreak conditioned on

case data from the 25th of January, for scenarios with a pre-intervention SARS-like serial interval. Stratified

by initial exposure event size and duration.

Transmission event size vs. Transmission event duration (days) 1 7 14 21 28

20 - 3.8-4 32-4 28-4 2.5-39
40 - 35-4 3.1-4 26-39 22-38
60 4-4 32-4 28-39 24-37 2-34
80 3.6-4 3.1-4 26-39 22-35 19-31
100 3.5-4 3-4 24-37 21-32 18-27
200 28-38 22-32 18-26 16-22 14-2
400 1.8-24 15-2 1.3-1.7 11-15 1-14
Discussion

In this study, we explored a range of scenarios for the initial event size and duration of the exposure
event which initiated the 2019-20 Wuhan novel coronavirus outbreak. We conditioned on observed cases to
establish the probability of each scenario, given our model, and then estimated the RO of coronavirus from
the accepted simulations. We found that there was a very low probability that the reproduction numbers
was less than 1 for any scenario considered. Across all serial interval scenarios larger exposure events over
a shorter time horizon were most plausible. The most probable SARS-like serial interval scenarios resulted
in an estimated RO of 2 - 2.7 (90% CrI), whilst the most probable pre-intervention SARS-like serial interval
scenarios resulted in an estimated RO of 2.8 - 3.8 (90% CrlI). MERS-like serial interval scenarios were less
plausible, but the most plausible resulted in an estimate RO of 2 - 3 (90% CrI). Reducing the event size led to
estimates of the R0 increasing but also reduced the proportion of samples accepted. Similarly, increasing the
event duration reduced the estimated RO whilst decreasing the proportion of accepted samples. Decreasing
the event size whilst increasing the duration resulted in RO estimates that were comparable to those from
the most plausible scenarios and reduced the acceptance rate the least.



Our study used a stochastic model to capture the transmission dynamics of the outbreak with parameters
informed from data were possible, if there was no data available then parameters were assumed to be similar
to those estimated for SARS [5]. We only fitted to the cumulative data at one time point, on 25 January
2020, as time-resolved data of onsets was not available at this point in time. It has also been reported that
it is likely that the efforts to confirm suspected cases have changed over time, which also precludes fitting to
earlier data points.

As the outbreak progresses time-resolved data of reported cases or disease onsets are likely to become
available, with sufficiently consistent data reporting it is likely that other approaches will become superior
to the one presented here. More data on the serial interval distribution, on variability of transmission and
possible superspreading events, as well as on the timing and impact of interventions, is likely to become
available during the course of the outbreak. This will make it possible to estimate the RO with greater
precision with less risk of bias due to unknown parameters. The number of scenarios that need to be
evaluated may also be reduced as additional information about cases connected to the initial exposure event
becomes available. Though our estimates had wide credible intervals it is possible that we could not fully
account for the numerous sources of bias and uncertainty present in the available data. This means that our
model estimates may be both spuriously precise and potentially biased. There is some evidence of this in our
results as the scenarios with the highest acceptance rate were on the edge of our scenario grid both for event
size, event duration, and mean serial interval. This may be the result of these scenarios reducing volatility
and therefore having narrower distributions of estimated cases. Indeed, we found that RO estimates were
comparable as event size decreased and event duration increased. Expert knowledge relating to the size and
duration of the initial event may help clarify this issue. Alternatively, other estimates of RO may be used to
indicate which event size and event duration scenarios are most plausible.

A previous study also looked at varying the event size and the impact that this had on RO estimates using a
branching process [4]. Our work builds on this by also looking at event duration, including reporting delays,
and using a different approach to condition on observed cases. For comparable scenarios, our results were
similar to those previously published but we found that RO estimates were highly sensitive to variation in
the assumed serial interval, event size, and event duration. We made use of a highly reproducible framework
(an R package) and have released all of our code as open-source [10]. This means that this analysis may
be repeated - both by the authors and others - as more data becomes available. In addition, subject area
experts may be able to adapt our analysis using this open-source code to reduce the potential for bias using
their expert knowledge or privately held data.

The R package we have developed alongside our analysis may be generalisable to other point source outbreaks
when time series data on cases is unavailable or difficult to verify. Additional work is needed to ensure the
robustness of this tool but this may allow this analysis to be repeated during future outbreaks with little
additional overhead.

This analysis used a stochastic branching process to explore scenarios around the duration and size of the
initial exposure event at the Huanan seafood wholesale market in Wuhan. Despite the scarcity of data
currently available our estimates may be used to rule out some scenarios and to assess the likelihood of
others. Our results indicate that it is very unlikely that the infectious agent responsible for the Wuhan
outbreak has a RO of less than 1, unless the size of the transmission event was much greater than currently
reported. We also found that a large initial exposure event was likely, combined with a short duration.
These scenarios resulted in RO estimates that are comparable to those estimated during the 2002-2003 SARS
outbreak. However, with the available data we could not identify whether scenarios with a SARS-like or
pre-intervention SARS-like serial interval were more likely. As more information becomes available it may be
possible to further refine our results and establish the value of R0. Providing clear quantitative information
for decision makers on the transmissibility of coronavirus is of clear public health importance. Our work
to make this process reproducible may reduce the time these estimates take to be made available in future
outbreaks and increase knowledge sharing across response teams.

Data availability
Underlying data



Zenodo: epiforecasts/WuhanSeedingVsTransmission: Resubmission to Wellcome Open. https://doi.org/10.
5281 /zenodo.3630424

This project contains the following underlying data:

o inst/results/grid.fst (The complete results of our scenario analysis)

o inst/results/conditioned_ grid.fst (The results of our scenario analysis conditioned on observed cases)
o inst/results/proportion_sims_ allowed.fst (The proportion of samples allowed per scenario evaluated)
o data/fitted_delay_sample_func.rda: (This is a reporting delay function as discussed in the text)

License: MIT

Software availability

Source code is available from: https://github.com/epiforecasts/ WuhanSeedingVsTransmission /tree/v0.3.0
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