
OpenLB User Guide
Associated to Release 1.1 of the Code

Copyright c© 2006-2008 Jonas Latt
Copyright c© 2008-2017 Mathias J. Krause

info@openlb.net

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the Section entitled
“GNU Free Documentation License”.

2

Contents

1 Introduction 7
1.1 Fluid Flow Simulations . 7
1.2 Lattice Boltzmann Methods . 7
1.3 The OpenLB Project . 8

1.3.1 What is OpenLB? . 8
1.3.2 Getting help with OpenLB . 8
1.3.3 Compiling OpenLB programs . 9
1.3.4 Which features are currently implemented? 10
1.3.5 Project Participants . 11

2 Using OpenLB for Applications 14
2.1 Lesson 1: Getting Started - Sketch of Application 15
2.2 Lesson 2: Understand the BlockLattice 18
2.3 Lesson 3: Define and use boundary conditions 22
2.4 Lesson 4: Converter - Lattice and Physical Units 26
2.5 Lesson 5: Extract data from a simulation 28
2.6 Lesson 6: Convergence Check . 30
2.7 Lesson 7: Use an external force . 31
2.8 Lesson 8: Understand genericity in OpenLB 31
2.9 Lesson 9: Use checkpointing for long duration simulations 33
2.10 Lesson 10: Save memory when domain boundaries are irregular 34
2.11 Lesson 11: Run your programs on a parallel machine 34

3 Install Dependencies 36
3.1 Linux . 36
3.2 Mac . 36
3.3 Windows . 37

4 Geometry 38
4.1 Creating a Geometry . 38

3

4.2 Setting Material Numbers . 39
4.3 Building Geometry by Geometric Primitives 41
4.4 Excursion: Creating STL-files . 41

5 Lattice Boltzmann Models and Core Data Structures 43
5.1 Concept - Data Organization . 43

5.1.1 Cell - BlockLattice - SuperLattice 43
5.1.2 Descriptor . 44
5.1.3 Dynamics . 44

5.2 Classic BGK Model . 45
5.3 MRT Model . 45
5.4 Porous Media Model . 45
5.5 Power Law Model . 47
5.6 External Force . 49
5.7 Multiphysics Couplings . 49

5.7.1 The Shan-Chen Model . 49
5.7.2 Implementation of Shan-Chen Two-phase Fluid 49
5.7.3 Implementation of Shan-Chen Two-component Fluid 50
5.7.4 Thermal Fluid with Boussinesq Approximation 52

5.8 Advection Diffusion Equation . 52
5.8.1 Particle Flows as Advection Diffusion Problem 54

6 Discrete Particle Method 57
6.1 Structure of the Particles Systems . 57
6.2 Interpolation of fluid velocity . 58
6.3 The class SuperParticleSystem3D . 61
6.4 Implementation of the communication optimal strategy 64

6.4.1 Shadow Particles . 68

7 Input / Output 69
7.1 Output Data Structure . 69
7.2 Write Simulation Data to VTK File Format 70
7.3 Write Images Instantaneously . 71
7.4 Gnuplot Interface . 72
7.5 Console Output . 74
7.6 Read and write STL files . 77
7.7 XML Parameter Files . 78

4

8 Visualization with Paraview 79
8.1 Clip . 80
8.2 Glyph . 80
8.3 Stream Tracer . 80
8.4 Transform . 80

9 Functors – A General Concept For Input and Output of Data 81
9.1 Basic Functor Types . 81

9.1.1 GenericF . 81
9.1.2 AnalyticalF . 82
9.1.3 IndicatorF . 82
9.1.4 SmoothIndicatorF . 82
9.1.5 BlockLatticeF/SuperLatticeF . 82
9.1.6 InterpolationF . 83

9.2 Application of Functors . 83
9.2.1 Extract Simulation Data . 83
9.2.2 Define Analytic Functions . 83
9.2.3 Interpolation . 84
9.2.4 Arithmetic and Advanced Functor Usage 84
9.2.5 Setting Boundary Value . 85
9.2.6 Flux Functor . 86

9.3 Functor Arithmetic . 90

10 Parallel Program Execution 92
10.1 Data-Parallel Structures . 93
10.2 Duplicated Data Types . 93

11 The Example Programs 95
11.1 aorta3d . 95
11.2 bifurcation3d . 95

11.2.1 Euler – Euler . 95
11.2.2 Euler – Lagrange . 96

11.3 bstep2d and bstep3d . 97
11.4 cavity2d and cavity3d . 97
11.5 cylinder2d and cylinder3d . 97
11.6 power law . 97
11.7 multiComponent2d and multiComponent3d 98

5

11.8 nozzle3d . 98
11.9 phaseSeparation2d and phaseSeparation3d 100
11.10poiseuille2d . 101
11.11tgv3d . 101
11.12thermal2d and thermal3d . 102
11.13venturi3d . 102

12 License 110

6

1 Introduction

1.1 Fluid Flow Simulations

1.2 Lattice Boltzmann Methods

This text is directed at people who want gain insight into Lattice-Boltzmann Methods
(LBM).

• The most recent publication that this documentation refers to, was written by
Erlend Magnus Viggen. His PhD Thesis THE LATTICE BOLTZMANN METHOD:
FUNDAMENTALS AND ACOUSTICS published in 2014, delivers a clear and com-
plete introduction for beginners. Chapters 3 and 4 are particularly relevant, in
which he develops the fundamentals, such as theory of gas kinetics and the Boltz-
mann equation.

• A concise introduction is given by A. A. Mohamad. In his book LATTICE BOLTZ-
MANN METHOD [2011], he shows clearly, how one obtains macroscopic equations
from LBM using Chapman-Enskop expansion.

• The readers who want insight into Lattice-Gas Cellular Automatas - the historical
origin of LBM - may want to refer to Dieter A. Wolf-Glodrow’s book LATTICE-
GAS CELLULAR AUTOMATA AND LATTICE BOLTZMANN MODELS [2000]. Start-
ing with Cellular Automata, he explores the beauty of LBM. A helpful interpreta-
tion of LBM is given in the beginning of the book.

• A quick overview of LBM, is obtained from the often cited paper of S. Chen and
G. D. Doolen LATTICE BOLTZMANN METHOD FOR FLUID FLOWS published in
1998.

7

1.3 The OpenLB Project

1.3.1 What is OpenLB?

OpenLB is a numerical framework for lattice Boltzmann simulations, created by stu-
dents and researchers with different backgrounds in computational fluid dynamics.
The code can be used by application programmers to implement specific flow geome-
tries in a straightforward way, and by developers to formulate new models. For this
first group of users, OpenLB offers a neat interface through which it is possible to set
up a simulation with little effort. For the second group, the structure of the code is
kept conceptually simple, implementing basic concepts of the lattice Boltzmann theory
step-by-step. Thanks to this, the code is an excellent framework for programmers to
develop pieces of reusable code that can be exchanged in the community.

One key aspect of the OpenLB code is genericity in its many facets. The core concept
of generic programming is to offer a single code that can serve many purposes. On
one hand, the code implements dynamic genericity through the use of object-oriented
interfaces. One use of this is that the behavior of lattice sites can be modified during
program execution, to distinguish for example between bulk and boundary cells, or
to modify the fluid viscosity or the value of a body force dynamically. Furthermore,
C++ templates are used to achieve static genericity. As a result, it is sufficient to write a
single generic code for various 3D lattice structures, such as D3Q15, D3Q19, and D3Q27
(for more information on lattice structures, see Section 5.1.2).

1.3.2 Getting help with OpenLB

The following resources are available for OpenLB users:

Web site. Most recent releases of the code and documentation, including this user
guide, are found on the website http://www.openlb.net/ .

Forum. If you experience troubles with OpenLB, you may wish to post your concerns
to the Lattice Boltzmann community in the forum on the OpenLB homepage.

Bug reports. If you think you found a bug in OpenLB, we encourage you to submit
a report to bug@openlb.net. Useful bug reports include the full source code
of the program in question, a description of the problem, an explanation of the
circumstances under which the problem occurred, and a short description of the
hardware and the compiler used. Moreover, other Makefile switches, such as

8

http://www.openlb.net/
bug@openlb.net

buildtype and mode of parallelization found in Makefile.inc can provide use-
ful information too.

1.3.3 Compiling OpenLB programs

Note: The framework for compiling OpenLB code is based on Makefiles and has so far been
tested only on platforms of the Linux/Unix family, including Mac OS X and Cygwin. If you are
working under Windows and want to get started quickly, you might consider installing the free
Cygwin software [1], which efficiently emulates a Posix environment under Windows (a large
part of OpenLB was developed under Cygwin).

OpenLB consists of generic, template-based code, which needs to be included in the
code of application programs, and precompiled libraries that are to be linked with the
program. The installation process is light and does not require an explicit precompila-
tion and installation of libraries. Instead, it is sufficient to unpack the source code into
an arbitrary directory. Compilation of libraries is handled on-demand by the Makefile
of an application program.

To get familiar with OpenLB, new users are encouraged to have a look at programs in
the examples directory. Once inside one of the example directories, entering the com-
mand make will first produce libraries and then the end-user example program. This
close relationship between the production of libraries and end-user programs reflects
the fact that many OpenLB users presently tend to play around with the OpenLB code
as well.

The file Makefile.inc in the root directory can be easily edited to modify the com-
pilation process. Available options include the choice of the compiler (GNU g++ is the
default), optimization flags, and a switch between normal/debug mode, and between
sequential/openmp-parallel/mpi-parallel programs.

To compile your own OpenLB programs from an arbitrary directory, make a copy of a
sample Makefile. Edit the ROOT:= entry to indicate the location of the OpenLB source,
and the OUTPUT:= entry to explicit the name of your program, without file extension.

9

1.3.4 Which features are currently implemented?

Lattice Boltzmann models

BGK model for fluids Section 5.1.3 Reference [16]
Regularized model for fluids Section 5.1.3 Reference [27]
Multiple Relaxation Times (MRT) Section 5.1.3 References [18, 38]
Entropic Lattice Boltzmann Section 5.1.3 Reference [9]
BGK with adjustable speed of sound Section 5.1.3 References [2, 17]
BGK and MRT with Smagorinsky model Section 5.1.3 References [29]
Porous media model Section 5.1.3
Power law model Section 5.1.3

Multiphysics Coupling

Shan-Chen two-component fluid Section 5.7 Reference [32]
Thermal fluid with Boussinesq approximation Section 5.7 Reference [22]

Lattice Structures

D2Q9 This lattice is available in the precompiled library
D3Q13 This lattice requires the use of a specific dynamics object (see also Ref. [19])
D3Q15
D3Q19 This lattice is available in the precompiled library
D3Q27

Boundary Conditions for straight Boundaries (including corners)

Regularized local Default choice for local boundaries
Finite difference (FD) velocity gradients non-local Default choice for non-local boundaries
Inamuro local
Zou/He local
Non-linear FD velocity gradients non-local

Boundary Conditions for curved Boundaries

Bouzidi non-local first order References [11]

10

Data Structures

The basic data structure used by an application programmer is the BlockLatticeXD.
Here, the placeholder X stands for the number 2 or 3, depending on whether a 2D or 3D
lattice is instantiated. A generalization of the BlockLatticeXD are the
CuboidStructureXD and the SuperLatticeXD, both of which have similar function-
ality but a slightly different scope. These advanced data structures generate a patch-
work consisting of many BlockLatticeXD structures that are presented behind a uni-
fied interface. Applications of these structures are MPI-parallel and memory saving
simulations that do not allocate memory in chosen subdomains of the numerical grid.

Input / Output

The basic mechanism behind I/O operations in OpenLB is the serialization and unseri-
alization of a BlockLatticeXD and a DataFieldXD. This mechanism is used to save
the state of a simulation, and to produce VTK output for data post-processing with ex-
ternal tools. In both cases, the data is saved in the binary Base64 format, which ensures
compact and (relatively) platform-independent data storage.

1.3.5 Project Participants

The OpenLB project was initiated in 2006. Between 2006 and 2008 Jonas Latt was the
project coordinator. As of 2009, Mathias J. Krause has been coordinating the project.
Since 2006 the following persons have contributed source code to OpenLB:

Armani Arfaoui: core: performance improvements for D3Q19 BGK collision operator

Saada Badie: core: performance improvements for D3Q19 BGK collision operator

Lukas Baron: utilities: (parallel) console output, time and performance measurement,
dynamics: porous media model, functors: concept, div. functors implementation

Vojtech Cvrcek: functors: 2D adaptation, dynamics: power law, examples: power
law, updates

Tim Dornieden: functors: smooth start scaling, io: vti writer

Jonas Fietz: io: configure file parsing based on XML, octree STL reader interface to
CVMLCPP (< release 0.9), communication: heuristic load balancer

Benjamin Förster: core: super data implementation io: new serializer and serializable
implementation, vti writer, new vti reader, functors: new discrete indicator

11

Marc Haussmann (active): dynamics: turbulence modelling, examples: tgv3d

Thomas Henn: io: voxelizer interface based on STL, particles: particulate flows

Fabian Klemens (active): functors: flux, indicator-based functors io: gnuplot inter-
face

Jonas Kratzke: core: unit converter, io: GUI interface based on description files and
OpenGPI, boundaries: Bouzidi boundary condition

Mathias J. Krause (active): core: hybrid-parallelization approach, super structure,
communication: OpenMP parallelization, cuboid data structure for MPI paral-
lelization, load balancing, general: makefile environment for compilation, inte-
gration and maintenance of added components (since 2008), boundaries: Bouzidi
boundary condition, convection, geometry: concept, parallelization, statistics, io
new serializer and serializable concept, functors: concept, div. functors imple-
mentation, examples: venturi3d, aorta3d

Jonas Latt: core: basic block structure, communication: basic parallel block lattice
approach (< release 0.9), io: vti writer, general: integration and maintenance of
added components (2006-2008), boundaries: basic boundary structure, dynam-
ics: basic dynamics structure, examples: numerous examples, which have been
further developed in recent years

Marie-Luise Maier (active): particles: particulate flows, frame change

Orestis Malaspinas: boundaries: alternative boundary conditions (Inamuro, Zou/He,
Nonlinear FD), dynamics: alternative LB models (Entropic LB, MRT)

Cyril Masquelier: functors: indicator, smooth indicator

Albert Mink (active): functors: arithmetic, io: parallel VTK interface3, zLib compres-
sion for VTK data, GifWriter, dynamics: radiative transport, boundary: diffuse
reflective boundary

Patrick Nathen (active): dynamics: turbulence modeling (advanced subgrid-scale
models), examples: nozzle3d

Bernd Stahl: communication: 3D extension to MultiBlock structure for MPI paral-
lelization (< release 0.9), core: parallel version of (scalar or tensor-valued) data
fields (< release 0.9), io: VTK output of data (< release 0.9)

12

Robin Trunk (active): dynamics: parallel thermal, advection diffusion models

Peter Weisbrod (active): dynamics: parallel multi phase/component,
examples: structure and showcases, phaseSeparationXd

Gilles Zahnd: functors: rotating frame functors

Asher Zarth: core: vector implementation

Simon Zimny: io: pre-processing: automated setting of boundary conditions

13

2 Using OpenLB for Applications

The general way of functioning in OpenLB follows a generic path. The following struc-
ture is maintained throughout every OpenLB application example, to provide an com-
mon structure and guide beginners.

1st Step: Initialization The converter between physical and lattice units is set in this
step. It is also defined, where the simulation data is stored and which lattice type
is used.

2nd Step: Prepare geometry The geometry is acquired, either from another file (a
.stl file) or from defining indicator functions. Then, the mesh is created and
initialized based on the given geometry. This consists of classifying voxels with
material numbers, according to the kind of voxels they are: an inner voxel con-
taining fluid ruled by the fluid dynamics will have a different number than a voxel
on the inflow with conditions on its velocity. The function prepareGeometry is
called for these tasks. Further, the mesh is distributed over the threads to establish
good scaling properties.

3rd Step: Prepare lattice According to the material numbers of the geometry, the lat-
tice dynamics are set here. This step characterizes the collision model and bound-
ary behavior. The choices depend on whether a force is acting or not, the use of
single relaxation time (BGK) or multiple relaxation times (MRT), the simulation
dimension (it can also be a 2D model), whether compressible or incompressible
fluid is considered, and the number of neighbouring voxels chosen. By the cre-
ation of a computing grid, the SuperLattice, the allocation of the required data is
done as well.

4th Step: Main loop with timer The timer is initialized and started, then a loop over
all time steps iT starts the simulation, during which the functions
setBoundaryValues, collideAndStream and getResults (steps 5, 6 and
7 respectively) are called repeatedly until a maximum of iterations is reached, or
the simulation has converged. At the end, the timer is stopped and the summary
is printed to the console.

14

5th Step: Definition of initial and boundary conditions The first of the three impor-
tant functions called during the loop, setBoundaryValues, sets the slowly in-
creasing inflow boundary condition. Since the boundary is time dependent, this
happens in the main loop. In some applications, the boundaries stay the same
during the whole simulation and the function doesn’t need to do anything after
the very first iteration.

6th Step: Collide and stream execution Another function collideAndStream is
called each iteration step, to perform the collision and the streaming step. If more
than one lattice is used, the function is called for each lattice separately.

7th Step: Computation and output of results At the end of each iteration step, the
function getResults is called, which creates console output, .ppm files or .vti
files of the results at certain timesteps. The ideal is to get the relevant simulation
data with functors and thus facilitate the post processing significantly. By passing
the converter and the time step, the frequency of writing or displaying data can
be chosen easily. In many applications, the console output is required more often
than the vtk data.

2.1 Lesson 1: Getting Started - Sketch of Application

This Section presents example bstep2d which can be found in the recent release of
OpenLB. This well known example simulates a flow over a backward-facing step and
serves as an illustration of OpenLB and its features.

In order to execute the simulation and get some results, download and unpack OpenLB
on a Linux system, see Section 3.1. Then, generate a executable file by compiling the
program through the command make. Finally, launch the simulation by ./bstep2d

and observe the terminal output, see Section 7.5.
A few lines are invariably the same for all OpenLB applications, see Listing 2.1.

#include " olb2D . h"
#ifndef OLB_PRECOMPILED // Unless precompiled version is used,

#include " olb2D . hh " // include full template code
#endif

5

#include <vector> // Some C++ library for vectors
#include <cmath> // required to compute squares, sin, ...
#include <iostream> // to write to console
#include <fstream>

10

15

using namespace olb; // OpenLB namespaces
using namespace olb::descriptors; //

typedef double T;
15 #define DESCRIPTOR D2Q9Descriptor

Listing 2.1: Framework of an OpenLB program. Fundamental properties of the
simulation are defined here.

Line 1: The header file olb2D.h includes definitions for the whole 2D code present in
the release. In the same way, access to 3D code is obtained by including the file
olb3D.h.

Line 3: Most OpenLB code depends on template parameters. Therefore, it cannot
be compiled in advance, and needs to be integrated “as is” into your programs
via the file olb2D.hh or olb3D.hh respectively. Including all this code slows
down compilation (2D codes may take around 10 seconds to compile, and 3D
codes around 30 seconds). If this overhead becomes too annoying during frequent
development-compilation cycles, the code can be precompiled for the required
data types. Although this topic is not covered in the tutorial, this short explana-
tion should clarify the meaning of the the cryptic #ifndef OLB_PRECOMPILED.

Line 11: All OpenLB code is contained in the namespace olb. The descriptors have
an own namespace and define the lattice arrangement, e.g. D2Q9 or D3Q19.

Line 14: Choice of double precision floating point arithmetic. Any other floating point
type can be used, including built-in types and user-defined types which are im-
plemented through a C++ class.

Line 15: Choice of a lattice descriptor. Lattice descriptors specify not only which lattice
you are going to use (for 2D simulations, the current OpenLB release gives you
no choice but D2Q9 anyway), but also potentially the nature of additional scalars,
such as an external force field, for which memory needs to be allocated on a grid
cell.

The next code presents a brief overview about the structure of an OpenLB applica-
tion, see Listing 2.2. It aims rather to introduce and guidelines the beginners, than ex-
plain the classes and methods in depth. Details on the shown functions can be found in
the source code, this means in the bstep2d.cpp file, as well as in the following Chapters.

16

SuperGeometry2D<T> prepareGeometry(LBconverter<T> const& converter)
{

// create Cuboids and assign them to threads
// create SuperGeometry

5 // set material numbers
return superGeometry;

}
void prepareLattice(...)
{

10 // set dynamics for fluid and boundary lattices
// set initial values, rho and u

}
void setBoundaryValues(...)
{

15 // set Poiseuille velocity profile at inflow
// increase inflow velocity slowly over time

}
void getResults(...)
{

20 // write simulation data do vtk files and terminal
}

int main(int argc, char* argv[])
{

25 // === 1st Step: Initialization ===
olbInit(&argc, &argv);
// set output directory
singleton::directories().setOutputDir(" ./tmp/");
OstreamManager clout(std::cout, " main ");

30 // create converter
LBconverter<T> converter(

// define discretization and characteristic parameter
);
converter.print(); // write conversion factors to console

35

// === 2rd Step: Prepare Geometry ===
SuperGeometry2D<T> superGeometry(prepareGeometry(converter));

// === 3rd Step: Prepare Lattice ===
40 SuperLattice2D<T,DESCRIPTOR> sLattice(superGeometry);

BGKdynamics<T,DESCRIPTOR> bulkDynamics (
converter.getOmega(),
instances::getBulkMomenta<T,DESCRIPTOR>()

45);

17

// choose local boundary condition
sOnLatticeBoundaryCondition2D<T,DESCRIPTOR> sBoundaryCondition(

sLattice);
createLocalBoundaryCondition2D<T,DESCRIPTOR>(sBoundaryCondition);

50

prepareLattice(converter, sLattice, bulkDynamics,
sBoundaryCondition, superGeometry);

// === 4th Step: Main Loop with Timer ===
55 Timer<T> timer(converter.numTimeSteps(maxPhysT),

superGeometry.getStatistics().getNvoxel());
timer.start();

for (int iT = 0; iT < converter.numTimeSteps(maxPhysT); ++iT) {
60 // == 5th Step: Definition of Initial and Boundary Conditions ==

setBoundaryValues(converter, sLattice, iT, superGeometry);
// == 6th Step: Collide and Stream Execution ==
sLattice.collideAndStream();
// == 7th Step: Computation and Output of the Results ==

65 getResults(sLattice, converter, iT, superGeometry, timer);
}

timer.stop();
timer.printSummary();

70 }

Listing 2.2: A brief overview of a typically OpenLB application, bstep2d. Details on
the specific functions can be found in the following Chapters.

2.2 Lesson 2: Understand the BlockLattice

This second lesson starts with a response to the scream of indignation you emitted in
Lesson 1, when you learned that each cell of a BlockLatticeXD carries along its own
Dynamics object, and collision is triggered by some dynamic run-time mechanism.
How could the OpenLB developers favor object-oriented mumbojumbo over efficiency,
right there in the core of the library?

The truth is that the overhead incurred by delegating collision to an object (instead of
hard-coding collision somewhere inside the loop over grid nodes) is completely irrele-
vant. The efficiency loss is minimal on all platforms on which OpenLB has been tested
so far, and it is negligible in face of other big-picture efficiency considerations.

18

One such consideration is about the separation of collision and streaming in Line 63
of Listing 2.2. The question to ask, instead of nitpicking over object-oriented vs. non-
object-oriented issues, is whether it is really necessary to step through memory twice;
once to execute collision and once to execute streaming. As a matter of fact, there are
several ways of avoiding this time-consuming double access to memory, one of which
is implemented in OpenLB and documented in Ref. [3]. For an OpenLB user, doing
this is as easy as replacing the collision-streaming sequence by a call to the method
collideAndStream():

// collision-streaming cycles
// lattice.collide();
// lattice.stream(true);

lattice.collideAndStream(true);

Listing 2.3: Collision and streaming in one step for improved efficiency

Using the method collideAndStream is, of course, only possible when you don’t
need to compute or modify anything between collision and streaming. When this is the
case, the use of this method can however reduce by as much as 40% the execution time
of your code, depending on your hardware.

The BlockLattice2D<T, LATTICE> is basically a nx-by-ny-by-q array of vari-
ables of type T. The following code for example is valid (although it is bad practice, as
explained below):

1 int nx, ny, someX, someY, someF;
// <...> some code to initialize nx, ny, someX and someY
BlockLattice2D<T, LATTICE> lattice(nx,ny); // instantiate

BlockLattice
T value = lattice.get(someX,someY)[someF]; // read values
lattice.get(someX,someY)[someF] = 0.; // write values

Listing 2.4: Direct access to values in a BlockLattice2D

The method BlockLattice2D<T, LATTICE>::get() delivers an object of type
Cell<LATTICE>, which contains storage space for the particle populations and, if re-
quired by the LATTICE template, for additional scalars. The Cell offers many meth-
ods to read and manipulate the data. You are much more likely to use those methods
in practice, rather than accessing particle populations directly as in Listing 2.4:

int nx, ny, someX, someY, someF;
// <...> some code to initialize nx, ny, someX and someY
BlockLattice2D<T, LATTICE> lattice(nx,ny); // instantiate

BlockLattice

19

// <...> some code to initialize dynamics objects of the lattice
5 T velocity[2];

lattice.get(someX,someY).computeU(velocity); // compute velocity
velocity[0] = 0.;
lattice.get(someX,someY).defineU(velocity); // modify velocity

Listing 2.5: Manipulation of data through methods of a Cell

In this example, the method Cell<T>::computeU() computes the velocity on a cell
for you, using its dynamics object. Conversely, the method Cell<T>::defineU()

modifies the velocity by translating the particle populations into space of moments,
modifying the moment of the velocity, and leaving the others as they are.

In addition to being more convenient, the access to the data in Listing 2.5 has a dis-
tinct advantage to the approach of Listing 2.4. In Listing 2.4 the data inside a Cell is
accessed directly, whereas in Listing 2.5 it is accessed indirectly through the dynamics
object of the cell. Although direct data access works in simple data structures, such as
the present BlockLattice2D, only indirect data access can be used in complicated data
structures. When the code is, for example executed in parallel, you cannot access the
data directly, because it might not be found on your processor. The dynamics object,
on the other hand, is smart enough to locate the data on the right processor, and to
instantiate MPI communication to access it.

Generally speaking, the methods of a Cell are separated into two groups, one for
direct data access, and one for indirect data access through the dynamics object. When
using OpenLB as an application programmer, it is strongly recommended that you only
make use of methods in the second group, in order for your code to be extensible.
Methods of the first group are used by programmers who wish to extend the OpenLB
library, for example by writing a class to implement a new type of dynamics. Most of
the subsequent lessons are written for application programmers, and the code is written
with extensibility in mind, for example, by insisting on the possibility for it to be run in
parallel with minimal changes.

The following list details some useful methods to access the data of a Cell indirectly
through the dynamics object:

void iniEquilibrium(T rho, const T u[Lattice〈T〉::d]) Initialize all particle populations
at an equilibrium distribution with density rho and velocity u.

T computeRho() const Compute the particle density on the cell.

void computeU(T u[Lattice〈T〉::d]) const Compute the velocity on the cell.

20

void computeStress (T pi[util::TensorVal〈Lattice〈T〉〉::n) const] Compute the off-
equilibrium stress-tensor Π(1) on the cell.

void computePopulations(T* f) const Retrieve the particle populations and store them
in a q-element C-array.

void computeExternalField(int pos, int size, T* ext) const Retrieve the external scalars
and store them in a C-array.

void defineRho(T rho) Modify the populations such that the density yields rho and
the other moments are unchanged.

void defineU(const T u[Lattice〈T〉::d]) Modify the populations such that the velocity
yields u and the other moments are unchanged.

void defineStress(const T pi[util::TensorVal〈Lattice〈T〉〉::n]) Modify the populations
such that the tensor Π(1) yields pi and the other moments are unchanged.

void definePopulations(const T* f) Attribute new values to all populations. The ar-
gument f is a C-array with q elements.

void defineExternalField(int pos, int size, const T* ext) Attribute new values to all
external scalars.

The discussion of this lesson is also valid for 3D lattices, which are instantiated with the
following instruction:

#define D3Q19Descriptor LATTICE
int nx, ny, nz;
// <...> initialization of nx, ny, nz
BlockLattice3D<T,LATTICE> lattice(nx,ny,nz);

Listing 2.6: Instantiation of a 3D lattice

The BlockLattice2D and the BlockLattice3D have different types, because they
have distinct interfaces. The method get() for example requires 2 arguments in the
2D case and 3 arguments in 3D. The Cell class, an instance of which is delivered by the
method get(), is however the same in 2D and 3D, although its template is instantiated
with a different lattice descriptor (e.g. D2Q9Descriptor vs. D3Q19Descriptor). The
above list of methods of the Cell is therefore valid in 3D as well.

21

2.3 Lesson 3: Define and use boundary conditions

The current OpenLB release offers five different boundary conditions for the imple-
mentation of pressure and velocity boundaries. They support boundaries that are
aligned with the numerical grid, and also implement proper corner nodes in 2D and
3D, and edge nodes that connect two plane boundaries in 3D. The choice of a bound-
ary condition is conceptually separated from the definition of the location of bound-
ary nodes. It is therefore possible to modify the choice of the boundary condition by
changing a single instruction in a program. This instruction is the instantiation of a
OnLatticeBoundaryCondition object:

// Instantiate 2D boundary condition
OnLatticeBoundaryCondition2D<T,D2Q9Descriptor>* boundaryCondition2D =

createLocalBoundaryCondition2D(lattice);

5 // Instantiate 3D boundary condition
OnLatticeBoundaryCondition2D<T,D3Q19Descriptor>* boundaryCondition3D

=
createLocalBoundaryCondition3D(lattice);

Listing 2.7: Instantiation of OnLatticeBoundaryCondition.

Objects of type OnLatticeBoundaryConditionXD are used to attribute the role of
boundary node to chosen nodes of the lattice. The following code configures a lattice in
such a way that the rectangle following the lattice boundaries implements a boundary
condition on the velocity.

template<typename T>
void velocityBoundaryBox (

BlockLattice2D<T,D2Q9Descriptor>& lattice,
OnLatticeBoundaryCondition2D<T,D2Q9Descriptor>& bc, T omega)

5 {
int nx = lattice.getNx();
int ny = lattice.getNy();
// top boundary
bc.addVelocityBoundary1P(1,nx-2,ny-1,ny-1, omega);

10 // bottom boundary
bc.addVelocityBoundary1N(1,nx-2, 0, 0, omega);
// left boundary
bc.addVelocityBoundary0N(0,0, 1, ny-2, omega);
// right boundary

15 bc.addVelocityBoundary0P(nx-1,nx-1, 1, ny-2, omega);

// Corner nodes

22

bc.addExternalVelocityCornerNN(0,0, omega);
bc.addExternalVelocityCornerNP(0,ny-1, omega);

20 bc.addExternalVelocityCornerPN(nx-1,0, omega);
bc.addExternalVelocityCornerPP(nx-1,ny-1, omega);

// Make the lattice ready for simulation
lattice.initialize();

25 }

Listing 2.8: Instantiation of velocity boundary condition along lattice boundaries.

When boundary nodes are instantiated, it is necessary to specify the orientation of
the boundary through the normal vector that points outside of the domain. The in-
struction addVelocityBoundary1P refers to a boundary whose normal is in positive
y-direction (P stands for “positive”, and indexes are numbered as 0 for the x-index and
1 for the y-index). For external corners, the expression NN refers to any boundary vector
whose opposite direction points inside the numerical domain. In this case, this bound-
ary vector points in negative x-direction and negative y-direction. The term External

in the method addExternalVelocityCornerNN refers to the fact that the domain
boundaries are convex shaped. Corners of concave shaped boundaries are instantiated
with methods of the form addInternalVelocityCornerXX, where X stands again
for N or P and indicates the direction of a vector pointing outside the numerical domain.

Pressure boundaries are instantiated just as easily by replacing the word Velocity

by Pressure in the methods of the OnLatticeBoundaryCondition object.
Things are slightly more complicated in 3D, where edges also need seperate treat-

ment. Edges are locations where two boundary surfaces that are orthogonal to each
other meet. The following are typical instructions one may use in the 3D case. In 3D,
the instruction addVelocityBoundary0N instantiates a plane boundary domain in
negative x-direction (a left boundary). It takes 6 arguments, in addition to the omega-
argument, in order to delimit the plane like a sub-volume with one degenerate space di-
rection. The instruction addExternalVelocityEdge0NP instantiates an edge whose
outward-pointing normal vector is in the 0-plane (in the plane in which x = 0) and
which points in negative y- and positive z-direction. Counting of indexes is cyclic: the
instruction addExternalVelocityEdge1NP denotes an edge with normal vector in
the y = 0-plane and with negative z- and positive x-direction. The Edge instructions
also take 6+1 arguments, because they treat the edge like a sub-volume with two degen-
erate directions. In 3D, there are external and internal corners, and there are external
and internal edges.

23

Although setting up the geometry of the numerical domain can be somewhat both-
ersome, especially in 3D, this is a one-time job. Once the setup is completed, speci-
fying the required velocity and density on boundaries is straightforward. This is done
through a call to the method defineVelocity or defineDensity of the correspond-
ing cell. You may remember from LESSON 2, that on normal lattice Boltzmann nodes,
these methods modify the value of particle populations in order to obtain the required
velocity/density. On boundary nodes, the rules are different. Here, particle popula-
tions are not modified (which is necessary, as you may want to change the boundary
velocity during a simulation, without tampering with the particle populations). On ve-
locity boundaries, the method defineVelocity modifies the required velocity value
for the boundary, whereas defineDensity has no effect. On pressure boundaries, the
method defineVelocity has no effect and defineDensity picks out the required
density value on the boundary. It should be pointed out that although the domain ge-
ometry is specified piece-wise (plane per plane, edge per edge, and corner per corner),
the velocity/density can be adapted individually on every node. Furthermore, acessing
parameters of the boundary on a per-cell base is convenient, because it does not require
the programmer to distinguish any more between plane boundaries, edges or corners.
Finally, the choice of the velocity/density value is not static: it can be altered at every
time step to model time-dependent boundaries.

The following is a list of available boundary conditions. Instead of showing the actual
class name of the boundary condition, the list indicates the names of functions that
generate the boundary condition, as these are the ones you are likely to access as an
end user. The X is a placeholder for 2 respectively 3, as all boundary conditions are
implemented in 2D and 3D.

createLocalBoundaryConditionXD This is the default local boundary condition. It
implements a regularized boundary [27], which tends to be numerically stable in
a last range of regimes.

createInterpBoundaryConditionXD This is the default non-local boundary condition.
It is based on the algorithm proposed by Skordos [34], and uses a finite difference
scheme over adjacent neighbors to evaluate velocity gradients.

createZouHeBoundaryConditionXD The local boundary condition introduced by Zou
and He [39]. It is very accurate, especially in 2D simulations, but can have stability
issues.

createInamuroBoundaryConditionXD The local boundary condition by Inamuro In-

24

amuro et al. [25]. It is very accurate in 2D and 3D, but can have stability issues.
In 3D, it is slower than other boundary conditions, because it solves an implicit
equation at every time step.

createExtendedFdBoundaryConditionXD The approach is the same as in the bound-
ary condition generated by createInterpBoundaryConditionXD, but this
time, non-linear velocity terms of the Chapman-Enksog expansion are taken into
account. This is rarely useful, but can make a difference in a very low Mach-
number regime.

It should be clear by now, how powerful the abstraction mechanism of the “OnLat-
ticeBoundaryConditionXD” objects is. With the helpof this mechanism, one can treat
local and non-local boundary conditions the same way. Furthermore, they can be used
both for sequential and parallel program execution, as it is shown in Lesson 10. The
mechanism behind this is explained in Lesson 7. The bottom line is that both local and
non-local boundary conditions instantiate a special dynamics object and assign it to
boundary cells. Non-local boundaries additionally instantiate post-processing objects
which take care of non-local aspects of the algorithm.

This mechanism for the instantiation of boundary conditions is generic and easy to
use, but it makes sense only in quite regular geometries. In irregular geometries, even
if you agree on using a staircase approximation of domain boundaries, you will expe-
rience a hard time attributing the right boundary type to each cell. Although off-lattice
boundaries are under investigation in the OpenLB project, they are not currently avail-
able. If your irregular domain boundaries implement a no-slip condition, your current
best bet is to implement them through a fullway bounce-back dynamics. In this ap-
proach, particle populations that are opposite to each other are swapped at each iter-
ation step, and no additional collision is executed. The advantage of this procedure is
that it is independent of the orientation of the domain. The following code implements
for example a circular obstacle with no-slip walls in the center of a 2D domain:

<...> definition of the types T and DESCRIPTOR
int nx, ny, r;
<...> initialization of nx and ny, r
BlockLattice2D<T,DESCRIPTOR> lattice(nx,ny);

5 <...> setup of the lattice
for (int iX=0; iX<nx; ++iX) {

for (int iY=0; iY<ny; ++iY) {
if ((iX-nx/2)*(iX-nx/2) + (iY-ny/2)*(iY-ny/2) < r*r) {
lattice.defineDynamics(iX,iX,iY,iY,

10 &instances::getBounceBack<T,D2Q9Descriptor>());

25

}
}

}

Listing 2.9: Implementation of a bounce-back cylinder in the domain center

2.4 Lesson 4: Converter - Lattice and Physical Units

Fluid flow problems are usually given in a system of metric units. For example consider
a cylinder of diameter 3cm in a fluid channel with average inflow velocity of 4m/s. The
fluid has a kinematic viscosity of 0, 001m2/s. The value of interest is the pressure dif-
ference measured in Pa at the front and the back of the cylinder (with respect to the
flow direction). However, the variables used in a LB simulation live in a system of lat-
tice units, in which the distance between two lattice cells and the time interval between
two iteration steps are unity. Therefore, when setting up a simulation, a conversion
directive has to be defined that takes care of translating variables from physical units
into lattice units and vice versa. In OpenLB, all these conversions are handled by a class
called LBconverter, see Listing 2.10. An instance of the LBconverter is generated with
some reference values of the simulation and the desired discretization parameters. It
provides a set of conversion functions, to enable a fast and easy way to convert between
physical units and lattice units. In addition, it gives information about the parameters
of the fluid flow simulation, such as the Reynolds number or the relaxation parame-
ter ω.

Let’s have a closer look at the input parameters: The reference values represent char-
acteristic quantities of the fluid flow problem. In this example, it is suitable to choose
the cylinder’s diameter as characteristic length and the average inflow speed as char-
acteristic velocity. The converter internally builds a “dimensionless” system of units
in which the characteristic values are one. The Reynolds number Re is an important
parameter of this system. Furthermore, two discretization parameters latticeL and
latticeU are provided to the converter. latticeL is the discrete space interval in phys-
ical units and from this the dimensionless discretization parameter δx is determined:
δx = latticeL/charL. latticeU sets the relation between the discretization parameters
for space δx and time δt in dimensionless units: latticeU = δu = δt/δx. Instead of
δt, those working with LBM often like to specify latticeU . One reason for this is that
latticeU is proportional to the Mach number, and its choice is important to control com-
pressibility effects.

26

Once the converter is initialized, its methods can be used to convert various quan-
tities such as velocity, time, force or pressure. The function for the latter helps us to
evaluate the pressure drop in our example problem, as shown in the the following code
snippet:

LBconverter<T> converter(
(int) 3; // dimension
(T) 0.003; // latticeL
(T) 0.02; // latticeU

5 (T) 0.001; // charNu
(T) 0.03; // charL
(T) 4.; // charU
(T) 1.; // charRho
(T) 0.; // pressureLevel

10);
writeLogFile(converter, " converterLog . dat "); // write to file
converter.print(); // write to terminal
std::cout << converter.getRe() << std::endl; // access data
// conversion from seconds to iteration steps and vice-versa

15 int iT = converter.numTimeSteps(maxPhysT);
T sec = converter.physTime(iT);
<...> simulation
<...> evaluation of latticeRho at the back and the front of the

cylinder
T pressureDrop = converter.physPressure(latticeRhoFront)

20 - converter.physPressure(latticeRhoBack);

Listing 2.10: Use of LBconverter in a 3D problem.

Line 1-10: Instantiate an LBconverter object and specify discretization parameters as
well as characteristic values.

Line 11: Write simulation parameters and conversion factors in a logfile.

Line 12: Write simulation parameters and conversion factors to terminal.

Line 13: Access Reynolds number Re and print it to terminal. Other characteristic
values, e.g. kinematic viscosity ν, can be accessed via corresponding functions.

Line 15,16: The conversion from physical units (seconds) to discrete ones (time steps)
is managed by the converter.

Line 19: The converter automatically calculates the pressure values from the local den-
sity.

27

2.5 Lesson 5: Extract data from a simulation

When the collision step is executed, the value of the density and the velocity are com-
puted internally, in order to evaluate the equilibrium distribution. Those macroscopic
variables are however interesting for the OpenLB end-user as well, and it would be a
shame to simply neglect their value after use. These values are accessed through the
method getStatistics() of a BlockLattice:

T lattice.getStatistics().getAverageRho() Returns average density evaluated during
the previous collision step.

T lattice.getStatistics().getAverageEnergy() Returns half the average velocity norm
evaluated during the previous collision step.

T lattice.getStatistics().getMaxU() Returns maximum value of the velocity norm eval-
uated during the previous collision step.

Often, the information provided by the statistics of a lattice in not sufficient, and more
generally numerical result are required. To do this, you can get data cell-by-cell from the
BlockLatticeXD and SuperLatticeXD through functors, see Chapter 9. Functors
act on the underlying lattice and process its data to relevant macroscopic units, e.g.
density, velocity, stress, flux, pressure and drag. Functors provide an operator() that
instead of access stored data, computes every time it is called the data. Since OpenLB
version 0.8, the concept of functors unfold not only for postprocessing, but also for
boundary conditions and the generation of geometry, see Chapter 9. In Listing 2.11
it is shown, how to extract data out of a SuperLattice3D named sLattice and an
SuperGeometry3D named sGeometry. The data format is a legal vtk file, that can be
processed further with ParaView.

// generate the writer object
SuperVTMwriter3D<T> vtmWriter(" bstep3d ");
// write every 0.2 seconds
if (iT==converter.numTimeSteps(0.2)) {

5 // create functors
SuperLatticeGeometry3D<T,DESCRIPTOR> geometry(sLattice, sGeometry

);
SuperLatticeCuboid3D<T,DESCRIPTOR> cuboid(sLattice);
SuperLatticeRank3D<T,DESCRIPTOR> rank(sLattice);
// write functors to file system, vtk formata

10 vtmWriter.write(geometry);
vtmWriter.write(cuboid);
vtmWriter.write(rank);

28

}

Listing 2.11: Extract simulation data to vtk file format.

As before mentioned, OpenLB provides functors for a bunch of data, see Listing 2.12.
More details about writing simulation data can be found in Chapter 7.

// Create the functors by only passing lattice and converter
2 SuperLatticePhysVelocity3D<T,DESCRIPTOR> velocity(&sLattice, &

converter);
SuperLatticePhysPressure3D<T,DESCRIPTOR> pressure(&sLattice, &

converter);
// Create functor that corresponds to material numbers
SuperLatticeGeometry3D<T,DESCRIPTOR> geometry(sLattice, superGeometry

);

Listing 2.12: Code example for creating velocity, pressure and geometry functors.

The most straightforward and convenient way of visualizing simulation data is to
produce a 2D snapshot of a scalar valued functor. This is done through the
BlockLatticeReduction3D, which puts a plane into arbitrary 3D functors. After-
wards, this plane can be easily written to a image file. OpenLB creates images of format
PPM as shown in Listing 2.18.

// velocity is an application: R^3 -> R^3
// an image in its very basic sense is an application: R^2 -> R

// transformation of data is presented below
5 // get velocity functor

SuperLatticePhysVelocity3D<T,DESCRIPTOR> velocity(&sLattice, &
converter);

// get scalar valued functor by applying the point wise l2 norm
SuperEuklidNorm3D<T,DESCRIPTOR> normVel(velocity);
// put a plane with normal (0,0,1) in the 3 dimensional data

10 BlockLatticeReduction3D<T,DESCRIPTOR> planeReduction(normVel, 0, 0,
1);

BlockGifWriter<T> gifWriter;
// write ppm image to file system
gifWriter.write(planeReduction, iT, " ve l ");

Listing 2.13: Create a PPM image out of a 3D velocity functor.

This image writer provides insitu visualization which, in contrast to the vtk writer,
produces smaller data sets that can be interpreted immediately without requiring other

29

software.

2.6 Lesson 6: Convergence Check

The class ValueTracer checks for time-convergence of a given scalar φ. The conver-
gence is reached when the standard deviation σ of the monitored value φ is smaller
than a given residuum ε times the expected value φ̄.

σ(φ) =

√√√√ 1

N + 1

N∑
i=0

(φi − φ̄)2 < εφ̄ (2.1)

The expected value φ is the average over the last N time steps with φi := φ(t ∗ −i∆t)
and time steps ∆t.

φ̄ =
1

N + 1

N∑
i=0

φi (2.2)

N should be choosen as a problem specific time period. As an example charT =

charL/charU andN = converter.numTimeSteps(charT). To initialize a ValueTracer
object use:

util::ValueTracer<T> converge(numberTimeSteps, residuum);

Listing 2.14: Create a PPM image out of a 3D velocity functor.

For example, to check for convergence with a residuum of ε = 10−5 every physical
second:

util::ValueTracer<T> converge(converter.numTimeSteps(1.0), 1e-5);

Listing 2.15: Create a PPM image out of a 3D velocity functor.

There for it is needed to pass the monitored value to the ValueTracer object every
time steps by:

for (iT = 0; iT < maxIter; ++iT) {
...
converge.takeValue(monitoredValue, isVerbose);

4 ...
}

Listing 2.16: Create a PPM image out of a 3D velocity functor.

30

If you like to print average value and itÂt’s standard derivation every number of time
steps choosen during initialization set isVerbose to true otherwise choose false. It is
good idea to choose average energy as monitored value:

converge.takeValue(SLattice.getStatistics().getAverageEnergy(), true
);

Listing 2.17: Create a PPM image out of a 3D velocity functor.

Do something like the following in the timeloop:

if (converge.hasConverged()) {
clout << " Simulat ion converged . " << endl;
break;

4 }

Listing 2.18: Create a PPM image out of a 3D velocity functor.

2.7 Lesson 7: Use an external force

In simulations, the dynamics of a fluid is often driven by a force field (gravity, inter-
molecular interaction, etc.) which is space- and time-dependent, and which is possibly
computed from an external source, independent of the LB simulation. In order to opti-
mize memory access and to minimze cache-misses, the value of this force can be stored
in a cell, adjacent to the particle populations. This is achieved by specifying external
scalars in the lattice descriptor (see also Lesson 7). OpenLB offers, by default, the two
descriptors ForcedD2Q9Descriptor and ForcedD3Q19Descriptor. The dynam-
ics ForcedBGKdynamics accesses the force term defined by these descriptors, and
implements a LB dynamics with body force. The algorithm is taken from Ref. [21] to
guarantee second-order accuracy even when the force field is space and time depen-
dent. An example for the implementation of a LB simulation with force term is found
in the code examples/poiseuille2d/forced.

2.8 Lesson 8: Understand genericity in OpenLB

OpenLB is a framework for the implementation of lattice Boltzmann algorithms. Al-
though most of the code shipped with the distribution is about fluid dynamics, it is
open to various types of physical models. Generally speaking, a model which makes

31

use of OpenLB must be formulated in terms of the “local collision followed by nearest-
neighbor streaming” philosophy. A current restriction to OpenLB is that the streaming
step can only include nearest neighbors: there is no possibility to include larger neigh-
borhoods within the modular framework of the library, i.e. without tampering with
OpenLB source code. Except for this restriction, one is completely free to define the
topology of the neighborhood of cells, to implement an arbitrary local collision step,
and to add non-local corrections for the implementation of, say, a boundary condition.

To reach this level of genericity, OpenLB distinguishes between non-modifiable core
components, which you’ll always use as they are, and modular extensions. As far as
these extensions are concerned, you have the choice to use default implementations
that are part of OpenLB or to write your own. As a scientific developer, concentrat-
ing on these, usually quite short, extensions means that you can concentrate on the
physics of your model instead of technical implementation details. By respecting this
concept of modularity, you can automatically take advantage of all structural additions
to OpenLB. In the current release, the most important addition is parallelism: you can
run your code in parallel without (or almost without) having to care about parallelism
and MPI.

The most important non-modifiable components are the lattice and the cell. You can
configure their behavior, but you are not expected to write a new class which inherits
from or replaces the lattice or the cell. Lattices are offered in different flavours, most
of which inherit from a common interface BlockStructureXD. The most common lat-
tice is the regular BlockLatticeXD, which is replaced by the MultiBlockLatticeXD
for parallel applications and for memory-saving applications when faced with irregu-
lar domain boundaries. An alternative choice for parallelism and memory savings is
the CuboidStructureXD, which does not inherit from BlockStructureXD, but instead
allows for more general constructs.

The modular extensions are classes that customize the behavior of core-components.
An important extension of this kind is the lattice descriptor. This specifies the number
of particle populations contained in a cell, and defines the lattice constants and lattice
velocities, which are used to specify the neighborhood relation between a cell and its
nearest neighbors. The lattice descriptor can also be used to require additional alloca-
tion of memory on a cell for external scalars, such as a force field. The integration of
a lattice descriptor in a lattice happens via a template mechanism of C++. This mech-
anism takes place statically, i.e. before program execution, and avoids the potential
efficiency loss of a dynamic, object-oriented approach. Furthermore, template special-
ization is used to optimize the OpenLB code specifically for some types of lattices. Be-

32

cause of the template-based approach, a lattice descriptor needs not inherit from some
interface. Instead, you are free to simply implement a new class, inspired from the
default descriptors in the files core/latticeDescriptors.h and core/lattice-

Descriptor.hh.
The dynamics executed by a cell are implemented through a mechanism of dynamic

(run-time) genericity. In this way, the dynamics can be different from one cell to another,
and can change during program execution. There are two mechanisms of this type
in OpenLB, one to implement local dynamics, and one for non-local dynamics. To
implement local dynamics, one needs to write a new class which inherits the interface
of the abstract class Dynamics. The purpose of this class is to specify the nature of the
collision step, as well as other important information (for example, how to compute the
velocity moments on a cell). For non-local dynamics, a so-called post-processor needs
to be implemented and integrated into a BlockLatticeXD through a call to the method
addPostProcessorXD. This terminology can be somewhat confusing, because the
term “post-processing” is used in the CFD community in the context of data analysis
at the end of a simulation. In OpenLB, a post-processor is an operator which is applied
to the lattice after each streaming step. Thus, the time-evolution of an OpenLB lattice
consists of three steps: (1) local collision, (2) nearest-neighbor streaming, and (3) non-
local postprocessing. Implementing the dynamics of a cell through a postprocessor is
usually less efficient than when the mechanism of the Dynamics classes is used. It is
therefore important to respect the spirit of the lattice Boltzmann method and to express
the collision as a local operation whenever possible.

2.9 Lesson 9: Use checkpointing for long duration simulations

All types of data in OpenLB can be stored in a file or loaded from a file. This includes the
data of a BlockLatticeXD and the data of a ScalarFieldXD or a TensorFieldXD.
All these classes implement the interface Serializable<T>. This guarantees that
they can transform their content into a data stream of type T, or read from such a stream.
Serialization and unserialization of data is mainly used for file access, but it can be ap-
plied to different aims, such as copying data between two objects of different type. The
data is stored in the ascii-based binary format Base64. Although Base64-encoded
data requires 25% more storage space than when a pure binary format is used, this ap-
proach was chosen in OpenLB to enhance compatibility of the code between platforms.
Saving and loading data is invoked by calling the save and load method on the object
to be serialized. These methods take the filename as an optional (but recommended)

33

argument, as shown below:

int nx, ny;
<...> initialization of nx and ny
BlockLattice2D<T,DESCRIPTOR> lattice(nx, ny);
// load data from a previous simulation

5 lattice.load(" s imulat ion . checkpoint ");
<...> run the simulation
// save data for security, to be able to take up
// the simulation at this point later
lattice.save(" s imulat ion . checkpoint ");

Listing 2.19: Store and load the state of the simulation.

Checkpointing is also illustrated in the example programs bstep2D and bstep3D

(Section 11.3).

2.10 Lesson 10: Save memory when domain boundaries are
irregular

It is possible in OpenLB to allocate several lattices of type BlockLatticeXD and hide
them behind a common interface, to treat them as the components of a larger lattice.
This technique can be used to achieve parallelism, as it is described in the next lesson.
Another application is the creation of lattices in which memory is allocated in selected
subdomains only. This is useful for the simulation of flows with complicated domain
boundaries, as no memory needs to be allocated outside the domain. An example pro-
gram for this technique is under development, but is not yet available in the current
release.

2.11 Lesson 11: Run your programs on a parallel machine

OpenLB programs can be executed on a parallel machine with distributed memory,
based on MPI. To compile an OpenLB program for parallel execution, modify the file
named Makefile.inc, found in the OpenLB root directory, by removing the hashes
before the lines: #CXX := mpic++, and #PARALLEL_MODE := MPI. The modified
lines are shown in Listing 2.20. Execute make clean and make cleanbuild within
the desired program directory to eliminate previously compiled libraries, and recom-
pile the program by executing the make command. To run the program in parallel,

34

use the command mpirun -np 2 ./cavity2d. Here -np 2 specifies the number of
processors to be used.

CXX := g++
#CXX := icpc -D__aligned__=ignored
#CXX := mpiCC
CXX := mpic++

5 ...
PARALLEL_MODE := OFF
PARALLEL_MODE := MPI
#PARALLEL_MODE := OMP
#PARALLEL_MODE := HYBRID

Listing 2.20: Edited Makefile.inc for MPI-parallel programs.

35

3 Install Dependencies

OpenLB is developed for high performance computing and hence, for Linux based op-
eration systems. As a natural choice, the programming happens mainly on Linux sys-
tems which is as well the recommended platform to run applications.

In recent years, virtualbox turned into a powerful alternative to run a Linux operation
system within Windows. In case you are a windows user, consider to run a Linux
distribution in a virtual machine, e.g. virtualbox.

3.1 Linux

The developer are very proud to announce that OpenLB has no dependencies and re-
quires only a c++ compiler alongside an OpenMPI implementation. Both can be in-
stalled on a Ubuntu system through

sudo apt-get install g++ openmpi-bin openmpi-doc libopenmpi-dev

ParaView is often used for visualization and can be installed from the Ubuntu pack-
ages as well

sudo apt-get install paraview

The very recent version has to be downloaded from the web. Paraview is an appli-
cation built on top of the Visualization Tool Kit (VTK) libraries which can read VTk-files
written by OpenLB.

To compile the software library and all examples, go into the root folder of OpenLB
and type

make

If your system is set up correctly, you should see a lot compiler messages but no errors.

3.2 Mac

A working c++ and OpenMPI compiler enables you to compile and run OpenLB on
Mac.

36

3.3 Windows

An installation guide for Windows using Cygwin can be found in the technical report
TR4: Installing OpenLB in Windows/Cygwin [4].

37

http://optilb.org/openlb/tech-reports

4 Geometry

This Chapter presents how geometry data can be loaded in or created by OpenLB. Fur-
thermore, it is shown the concept of material numbers.

4.1 Creating a Geometry

OpenLB provides an interface for stl based geometry data and generates fully auto-
mated a regular mesh. On the other hand, geometries can be build out of geometric
primitives such as cuboids, spheres and cylinders. By the implemented arithmetic that
includes intersection, union and complement those primitives can be assembled very
generally.

A computational domain such as the SuperLattice3D is created in 6 simple steps
(see also Fig 4.1):

1. Step: Create an Indicator3D instance by

1. Reading an STL-file, see example aorta3d 11.1.

2. Pre-defined geometric primitives and its combinations (+,−, ·), see example
venturi3d 11.13.

2. Step: Construct CuboidGeometry3D. During construction cuboids will be automat-
ically removed, shrunk and weighted for a good load balance.

3. Step: Construct LoadBalancer that assigns cuboids to threads.

4. Step: Construct SuperGeometry3D that links material numbers to voxels.

5. Step: Set material numbers to define dynamics for fluid and boundary.

6. Step: Construct SuperLattice3D to perform stream and collide algorithm.

// 1. Step: Create Indicator
STLreader<T> stlreader(" f i lename . s t l ", voxelSize);
IndicatorCuboid3D<T> cylinderInFLow(extend, origin);

38

// 2. Step: Construct cuboidGeometry.
5 CuboidGeometry3D<T> cuboidGeometry(indicator, voxelSize, noOfCuboids)

;
// 3. Step: Construct LoadBalancer.
HeuristicLoadBalancer<T> loadBalancer(cuboidGeometry);
// 4. Step: Construct SuperGeometry.
SuperGeometry3D<T> superGeometry(cuboidGeometry, loadBalancer);

10 // 5. Step: Set material numbers.
// set material number 2 for whole geometry
superGeometry.rename(0,2,geometryIndicator);
// change material number from 2 to 1 for inner (fluid) cells, so

that only boundary cells have material nunmer 2
superGeometry.rename(2,1,1,1,1);

15 // or simply use an indicator that changes its lattices to one
superGeometry.rename(2,1,fluidIndicator);
// additional material numbers for other boundary conditions
superGeometry.rename(2,3,1,cylinderInFLow);
superGeometry.rename(2,4,1,outflowIndicator0);

20 superGeometry.rename(2,5,1,outflowIndicator1);
// 6. Step: Construct SuperLattice.
SuperLattice3D<T,DESCRIPTOR> sLattice(superGeometry);

Listing 4.1: Create geometry based on STL or geometric primitives. All six steps are
presented briefly as source code.

The powerful application of the geometry generation of OpenLB can be demon-
strated on the example aorta3d. This example is based on a very complex geometry
and illustrated the highly user friendly and automated process from STL to computa-
tion grid the SuperLattice3D, see Figure 4.1.

4.2 Setting Material Numbers

OpenLB has a general concept for representation of a geometry. A specific number
called the material number is assigned to each cell, defining whether that cell lies on
the boundary or in the fluid domain or whether it is superfluous in the computations.
Figure 4.2 illustrates this using the example of an channel flow with an obstacle. The
different collision and stream steps on the boundary and the fluid are defined with re-
spect to the material number. The benefit of using material numbers in flow simulations
is the automatic determination of fluid directions on boundary nodes, as this is not al-
ways practical by hand e. g. if material numbers of a complex geometry are obtained
from a stl file.

39

Figure 4.1: Six steps to create a Geometry. It starts by reading an stl file with the help
of an STLreader and end with the creation of a SuperLattice3D.

Besides creating the domain, IndicatorFXD functions can be used to set material
numbers with the help of one of the rename functions in SuperGeometryXD.

/// replace one material with another
void rename(int fromM, int toM);
/// replace one material that fulfills an indicator functor condition

with another
void rename(int fromM, int toM, IndicatorF3D<bool,T>& condition);

5 /// replace one material with another respecting an offset (overlap)
void rename(int fromM, int toM, unsigned offsetX, unsigned offsetY,

unsigned offsetZ);
/// renames all voxels of material fromM to toM if the number of

voxels given by testDirection is of material testM
void rename(int fromM, int toM, int testM, std::vector<int>

testDirection);
/// renames all boundary voxels of material fromBcMat to toBcMat if

two neighbour voxels in the direction of the discrete normal are
fluid voxels with material fluidM in the region where the
indicator function is fulfilled

10 void rename(int fromBcMat, int toBcMat, int fluidMat, IndicatorF3D<
bool,T>& condition);

Listing 4.2: Different rename functions to set material numbers.

40

0 0

0

0

0

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

2 2

2 2

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 4.2: Lattice nodes of the geometry are associated to material numbers. Material
number zero, one, two, three, for and five correspond to out of geometry,
fluid, bounce back boundary, inflow, outflow and obstacle lattices, (1=fluid,
2=no-slip boundary, 3=velocity boundary, 4=constant pressure boundary,
5=curved boundary, 0=do nothing).

4.3 Building Geometry by Geometric Primitives

OpenLB provides several functors (see Section 9) for the creation of basic geometric
primitives such as cuboids, circles, spheres, cones etc. These can be combined using
the mathematical operators (+ union, − set difference, · intersection) to create more
complex domains. A demonstration of this can be found in the example venturi3D (see
Section 11.13).

4.4 Excursion: Creating STL-files

The general process chain assumes that the geometry is already given in form of an stl
file, if not created by the IndicatorFXD-functions. Simple geometries can be created
using a CAD tool like FreeCAD [5]. An introduction to modeling with FreeCAD can
be found for example in http://www.youtube.com/watch?v=6RxHCR7TLtI. The
general procedure is mostly similar to the following description.

Firstly, a 2D drawing is created on a selected plane (e. g. the xy plane) using circles
and polygons. In the next step a “height” is assigned to it in the third dimension.
Several such 3d objects can be combined using operations like union, cut, intersection,
rotation, trace, etc. to obtain the target geometry. Creating a square and a circle for the
example cylinder3d in Figure 4.3 is not very difficult, the more complex geometry of
a formula one car, however, can be a challenging and time consuming task.

41

http://www.youtube.com/watch?v=6RxHCR7TLtI

Figure 4.3: The geometry for the example cylinder3d from Section 11.5 opened in
FreeCAD.

42

5 Lattice Boltzmann Models and Core Data
Structures

5.1 Concept - Data Organization

5.1.1 Cell - BlockLattice - SuperLattice

LBM, in its most widely accepted formulation, is executed on a regular, homogeneous
lattice Ωh with equal grid spacing h ∈ R>0 in all directions. When numerical con-
straints require that a given problem is solved on an inhomogeneous grid, it is common
to adopt a so-called multi-block approach: the computational domain is partitioned into
sub-grids with different levels of resolution, and the interface between those sub-grids
is handled appropriately. This approach appears to respect the spirit of LBM well and
leads to implementations that are both elegant and efficient, since the execution on a
set of regular blocks is relatively fast compared to an unstructured grid representation
of the whole geometry. For complex domains, a multi-block approach provides an-
other advantage. A given domain can be represented by a certain number of regular
blocks, which leads to cheap executions times on the one hand, and to a sparse mem-
ory consumption on the other hand. Furthermore, it encourages a particularly efficient
form of data parallelism, in which an array is cut into regular pieces and distributed over
the nodes of a parallel machine. As a result, LB applications can even be run on large
parallel machines with a particularly satisfying gain of speed.

The same spirit is adopted in the OpenLB package, see Figure 5.1. The very basic
data structure is called Cell and is orchestrated by a BlockLattice, which represents
a regular array of Cells. In each Cell, the q variables for the storage of the discrete
velocity distribution functions fi (i = 0, 1, ..., q − 1) are contiguous in memory. Note, in
terms of optimization the cells hold

Cell[iPop] = fiPop − tiPop,

where tiPop corresponds to the lattice weights. This data structure is encapsulated by

43

Figure 5.1: Data structures in OpenLB: A number of BlockLattices build a
SuperLattice to adopt higher level software constructs like multi-block,
grid refined lattices and parallelised lattices.

a higher level, object-oriented layer. The purpose of this layer is to handle groups
of BlockLattice, and to build higher level software constructs in a transparent way.
Those constructs are called SuperLattice.

5.1.2 Descriptor

5.1.3 Dynamics

The core of OpenLB consists of a simple and efficient array-like construct called a
BlockLattice. This object executes an LB algorithm in a very traditional sense, i.e.
the lattice Boltzmann equation is split into two equations, namely the collision step:

f̃hi (t, ~r) = fhi (t, ~r)− 1

3ν + 1/2

(
fhi (t, ~r)−M eq

fhi
(t, ~r)

)
in Ih × Ωh ×Q (5.1)

and the streaming step (propagation step):

fhi (t+ h2, ~r + h2~vi) = f̃hi (t, ~r) in Ih × Ωh ×Q . (5.2)

All Cells of the BlockLattice are iteratively parsed, and a local collision step is ex-
ecuted, followed by a non-local streaming step. The streaming step is independent of
the choice of lattice Boltzmann dynamics and remains invariant. On the other hand, the
collision step determines the physics of the model and can be configured by the user,
by attributing a fully configurable dynamics object to each Cell. In this way, it is easy
to implement inhomogeneous fluids which use a different type of physics from one

44

Cell to another. For each time step the collision and streaming step can be executed
separately in two loops over all Cells or only in one. Both versions are implemented
in OpenLB. Yet, for many applications the method fusing the two loops is preferable.

Although this concept of a BlockLattice is neat and should please the programmer
by being conceptually close to the theory of LBM, it is not sufficiently general to address
all possible issues arising in real life. As a case in point, some boundary conditions are
non-local and need to access neighbouring nodes. Therefore, their implementation does
not fit into the framework of a BlockLattice explained previously. The philosophy
of OpenLB takes for granted that such situations, although they arise, take place in
spatially confined areas only, for example the domain boundaries. They may therefore
be implemented by slightly less efficient means, without spoiling the overall efficiency
of the code. Their execution is taken care of by a post-processing step, which, instead
of stepping over the whole lattice a second time, parses selected Cells only.

5.2 Classic BGK Model

5.3 MRT Model

5.4 Porous Media Model

The permeability parameter K is a physical parameter that describes the macroscopic
drag in a porous media model. For laminar flows it is defined by Darcy’s law:

K = −QµL
∆P

, (5.3)

where Q = UA is the flow rate, U a characteristical velocity, A a cross-sectional area,
µ the dynamic viscosity, L a characteristical length, ∆P the pressure difference in be-
tween starting point and endpoint of the volume.

The porosity-value d ∈ [0, 1] is a lattice-dependent value, d = 0 means the medium
is solid and d = 1 denotes a liquid. According to Brinkman [13, 14], Borrvall and Peters-
son [10] and Pingen et al. [30], the Navier-Stokes equation is transformed (see Dornieden
[20] and Stasius [35]). The discrete formulation of d describes a flow region by its per-
meability:

d = 1− hdim−1 νLBτLB

K
(5.4)

τLB is the relaxation time, νLB is the discrete kinematic viscosity and h is the length.
ThereforeK ∈ [νLBτLBh

dim−1,∞]. To describe the porosity or permeability of a medium,

45

a descriptor for porosity must be used, such as:

#define DESCRIPTOR PorousD3Q19Descriptor

Be aware that the porous media model only works in the generic compilation mode. In
the function prepareLattice, dynamics for the corresponding number of the porous
material are defined for example as follows:

void prepareLattice(..., Dynamics<T, DESCRIPTOR>& porousDynamics,
...){

/// Material=3 --> porous material
sLattice.defineDynamics(superGeometry, 3, &porousDynamics);

4 ...
}

In function setBoundaryValues, the initial porosity value and external field is de-
fined:

void setBoundaryValues(..., T physPermeability, int dim, ...){
// d in [0,1] is a lattice-dependent porosity-value
// depending on physical permeability K = physPermeability
T d = converter->latticePorosity(physPermeability);

5 AnalyticalConst3D<T,T> porosity(d);
sLattice.defineExternalField(superGeometry, 3,

DESCRIPTOR<T>::ExternalField::porosityIsAt, 1, porosity);
...

}

In the main function, the required parameters as well as the porous media dynamics
are defined:

1 int main(int argc, char* argv[]) {
...
T physPermeability = 0.0003;
...
PorousBGKdynamics<T, DESCRIPTOR> porousDynamics(converter->getOmega

(),
6 instances::getBulkMomenta<T, DESCRIPTOR>());

...
}

Additionally, the UnitConverter class in src/core/units.h provides useful func-
tions for conversion between physical and lattice values:

/// converts a physical permeability K to a lattice-dependent
porosity d

2 /// (a velocity scaling factor depending on Maxwellian distribution

46

/// function), needs PorousBGKdynamics
T latticePorosity(T K) const
{ return 1 - pow(physLength(),getDim()-1)*getLatticeNu()*getTau()/K;

}

7 /// converts a lattice-dependent porosity d (a velocity scaling
factor

/// depending on Maxwellian distribution function) to a physical
/// permeability K, needs PorousBGKdynamics
T physPermeability(T d) const
{ return pow(physLength(),getDim()-1)*getLatticeNu()*getTau()/(1-d);

}

5.5 Power Law Model

The two most common deviation from Newton’s Law observed in real systems are
pseudo-plastic fluids and dilatant fluids. By pseudo-plastic fluids the viscosity of the
system decreases as the shear rate is increased. On the other hand, as the shear rate
by dilatant fluids is increased, the viscosity of the system also increases. The simplest
model, that describes this two type of deviations, was proposed by de Waele and Ostwald
and is called the Power Law model that is defined by the viscosity as

µ = mγ̇n−1 . (5.5)

where m is the flow consistency index, γ̇ the shear rate and n the flow behaviour index.
Then

• n < 1 - pseudoplastic fluids,

• n = 1 - Newtonian fluids,

• n > 1 - dilatant fluids.

To simulate pawer law fluid a descriptor for dynamic omega must be used, such as:

#define DESCRIPTOR DynOmegaD2Q9Descriptor

In function setBoundaryValues, the initial same omega-argument is defined:

AnalyticalConst2D<T,T> omega0(converter.getOmega());
sLattice.defineExternalField (superGeometry, 1, DESCRIPTOR<T>::

ExternalField::omegaBeginsAt, 1, omega0);
sLattice.defineExternalField (superGeometry, 2, DESCRIPTOR<T>::

ExternalField::omegaBeginsAt, 1, omega0);

47

4 sLattice.defineExternalField (superGeometry, 3, DESCRIPTOR<T>::
ExternalField::omegaBeginsAt, 1, omega0);

sLattice.defineExternalField (superGeometry, 4, DESCRIPTOR<T>::
ExternalField::omegaBeginsAt, 1, omega0);

In the main function, the power law dynamics is defined:

int main(int argc, char* argv[]) {
...
PowerLawBGKdynamics<T, DESCRIPTOR> bulkDynamics(converter.getOmega

(), instances::getBulkMomenta<T, DESCRIPTOR>(), m, n, converter.
physTime());

}

In 5.1 the kinematic viscosity is not more constant and then also the omega-argument
is not more constant. With using the power law model 5.5 the kinematic viscosity is
computed in each step as

ν =
1

ρ
mγ̇n−1 . (5.6)

The shear rate γ̇ is possible to compute with using the second invariant of the strain
rate tensor DII

γ̇ =
√

2DII , (5.7)

where

DII =
d∑

α,β=1

EαβEαβ , (5.8)

where

Eαβ = −

(
1− 1

τ

)
1

2%ν

q−1∑
i=0

fhi ξiαξiβ . (5.9)

This concept is very significant because fhi ξiαξiβ is usually computed during the colli-
sion process and therefore this costs in comparison to other CFD methods at almost no
additional computational cost. The computation of a new omega-argument is done in
src/dynamics/powerLawBGKdynamics.h

1 T computeOmega(T omega0_, T preFactor_, T rho_, T pi_[util::TensorVal
<Lattice<T> >::n]);.

48

5.6 External Force

In simulations, the dynamics of a fluid is often driven by a force field (gravity, inter-
molecular interaction, etc.) which is space- and time-dependent, and which is possibly
computed from an external source, independent of the LB simulation. In order to opti-
mize memory access and to minimze cache-misses, the value of this force can be stored
in a cell, adjacent to the particle populations. This is achieved by specifying external
scalars in the lattice descriptor (see also Lesson 7). OpenLB offers by default the two
descriptors ForcedD2Q9Descriptor and ForcedD3Q19Descriptor. The dynam-
ics ForcedBGKdynamics accesses the force term defined by these descriptors, and
implements a LB dynamics with body force. The algorithm is taken from Ref. [21] to
guarantee second-order accuracy even when the force field is space and time depen-
dent. An example for the implementation of a LB simulation with force term is found
in the code examples/poiseuille2d/forced.

As an alternative, the velocity shift forcing scheme developed by Shan and Chen [32]
and improved by Shan and Doolen [33] is also implemented and can be accessed using
ForcedShanChenBGKdynamics.

5.7 Multiphysics Couplings

5.7.1 The Shan-Chen Model

For the simulation of both multiphase and multicomponent flow the Shan-Chen model
is implemented in OpenLB. Since its first introduction [32], many variants of the model
have been developed. In this implementation, there are several forcing schemes [21, 33]
and interaction potentials to choose from.

5.7.2 Implementation of Shan-Chen Two-phase Fluid

The two phases can be simulated on the same lattice instance:

SuperLattice3D<T, DESCRIPTOR> sLattice(superGeometry);

Then the dynamics are chosen, which have to support external forces:

ForcedShanChenBGKdynamics<T, DESCRIPTOR> bulkDynamics1 (
omega1, instances::getExternalVelocityMomenta<T,DESCRIPTOR>());

Possible choices for the dynamics are ForcedBGKdynamics and ForcedShanChen-

BGKdynamics.

49

Then the interaction potential is chosen:

ShanChen93<T,T> interactionPotential;

Viable interaction potentials for one component multiphase flow are ShanChen93,
ShanChen94, CarnahanStarling and PengRobinson. In this model PsiEqualsRho
should not be used, because this would make all the mass gather in the same place.

To enable interaction between the fluid, they have to be coupled, so the kind of cou-
pling has to be chosen (here: ShanChenForcedSingleComponentGenerator3D)
and the material numbers to which it applies. Since in the case of single component
flow there is only one lattice, it is coupled with itself.

const T G = -120.;
ShanChenForcedSingleComponentGenerator3D<T,DESCRIPTOR> coupling(
G,rho0,interactionPotential);

4 sLattice.addLatticeCoupling(superGeometry, 1, coupling, sLattice);

The interaction strength G has to be negative and the correct choice depends on the
chosen interaction potential. When using PengRobinson or CarnahanStarling in-
teraction potential, G is canceled out during computation, so the result is not affected
by it (though it still has to be negative).

Finally, during the main loop the lattices have to interact with each other (or in the
case of only one fluid component the lattice with itself):

1 sLattice.communicate();
sLattice.executeCoupling();

These steps are placed immediately after the collideAndStream command.
Examples for the implementation of a LB simulation using the Shan-Chen model for

two-phase flow are examples/phaseSeparation2d and
examples/phaseSeparation3d.

5.7.3 Implementation of Shan-Chen Two-component Fluid

Two lattice instances are needed – one for each component (though there is still only
one geometry):

SuperLattice3D<T, DESCRIPTOR> sLatticeOne(superGeometry);
SuperLattice3D<T, DESCRIPTOR> sLatticeTwo(superGeometry);

Then the dynamics are chosen, which have to support external forces:

ForcedShanChenBGKdynamics<T, DESCRIPTOR> bulkDynamics1 (
omega1, instances::getExternalVelocityMomenta<T,DESCRIPTOR>());

50

3 ForcedShanChenBGKdynamics<T, DESCRIPTOR> bulkDynamics2 (
omega2, instances::getExternalVelocityMomenta<T,DESCRIPTOR>());

Possible choices for the dynamics are ForcedBGKdynamics and ForcedShanChen-

BGKdynamics. One should keep in mind that tasks like definition of dynamics, exter-
nal fields and initial values and the collide and stream execution have to be carried out
for each lattice instance separately. The same is true for data output.

Then the interaction potential is chosen:

1 PsiEqualsRho<T,T> interactionPotential;

In the multicomponent case the most frequently used interaction potential is
PsiEqualsRho, but ShanChen93, for example, would also be a viable choice.

To enable interaction between the fluid, they have to be coupled, so the kind of cou-
pling has to be chosen (here: ShanChenForcedGenerator3D)and the material num-
bers to which it applies.

const T G = 3.;
ShanChenForcedGenerator3D<T,DESCRIPTOR> coupling(
G,rho0,interactionPotential);

4 sLatticeOne.addLatticeCoupling(superGeometry, 1, coupling,
sLatticeTwo);

sLatticeOne.addLatticeCoupling(superGeometry, 2, coupling,
sLatticeTwo);

The interaction strength G has to be positive. If the chosen interaction potential is
PsiEqualsRho, G > 1 is needed for separation of the fluids, but it should not be
much higher than 3 for stability reasons.

Finally, during the main loop the lattices have to interact with each other:

sLatticeOne.communicate();
sLatticeTwo.communicate();
sLatticeOne.executeCoupling();

These steps are placed immediately after the collideAndStream command.
Examples for the implementation of a LB simulation using the Shan-Chen model for

two-component flow are examples/multiComponent2d and
examples/multiComponent3d.

51

5.7.4 Thermal Fluid with Boussinesq Approximation

5.8 Advection Diffusion Equation

Transport of a macroscopic density, energy or temperature is governed by the Advection-
Diffusion-Equation

∂c

∂t
= ∇ · (D∇c)−∇ · (~vc), (5.10)

where c is the considered physical quantity (temperature, particle density), D is the dif-
fusion coefficient and v is a velocity field affecting c. It is possible to solve this equation
in terms of LBM by using an equilibrium distribution function different from the one
for the Navier-Stokes Equation [28]

geqi = wiρ

(
1 +

ci · ~v
c2
s

)
, (5.11)

that takes the advective transport into account. In this equation wi is a weighting fac-
tor, ci a unit vector along the lattice directions and cs the speed of sound. To use this
implementation the dynamics object has to be replaced by special advection-diffusion
dynamics:

AdvectionDiffusionBGKdynamics<T, DESCRIPTOR> bulkDynamics(
2 converter.getOmega(),

instances::getBulkMomenta<T,DESCRIPTOR>());

Listing 5.1: advection diffusion dynamics object

Additionally, a different descriptor with fewer lattice velocities is used [23]:

#define DESCRIPTOR AdvectionDiffusionD3Q7Descriptor

Listing 5.2: advection diffusion descriptor

In OpenLB D2Q5 and D3Q7 descriptors are implemented for the Advection-Diffusion
Equation. Since the Advection-Diffusion Equation simulates different physical condi-
tions than the Navier-Stokes-Equation, another set of boundary conditions is needed.
A Dirichlet condition for the density is already implemented, for example to simulate a
boundary with a constant temperature. To apply this condition, firstly a
sOnLatticeBoundaryCondition3D object for the advection-diffusion boundarys has
to be constructed:

sOnLatticeBoundaryCondition3D<T, DESCRIPTOR>

52

sBoundaryConditionAD(sLattice);
int nC = sBoundaryConditionAD.get_sLattice().getLoadBalancer().size()

;
sBoundaryConditionAD.set_overlap(1);

5 for (int iC = 0; iC < nC; iC++) {
OnLatticeAdvectionDiffusionBoundaryCondition3D<T,DESCRIPTOR>*
ADblockBC =
createAdvectionDiffusionBoundaryCondition3D<T,DESCRIPTOR,
AdvectionDiffusionBGKdynamics<T, DESCRIPTOR> >

10 (sBoundaryConditionAD.get_sLattice().getExtendedBlockLattice(iC)
);

sBoundaryConditionAD.get_CDblockBCs().push_back(ADblockBC);
}

Listing 5.3: advection diffusion dynamics object

Finally the boundary condition is set to the desired material number:

void prepareLattice(..., SuperLattice3D<T, DESCRIPTOR>& sLattice,
sOnLatticeBoundaryCondition3D<T, DESCRIPTOR>& bc,

3 SuperGeometry3D<T>& superGeometry, T omega,...) {
...
/// Material=3 -> boundary with constant temerature

bc.addTemperatureBoundary(superGeometry, 3, omega);
...

8 }

Listing 5.4: advection diffusion descriptor

To apply convective transport, a velocity vector has to be passed. This can either be
done individually on each cell by using:

T velocity[3] = {vx,vy,vz};
2 ...

cell.defineExternalField (
DESCRIPTOR<T>::ExternalField::velocityBeginsAt,
DESCRIPTOR<T>::ExternalField::sizeOfVelocity,
velocity);

Listing 5.5: add advective velocity on a cell

Alternatively, it can be passed to the whole SuperLattice using:

ConstAnalyticalF3D<T,T> velocity(vel);
...
/// sets advective velocity for material 1

53

4 superLattice.defineExternalField(superGeometry, 1,
DESCRIPTOR<T>::ExternalField::velocityBeginsAt,
DESCRIPTOR<T>::ExternalField::sizeOfVelocity,
velocity)

Listing 5.6: add advective velocity on a superlattice

Here, vel is a std::vector<T>.

5.8.1 Particle Flows as Advection Diffusion Problem

The quantity c in the Advection–Diffusion equation can be considered as particle den-
sity, thereby giving an continuous ansatz for simulating particle flows. To solve for the
particle distribution an additional lattice is required with an appropriate descriptor and
dynamics, which are only implemented for the 3D case.

#define ADDESCRIPTOR particleAdvectionDiffusionD3Q7Descriptor

Listing 5.7: Advection–Diffusion descriptor for particle flows

The descriptor in Listing 5.7 allocates additional memory since for the computation of
the particle velocity also the vleocity of the last time step hast to be stored. This calcu-
lations also are non-local, therefore the communication of the additional data has to be
ensured by an additional object, which is constructed according to Line 1 of Listing 5.8
and communicates the data by a function as shown in Line 2 of the Listing, which has
to be called in the time loop.

SuperExternal3D<T, ADDESCRIPTOR> sExternal(superGeometry,
sLatticeADE, ADDESCRIPTOR<T>::ExternalField::velocityBeginsAt,
ADDESCRIPTOR<T>::ExternalField::numScalars, sLatticeAD.getOverlap
());

sExternal.communicate();

Listing 5.8: SuperExternal3D object for the communication of additional data

Although the same unit converter can be used for the Advection–Diffusion lattice, an-
other relaxation parameter has to be handed to the dynamics, as shown in Listing 5.9,
and some of the boundary conditions to take the diffusion coefficiant into account.

54

Therefore a new ωADE is computed by

ωADE =

(
4D

UL
LLUC

+ 0.5

)−1

, (5.12)

with lattice and characteristic velocity UL and UC , lattice length LL as well as the de-
sired diffusion coefficient D.

ParticleAdvectionDiffusionBGKdynamics<T, ADDESCRIPTOR> bulkDynamicsAD
(omegaAD, instances::getBulkMomenta<T, ADDESCRIPTOR>());

Listing 5.9: Dynamics for the simulation of particle flows the the Advection–Diffusion
equation

Applying the Advection–Diffusion equation to particle flow problems requires a new
dynamics due to the handling of the particle velocity by the coupling processor of the
two lattices, which differs for reasons of efficiency. When constructing the coupling
post-processor as shown in Listing 5.10, forces acting on the particle can be added like
the Stokes drag force as shown in Line 2 and 3 of Listing 5.10. The implementation
of new forces is straight forward, since only a new class which provides a function
applyForce(...), computing the force in a cell, needs to be written analgously to the
existing advDiffDragForce3D. Finally the lattices are linked by Line 4 of Listing 5.10,
which needs to be applied to the Navier–Stokes lattice for reasons of accessability.

AdvectionDiffusionParticleCouplingGenerator3D<T,NSDESCRIPTOR>
coupling(ADDESCRIPTOR<T>::ExternalField::velocityBeginsAt);

advDiffDragForce3D<T, NSDESCRIPTOR> dragForce(converter,radius,
partRho);

coupling.addForce(dragForce);
4 sLatticeNS.addLatticeCoupling(superGeometry, 1, coupling, sLatticeAD

);

Listing 5.10: Coupling of an Advection Diffusion and a Navier–Stokes lattice for
particle flow simulations

For the boundary conditions the same basic objects as for the Advection–Diffusion
equation can be used, however there is an additional boundary condition shown on
Listing 5.11 which has to be applied at all boundaries to ensure correctness of the finite
differences scheme used to compute the particle velocity.
Further information as well as results can be found in Trunk et al. [36] as well as in the
examples section.

55

1 bcAD.addExtFieldBoundary(superGeometry, 2, ADDESCRIPTOR<T>::
ExternalField::velocityBeginsAt);

Listing 5.11: Example of a boundary condition for the particle velocity for particle flow
simulations

56

6 Discrete Particle Method

In this chapter the use of Lagrangian particles with OpenLB is shown.

6.1 Structure of the Particles Systems

Similar to the BlockLattice and SuperLattice structure a ParticleSystem3D and
SuperParticleSystem3D structure exists. In line 2 of Listing 6.1 the SuperParticleSystem3D
is instantiated. It takes a SuperGeometry and LBconverter as parameters. In line 4 the
SuperParticleSysVtuWriter is instantiated. It takes the SuperParticleSystem3D, a
filename as string, and the wanted particle properties as arguments. Calling the func-
tion SuperParticleSysVtuWriter.write(int timestep) does create ∗.vtu files of the parti-
cles positions for the given timestep. These files can be visualized with Paraview.

Line 10 of the listing instantiates an interpolation functor for the fluids velocity,
which is used in line 13 during the instantiation of StokesDragForce3D. Particles need
boundary conditions also. In the listing, the simplest possible material boundary is
presented. If a particle moves into a lattice node with material number 2, 4 or 5 its
velocity is set to 0 and it is neclected during further computations, its state of activ-
ity is set to false. This MaterialBoundary3D is instantiated in line 16. In lines 18 and
19the force and boundary condition are added to and stored in the respective lists in
the SuperParticleSystem3D.

The actual number crunching is then done in line 25 which is positioned in the main
loop of the program. The supParticleSystem.simulate(T timeStep); function integrates
the particle trajectories by timeStep. Therefore all stored particle forces are computed
and summed up. The particles are moved one step according to Newton’s laws. Then
all stored particle boundary conditions are applied. Parallelization of the particles is
done automatically.

Results of this simulation are published in Henn et al. [24].

// SuperParticleSystems3D
SuperParticleSystem3D<T,PARTICLE> supParticleSystem(superGeometry,

converter);
// define which properties are to be written in output data

57

SuperParticleSysVtuWriter<T,PARTICLE> supParticleWriter(
supParticleSystem, " p a r t i c l e s ",

5 SuperParticleSysVtuWriter<T,PARTICLE>::particleProperties::
velocity |

SuperParticleSysVtuWriter<T,PARTICLE>::particleProperties::mass |
SuperParticleSysVtuWriter<T,PARTICLE>::particleProperties::radius

|
SuperParticleSysVtuWriter<T,PARTICLE>::particleProperties::active

);

10 SuperLatticeInterpPhysVelocity3D<T,DESCRIPTOR> getVel(sLattice,
converter);

auto stokesDragForce = make_shared<StokesDragForce3D<T,PARTICLE,
DESCRIPTOR>> (getVel, converter);

// material numbers where particles should be reflected
15 std::set<int> boundMaterial = { 2, 4, 5};

auto materialBoundary = make_shared<MaterialBoundary3D<T, PARTICLE
>> (superGeometry, boundMaterial);

supParticleSystem.addForce(stokesDragForce);
supParticleSystem.addBoundary(materialBoundary);

20 supParticleSystem.setOverlap(2. * converter.getLatticeL());

* ... *\

main loop {
25 supParticleSystem.simulate(converter.physTime());

}

Listing 6.1: Usage of class SuperParticleSystem

6.2 Interpolation of fluid velocity

As the particle position ~X : I → Ω moves in the continuous domain Ω and information
on the fluid velocity can only be computed on lattice nodes ~xi ∈ Ωh interpolation of
the fluid velocity is necessary every time fluid-particle forces are computed. Let ~uFi =

~uF (~xi) be the computed solution of the Navier–Stokes Equation at lattice nodes ~xi. Let
p ∈ Pn be the interpolating polynomial of order n with p(~xi) = ~uFi and (~x0, . . . ~xn) the
smallest interval containing all points in the brackets. Furthermore, let Cn

[
~a,~b
]

be the

vector space of continuous functions that have continuous first n derivatives in
[
~a,~b
]
.

58

Then the interpolation error of the polynomial interpolation is stated by the following
theorem.

Theorem 1 (Interpolation error). Let ~u ∈ Cn+1
[
~a,~b
]
, ~a,~b ∈ Ω. Then for every ~x ∈

[
~a,~b
]

there exists one ~̂x ∈ (~x0, . . . ~xn, ~x), such that

~uF (~x)− pn(~x) =
dn+1
~x ~uF (~̂x)

(n+ 1)!

n∏
j=0

(~x− ~xj) (6.1)

holds.

Proof. See Rannacher [31, Satz 2.3].

Using linear (n = 1) interpolation for the fluid velocity between two neighbouring
lattice nodes ~a = ~x0 ∈ Ωh,~b = ~x1 ∈ Ωh, ‖~x1 − ~x0‖2 = h clearly the following holds

f(~x)− p1(~x) =
1

2
d2
~x~u

F (~̂x)(~x− ~x0)(~x− ~x1)

≤=
1

2
d2
~x~u

F (~̂x)h2

and the approximation error of the linear interpolation is of order O(h2). In the follow-
ing we give reason why this order of interpolation is sufficient.

Lets assume there exists an ideal error law of the form

‖~uFi − ~uF
∗

i ‖L2(Ωh) = chα ,

for the discrete solution ~uFh obtained by an LBM with lattice spacing h and the analytic
solution ~uF

∗
. Then α ∈ R+ is the to be determined order of convergence. We further

define the relative error

Errh =
‖~uFh − ~uF

∗‖L2(Ωh)

‖~uF ∗‖L2(Ωh)
.

The ratio of the error laws of two distinct lattice spacings hi and hj , forms the EOC as

EOCi,j =
ln(Errhi/Errhj)

ln(hi/hj)
. (6.2)

With this Krause [26, Chapter 2.3] determines an of EOC ≈ 2 for the discrete solution
towards the analytic solution of a stationary flow in the unit cube governed by the
incompressible NSE. Therefore the order of converge of the fluid velocity obtained by
an LBM can be assumed to be O(h2). This conclusion is backed up by the theoretical

59

~x(0,0,0)

~x(0,1,0)

~x(0,0,1)

~x(0,1,1)

~x(1,0,0)

~x(1,1,0)

~x(1,0,1)

~x(1,1,1)

h

h

h

~̂x

Figure 6.1: Trilinear interpolation.

results obtained by [15] This leads to the assumption that, each interpolation scheme
of higher order than 2, would not be exhausted as the error of the incoming data is too
large.

The interpolation is implemented as a trilinear interpolation using the eight nodes
surrounding the particle. Let the point of interpolation ~̂x ∈ [x(0,0,0), x(1,1,1)] be in the
cube spanned by the lattice nodes ~x(0,0,0) and ~x(1,1,1), see Figure 6.1 for an illustration.
We will denote by

~d = (d0, d1, d2)T = ~̂x− ~x(0,0,0)

the distance of the particle to the next smaller lattice node. The fluid velocities at the
eight corners are named accordingly ~u(i,j,k), i, j, k ∈ {0, 1}. The trilinear interpolation
is executed by three consecutive linear interpolations in the three different space direc-
tions. First we interpolate along the x-axis

u(d,0,0) = u(0,0,0)(h− d0) + u(1,0,0)d0

u(d,1,0) = u(0,1,0)(h− d0) + u(1,1,0)d0

u(d,0,1) = u(0,0,1)(h− d0) + u(1,0,1)d0

u(d,1,1) = u(0,1,1)(h− d0) + u(1,1,1)d0

60

followed by interpolation along the y-axis

u(d,d,0) = u(d,0,0)(h− d1) + u(d,1,0)d1

u(d,d,1) = u(d,0,1)(h− d1) + u(d,1,1)d1

and finally in direction of the z-axis

~u(~̂x) = u(d,d,d) = u(d,d,0)(h− d2) + u(d,d,1)d2.

6.3 The class SuperParticleSystem3D

The implementation of the particle phase follows an hierarchical ansatz, similar to the
Cell → BlockLattice3D → SuperLattice3D ansatz used for the implementation of
the LBM. The equivalent class in the context of Lagrangian particles are Particle3D

→ ParticleSystem3D → SuperParticleSystem3D. The class Particle3D allocates
memory for the variables of one single particle, such as its position, velocity, mass, ra-
dius and the force acting on it. It also provides the function bool getActive(), which
returns the active state of the particle. Active particles’ positions are updated during the
simulation, in contrast to non-active particles, which are only used for particle-particle
interaction. The class Particle3D is intended to be inherited from, in order to provide
additional properties, such as electric or magnetic charge. The particles in the domain
of a specific BlockLattice3D are combined in the class ParticleSystem3D. Finally
the class SuperParticleSystem3D combines all ParticleSystem3Ds, and handles the
transfer of particles between them.

The concept of the class SuperParticleSystem3D is to provide an easily adaptable
framework for simulation of a large number of particles arranged in and interacting
with a fluid. In this context easily adaptable means that simulated forces and bound-
ary conditions are implemented in a modular manner, such that they are easily ex-
changeable. Development of new forces and boundary conditions can be readily done
by inheritance of provided base classes. Particle-particle interaction can be activated
if necessary and deactivated to decrease simulation time. The contact detection algo-
rithm is interchangeable. This section introduces the SuperParticleSystem3D and the
mentioned properties in more detail.

The class SuperParticleSystem3D is initialised by a call to the constructor simulta-
neously on all PUs:

61

SuperParticleSystem3D(CuboidGeometry3D<T>& cuboidGeometry,
LoadBalancer<T>& loadBalancer, SuperGeometry3D<T>&, LBconverter<
T>& conv);

During the construction each PU instantiates one ParticleSystem3D for each local
cuboid. Subsequently for each ParticleSystem3D a list of the ranks of PUs holding
neighbouring cuboids is created.

Particles can be added to the SuperParticleSystem3D by a call to one of the
addParticle() functions:

/// Add a Particle to SuperParticleSystem
void addParticle(PARTICLETYPE<T> &p);
/// Add a number of identical Particles equally distributed in a

given IndicatorF3D
void addParticle(IndicatorF3D<T>& ind, T mas, T rad, int no=1, std::

vector<T> vel={0.,0.,0.});
5 /// Add a number of identical Particles equally distributed in a

given Material Number
void addParticle(std::set<int> material, T mas, T rad, int no=1,

std::vector<T> vel={0.,0.,0.});
/// Add Particles form a File. Save using saveToFile(std::string

name)
void addParticlesFromFile(std::string name, T mass, T radius);

Currently there are four implementations of this class. The first adds single prede-
fined particles, the second and third add a given number of equally distributed particles
of the same mass and radius in an area that can be defined by either a set of material
numbers or an indicator function. The initial particle velocity can be set optionally. Fi-
nally particles can be added from an external file, containing their positions. In all cases
the assignment to the correct ParticleSystem3D is carried out internally.

Particle forces and boundaries are implemented by the base classes Force3D and
Boundary3D.

template<typename T, template<typename U> class PARTICLETYPE>
class Force3D {
public:

Force3D();
5 virtual void applyForce(typename std::deque<PARTICLETYPE<T> >::

iterator p, int pInt, ParticleSystem3D<T, PARTICLETYPE>& psSys
)=0;

}

Both classes are intended to be derived from in order to implement force and

62

boundary specialisations. The key function in both classes are applyForce() and
applyBoundary(), which are called during each timestep of the main LBM loop.
Force3D and Boundary3D specialisations are added to the SuperParticleSystem3D

by passing a pointer to a class instantiation via a call to the respective function.

/// Add a force to system
void addForce(std::shared_ptr<Force3D<T, PARTICLETYPE> > f);
/// Add a boundary to system
void addBoundary(std::shared_ptr<Boundary3D<T, PARTICLETYPE> > b);

Both functions add the passed pointer to a list of forces and boundaries, which will
be looped over during the simulation step. If necessary a contact detection algorithm
can be added.

1 /// Set contact detection algorithm for particle-particle contact.
void setContactDetection(ContactDetection<T, PARTICLETYPE>&

contactDetection);

A force based on contact between two particles is the contact force like described in
the theory of Hertz and others and is named here as HertzMindlinDeresiewicz3D.

auto hertz = make_shared < HertzMindlinDeresiewicz3D<T, PARTICLE,
DESCRIPTOR>

> (0.0003e9, 0.0003e9, 0.499, 0.499);
spSys.addForce(hertz);

Finally one timestep is computed by a call to the function simulate().

template<typename T, template<typename U> class PARTICLETYPE>
void SuperParticleSystem3D<T, PARTICLETYPE>::simulate(T dT)
{

for (auto pS : _pSystems) {
5 pS->_contactDetection->sort();

pS->simulate(dT);
pS->computeBoundary();

}
updateParticleDistribution();

10 }

This function contains a loop over the local ParticleSystem3Ds calling the lo-
cal sorting algorithm and the functions ParticleSystem3D::simulate() and
ParticleSystem3D::computeBoundary(). The sorting algorithm determines
potential contact between particles according to the set ContactDetection.

63

inline void simulate(T dT) {
_pSys->computeForce();
_pSys->explicitEuler(dT);

}

The inline function ParticleSystem3D::simulate() first calls the local function
ParticleSystem3D::computeForce().

template<typename T, template<typename U> class PARTICLETYPE>
void ParticleSystem3D<T, PARTICLETYPE>::computeForce()
{

typename std::deque<PARTICLETYPE<T> >::iterator p;
5 int pInt = 0;

for (p = _particles.begin(); p != _particles.end(); ++p, ++pInt) {
if (p->getActive()) {

p->resetForce();
for (auto f : _forces) {

10 f->applyForce(p, pInt, *this);
}

}
}

}

This function consists of a loop over all particles stored by the calling
ParticleSystem3D. If the particle state is active, its force variable is reset to zero. Then
the value computed by each previously added particle force is added to the particle’s
force variable. Finally, the particle velocity and position is updated by one step of an
integration method.

Returning to the function SuperParticleSystem3D::simulate(T dT) the next
command in the loop is a call of the function ParticleSystem3D::computeBoundary

(), which has the same structure as the ParticleSystem3D::computeForce(). After
executing the loop, the function updateParticleDistribution() is called, which re-
distributes the particles over the ParticleSystem3Ds according to their updated posi-
tion. A detailed description of this function is provided at the end of the next section.

6.4 Implementation of the communication optimal strategy

The communication optimal strategy is implemented in the function
SuperParticleSystem3D::updateParticleDistribution() already mentioned
above. The function has to be called after every update of the particle positions, in
order to check if the particle remained in its current cuboid, as otherwise segmentation

64

faults may occur during the computation of particle forces. The transfer is imple-
mented using nonblocking operations of the MPI library.

template<typename T, template<typename U> class PARTICLETYPE>
void SuperParticleSystem3D<T, PARTICLETYPE>::

updateParticleDistribution()
{

/* Find particles on wrong cuboid, store in relocate and delete */
5 //maps particles to their new rank

_relocate.clear();
for (unsigned int pS = 0; pS < _pSystems.size(); ++pS) {

auto par = _pSystems[pS]->_particles.begin();
while (par != _pSystems[pS]->_particles.end()) {

10 //Check if particle is still in his cuboid
if (checkCuboid(*par, 0)) {
par++

}
//If not --> find new cuboid

15 else {
findCuboid(*par, 0);
_relocate.insert(

std::make_pair(this->_loadBalancer.rank(par->getCuboid()),
(*par)));

par = _pSystems[pS]->_particles.erase(par);
20 }

}
}

The function begins with with two nested loops. The outer loop is over all lo-
cal ParticleSystem3Ds, the inner loop over the Particle3Ds of the current
ParticleSystem3D. Each particle is checked if it remained in its cuboid during
the last update, by the function checkCuboid(*par, 0). The first parameter of
checkCuboid(*par, 0) is the particle to be tested and the second parameter is an
optional spatial extension of the cuboid. If the function returns true the counter
is incremented and the next particle is tested. If the function returns false the
particle together with the rank of its new cuboid are copied to the std::multimap<

int, PARTICLETYPE<T> > _relocate for future treatment and removed from the
std::deque<PARTICLETYPE<T> > _particles of particles.

65

/* Communicate number of Particles per cuboid*/
singleton::MpiNonBlockingHelper mpiNbHelper;

/* Serialise particles */
5 _send_buffer.clear();

T buffer[PARTICLETYPE<T>::serialPartSize];
for (auto rN : _relocate) {

rN.second.serialize(buffer);
_send_buffer[rN.first].insert(_send_buffer[rN.first].end(),

buffer, buffer+PARTICLETYPE<T>::serialPartSize);
10 }

The function continues by instantiating the class singleton::

MpiNonBlockingHelper, which handles memory for MPI_Request and MPI_Status

messages. Then the particles buffered in _relocate are serialised. Meaning their
data is written consecutively in memory and stored in a buffer std::map<int, std::

vector<double> > _send_buffer in preparation for the transfer.
/*Send Particles */
int noSends = 0;
for (auto rN : _rankNeighbours) {

if (_send_buffer[rN].size() > 0) {
5 ++noSends;

}
}
mpiNbHelper.allocate(noSends);
for (auto rN : _rankNeighbours) {

10 if (_send_buffer[rN].size() > 0) {
singleton::mpi().iSend<double>(&_send_buffer[rN][0], _relocate

.count(rN)*PARTICLETYPE<T>::serialPartSize, rN, &
mpiNbHelper.get_mpiRequest()[k++], 1);

}
}
singleton::mpi().barrier();

To find the number of send operations a loop over the ranks of neighbouring cuboids
is carried out, increasing the variable count each time data for a specific rank is avail-
able. Then the appropriate number of MPI_Requests is allocated. Finally the data is
sent to the respective PUs via a nonblocking MPI_Isend() and all PUs wait until the
send process is finished on each PU.

/*Receive and add particles*/
int flag = 0;
MPI_Iprobe(MPI_ANY_SOURCE, 1, MPI_COMM_WORLD, &flag,

MPI_STATUS_IGNORE);
if (flag) {

66

5 for (auto rN : _rankNeighbours) {
MPI_Status status;
int flag = 0;
MPI_Iprobe(rN, 1, MPI_COMM_WORLD, &flag, &status);
if (flag) {

10 int amount = 0;
MPI_Get_count(&status, MPI_DOUBLE, &number_amount);
T recv_buffer[amount];
singleton::mpi().receive(recv_buffer, amount, rN, 1);
for (int iPar=0; iPar<amount; iPar+=PARTICLETYPE<T>::

serialPartSize) {
15 PARTICLETYPE<T> p;

p.unserialize(&recv_buffer[iPar]);
if (singleton::mpi().getRank() == this->_loadBalancer.rank

(p.getCuboid())) {
_pSystems[this->_loadBalancer.loc(p.getCuboid())]->

addParticle(p);
}

20 }
}

}
}
if (noSends > 0) {

25 singleton::mpi().waitAll(mpiNbHelper);
}

}

On the receiving side the nonblocking routine MPI_Iprobe() checks whether an incom-
ing transmissions is available. The constant MPI_ANY_SOURCE indicates that messages
from all ranks are accepted. If a message is awaiting reception the flag flag is set to a
nonzero value and the following switch will be true. This query is not necessary, but the
following loop can be entirely skipped if no particles are transferred, which is expected
to be the case most of the time.

The subsequent loop tests for each single neighbouring rank if a message awaits
reception. If true the number of send MPI_Doubles is read from the status vari-
able via an MPI_Get_count(). The appropriate memory is allocated and the mes-
sage is received by wrapped call to MPI_Recv(), and written consecutively. Then new
Particle3Ds are instantiated, initialised with the received data and assigned to the
respective ParticleSystem3D on the updated PU. Finally, a call to MPI_Waitall()

makes sure, that all MPI_Isend()s have been processed by the recipients.

67

6.4.1 Shadow Particles

If particle collisions are considered, it may happen that particles Pm with centre ~Xm ∈
Ω̃j collide with particle Pn with centre ~Xn ∈ Ω̃k in a different cuboid, as illustrated in
Figure 6.2. Therefore Pn has to be known on ~Xm ∈ Ω̃j and so-called shadow particles
are introduced. Shadow particles are static particles, whose positions and velocities
are not explicitly computed during the update step. Particle collision across cuboid
boundaries can only occur if the distance d = ‖ ~Xn − ~Xm‖2 between the participating
particles is less then the sum of the two largest radii of all particles in the system. Hence
the width of the particle overlap has to be at least the sum of the two largest particle
radii and all particles within this overlap have to be transferred to the neighbour cuboid
after each update of the particle position by an additional communication step similar
to the one introduced above.

~Xm
Rm ~Xn

Rn

Ω̃j Ω̃k

Rm +RnRm +Rn

Figure 6.2: Overlap of the particle domains. Particles within a distance to of the sum
of the two largest radii to a neighbour cuboid have to be transferred to this
specific neighbour cuboid.

68

7 Input / Output

During development or even during actual simulation, it might be necessary to
parametrize your program. For this case, OpenLB provides an XML parser, which
can read files produced by OpenGPI [6], thereby providing a nice GUI, if you are so
inclined. Details on the XML format and functions are given in Section 7.7.

The simulation data is stored in the VTK data format and can be further processed
with Paraview. For output tasks that are performed only once during the simulation,
it is recommended to write the data sequentially. Commonly, the geometry or cuboid
information is one of these tasks. In contrast to the parallel version, it is easier to use
and does not produced unnecessary data overhead. However, if the output is per-
formed regularly in a parallel simulation, the performance may slow down using the
sequential output method. Therefore, OpenLB has implemented a parallel data output
functionality. At the lowest scope, every thread writes ’vti’ files that contain the data.
OpenLB writes a ’vti’ file for every cuboid, to provided parallel data processing. Those
’vti’ files are summarized and put together by the next hierarchy, the ’vtm’ file. A ’vtm’
file corresponds to the entire domain with respect to a certain time step. At the end, the
different time steps are packed to a ’pvd’ file, that is a collection of ’vtm’ according to
time steps.

The technical aspects are presented in Section 7.1, whereas the usage is demonstrated
with an example in Section 7.2.

7.1 Output Data Structure

OpenLB simulation data is stored in file system according to the VTK data format [7].
This format has XML structure and the data therein is written as binary Base64 code.
Additionally, the simulation data is compressed by zlib, which allows to reduce data
tremendously.

On the top level, the parallel output hierarchy contains a pvd file, which consists of
links to vtm files. The vtm files summarize the cuboids represented by vti files.

<?xml v e r s i o n ="1.0" ?>

69

<VTKFile type=" C o l l e c t i o n " vers ion=" 0 . 1 " byte_order=" L i t t l e E n d i a n ">
< C o l l e c t i o n >
<DataSet t imestep=" 81920 " group=" " part=" " f i l e =" data/VTM_iT0081920 . vtm"/>
<DataSet t imestep=" 163840 " group=" " part=" " f i l e =" data/VTM_iT0163840 . vtm"/>
<DataSet t imestep=" 245760 " group=" " part=" " f i l e =" data/VTM_iT0245760 . vtm"/>
<DataSet t imestep=" 327680 " group=" " part=" " f i l e =" data/VTM_iT0327680 . vtm"/>
<DataSet t imestep=" 409600 " group=" " part=" " f i l e =" data/VTM_iT0409600 . vtm"/>
</ C o l l e c t i o n >
</VTKFile>

Listing 7.1: Example of a ’pvd’ file that points for every time step to the corresponding
’vtm’ file. Every time step is associated to a ’vtm’ file.

<?xml v e r s i o n ="1.0" ?>
<VTKFile type=" vtkMult iBlockDataSet " vers ion=" 1 . 0 " byte_order=" L i t t l e E n d i a n ">
<vtkMult iBlockDataSet>
<Block index=" 0 " >
<DataSet index= " 0 " f i l e =" VTM_iT0081920iC00000 . v t i "></DataSet>
</Block>
<Block index=" 1 " >
<DataSet index= " 0 " f i l e =" VTM_iT0081920iC00001 . v t i "></DataSet>
</Block>
<Block index=" 2 " >
<DataSet index= " 0 " f i l e =" VTM_iT0081920iC00002 . v t i "></DataSet>
</Block>
<Block index=" 3 " >
<DataSet index= " 0 " f i l e =" VTM_iT0081920iC00003 . v t i "></DataSet>
</Block>
</vtkMult iBlockDataSet>
</VTKFile>

Listing 7.2: Example of a ’vtm’ file that points to ’vti’ files that hold data of a cuboids.
Every cuboid writes its data to a ’vti’ file, which are assembles by a ’vtm’
file.

There is also a BlockVTKwriter that writes data sequentially. More details can be
found in the source code and its documentation.

7.2 Write Simulation Data to VTK File Format

VTK data files can be visualized and postprocessed with the free software Paraview [8],
which offers a nice graphical interface. The following listing shows, on the one hand,
how to write VTK files sequential for a geometry and cuboid functors. On the other
hand, the usage of the parallel write-routine for velocity and pressure functors is shown.

// create VTK writer object
SuperVTMwriter3D<T> vtmWriter(" FileNameGoesHere ");

3 // write only the first iteration step

70

if (iT==0) {
SuperLatticeGeometry3D<T,DESCRIPTOR> geometry(sLattice,

superGeometry);
SuperLatticeCuboid3D<T,DESCRIPTOR> cuboid(sLattice);
// writes the geometry and cuboids to file system, sequentially

8 vtmWriter.write(geometry);
vtmWriter.write(cuboid);
// mandatory to call the following write()-method
vtmWriter.createMasterFile();

}
13 // write every 2 sec (physical time scale)

if (iT%converter.numTimeSteps(2.)==0) {
// create functors that process data from SuperLattice
SuperLatticePhysVelocity3D<T,DESCRIPTOR> velocity(sLattice,

converter);
18 SuperLatticePhysPressure3D<T,DESCRIPTOR> pressure(sLattice,

converter);
vtmWriter.addFunctor(velocity);
vtmWriter.addFunctor(pressure);
// writes the added functors to file system, parallel

23 vtmWriter.write(iT);
}

Listing 7.3: An exemplary code to write simulation data to file system.

Note, that the function call creatMasterFile() in iT == 0 is essential to write
parallel vtk data.

7.3 Write Images Instantaneously

OpenLB is able to output image data directly. This is helpful to get a brief overview
of how the simulation is going on without using external visualization tools. Note that
only 1D data or equivalent scalar-valued data can be represented by images. Hence, for
vector-valued data, e.g. velocity, it is important to take an appropriate norm. This step
transforms the vector into a scalar and the data becomes one dimensional as required.

For 2D application it is straight forward to generate images, since every point of the
computational grid represents a pixel. However, for 3D applications this assignment
fails. OpenLB allows to reduce the 3D grid with the help of a plane. The resulting plane
represents then the image by assigning plane points to pixels.

An example of how to take a norm and how to place a plane is shown below

1 // get the pointwise l2 norm of velocity

71

SuperEuklidNorm3D<T,DESCRIPTOR> normVel(velocity);
// put a plane with normal (0,0,1) in the 3 dimensional data
BlockLatticeReduction3D<T,DESCRIPTOR> planeReduction(normVel, 0, 0,

1);
BlockGifWriter<T> gifWriter;

6 //gifWriter.write(planeReduction, 0, 0.7, iT, "vel"); //static scale
gifWriter.write(planeReduction, iT, " ve l "); // scaled

Listing 7.4: An exemplary code to write images out of simulation data.

With imagemagick’s command convert the PPM files generated by gifWriter

can be combined to an animated GIF file as follows:

convert tmp/imageData/*.ppm animation.gif

To reduce the GIF’s file size you can use the options fuzz and OptimizeFrame, for
example:

convert -fuzz 3% -layers OptimizeFrame tmp/imageData/*.ppm animation.gif

Even smaller files are possible with ffmpeg and convertion to MP4 video file. This
could be done using a command like:

ffmpeg -pattern_type glob -i ’tmp2/imageData/*.ppm’ animation.mp4

7.4 Gnuplot Interface

Often, for the analysis of simulations a plot of the data is required. OpenLB has a
interface, which uses Gnuplot to create plots. Furthermore, it is possible to see the
particular data needed plotting in realtime. It is also possible to use comparison data,
which are directly used in the plot.

An example for the usage is shown below, and can be found in examples/cylinder2d.

// Gnuplot constructor (must be static!)
// for real-time plotting: gplot("name", true) // experimental!
static Gnuplot<T> gplot(" drag ");

4

...

// set data for gnuplot: input={xValue, yValue(s),
// names (optional), position of key (optional)}

9 gplot.setData(converter.physTime(iT), {_drag[0], 5.58},
{ " drag (openLB) ", " drag (schaeferTurek) "}, " bottom r i g h t ");

72

// writes a png (or optional pdf) in one file for every timestep,
// if the png file is opened by an imageviewer it can be used as a "

liveplot"
14 // optional for pdf output, use: gplot.writePDF()

gplot.writePNG();
}

Listing 7.5: An exemplary code to plot simulation data.

The data drag[0] is calculated in the example and compared with the value 5.58. This
is then plotted as shown in Fig. 7.1.

Figure 7.1: Gnuplot output of drag calculation in cylinder2d.

In order to have plots for different times following usage is recommended.

...

// every (iT%vtkIter) write an png of the plot
4 if (iT%(vtkIter) == 0) {

// writes pngs: input={name of the files (optional),
// x range for the plot (optional)}
gplot.writePNG(iT, maxPhysT);

Listing 7.6: Creating plots for different time steps.

73

7.5 Console Output

In OpenLB, there is an extension of default ostreams, which handles parallel output
and prefixes each line with the name of the class that produced the output. Listing 7.7
is the output of the bstep2d example.

It is easy to determine which part of OpenLB has produced a specific message. This
can be very helpful in the debugging process, as well as for quickly postprocessing
console output or filtering out important information without any need to go into the
code. Together with OpenLB’s semi-CSV style output standard,it is possible to eas-
ily visualize any data imaginable diagrams, such as convergence rate, data errors, or
simple average mass density.

void MyClass::print() {
OstreamManager clout(std::cout, " MyClass ");

3 ...
clout << " s tep=" << step << " ; avRho=" << avRho

<< " ; maxU=" << maxU << std::endl;
}

Using the OstreamManager is easy and consists of two parts. First, an instance of the
class OstreamManager is needed. The one created here in Line 2 is called clout like all
the other instances in OpenLB. This word consists of the two words class and output
Moreover, it is quite similar to standard cout. The constructor receives two arguments:
one describing the ostream to use, the other one setting the prefix-text. In line 4 the
usage of an instance of the OstreamManager is shown. There is not much difference in
usage between a default std::cout and an instance of OpenLB’s OstreamManager.
The only thing to consider is that a normal "\n" won’t have the expected effect, so use
std::endl instead.

In classes with many output producing functions however, you wouldn’t like to in-
stantiate OstreamManager for every single function, so a central instantiation is pre-
ferred. This is done by adding a mutable OstreamManager object as a private class
member and initializing it in the initialization list of each defined constructor. An exam-
ple implementation of this method can be found in src/utilities/timer.{h,hh}.

Another great benefit of OstreamManager is the reduction of output in parallel. Run-
ning a program using cout on multiple cores normally means getting one line of out-
put for each process. OstreamManager will avoid this by default and display only the
output of the first processor. If this behavior is unwanted in a specific case, it can be
turned off for an instance named clout by clout.setMultiOutput(true).

Further scenarios that are not yet implemented in OpenLB can make use of different

74

streams like the ostream std::cerr for separate error output, file streams, or some-
thing completely different. In doing so, every stream, of course, needs its own instance.

75

$./bstep2d

[LBconverter] LBconverter information

[LBconverter] characteristical values

[LBconverter] Dimension(d): dim=2

....

[prepareGeometry] Prepare Geometry ...

[SuperGeometry2D] cleaned 0 outer boundary voxel(s)

[SuperGeometry2D] cleaned 0 inner boundary voxel(s)

[SuperGeometry2D] the model is correct!

[SuperGeometryStatistics2D] updated

[SuperGeometryStatistics2D] materialNumber=0; count=4600; minPhysR=(3.35,0); maxPhysR=(5,0.75)

[SuperGeometryStatistics2D] materialNumber=1; count=92865; minPhysR=(0.0166667,0.0166667); ...

[SuperGeometryStatistics2D] materialNumber=2; count=2448; minPhysR=(0,0); maxPhysR=(20,1.5)

[SuperGeometryStatistics2D] materialNumber=3; count=43; minPhysR=(0,0.783333); maxPhysR=(0,1.48333)

[SuperGeometryStatistics2D] materialNumber=4; count=89; minPhysR=(20,0.0166667); maxPhysR=(20,1.48333)

[main] starting simulation...

[SuperGeometryStatistics2D] updated

[Timer] step=0; percent=0; passedTime=0.109; remTime=inf; MLUPs=0

[LatticeStatistics] step=0; t=0; uMax=1.49167e-154; avEnergy=0; avRho=1

[Timer] step=300; percent=0.25; passedTime=1.199; remTime=478.401; MLUPs=26.2693

[LatticeStatistics] step=300; t=0.1; uMax=5.75006e-07; avEnergy=8.66459e-16; avRho=1

Listing 7.7: Terminal output of example bstep2d.

76

7.6 Read and write STL files

OpenLB offers the possibility to read and write geometry data in the Standard Trian-
gulation Language, STL for short. The OpenLB class stlReader provides the desired
functionality. In the case that the .stl-file you want to read is too large, you can use
Paraview’s filter "Decimate" to reduce the number of facets.

The constructor of the class STLreader takes 2 necessary and 3 optional arguments.

STLreader(const std::string fName, T voxelSize, T stlSize=1,
unsigned short int method = 2, bool verbose = false);

• fName: The filename of the STL file to be read.

• voxelSize: The intended spatial step size for the simulation in SI units (m).

• stlSize: Conversion factor if the STL file is not given in SI units. E.g. STL file in cm
→ stlSize = 0.01.

• method: Switch between methods for determining inside and outside of geometry.

– default: fast, less stable

– 1: slow, more stable (for untight STLs)

• verbose: Switch to get more output.

Functionality: The STL file is read and stored in the class STLmesh. A class Octree
is instantiated of side-length rad = 2j−1 · voxelSize, j ∈ N with j such that a cube
with diameter 2rad covers the entire STL. Intersections of triangles and the nodes of
the Octree are computed and an index of the respective triangles is stored in each node.
A node is a leaf if either rad = voxelSize or if it does not contain any triangles.
In a second step, it is determined whether a leaf is inside the STL geometry by one of
the following methods:

• (Default) One ray in Z-direction is defined for each Voxel in XY-layer. All nodes
are indicated on the fly (faster, less stable).

• Define three rays (X-, Y-, Z-direction) for each leaf and count intersections with
STL for each ray. Odd number of intersection means inside. The final state is
decided by a majority vote (slower, more stable).

77

7.7 XML Parameter Files

In OpenLB essential simulation parameter can be placed in a XML. This is a useful fea-
ture, since once a program is compiled the parameter can be changed through the XML
file and recompilation is redundant. As a consequence whenever parameter fitting or
general simulations are wanted, this approach can help you editing only the XML file.
The parsing is implemented in the the header tile io/xmlReader.h.

The general format for the XML files is:

<Param>
<Mesh>

< l x >1</ l x >
<ly>3</ly>

</Mesh>
<Visual izat ionImages>

<Filename>image</Filename
</Visual izat ionImages>

</Param>

All parameters need to be wrapped in a <Param> tag. To open a config file, you just
pass a string with the file name to the class constructor of XMLreader.

std::string fName("demo . xml ");
XMLreader config(fName);

int lx, ly;
5 std::string imagename;

config["Mesh"][" l x "].get(lx);
XMLreader meshconfig = config["Mesh"];

ly = config["Mesh"][" ly "].get<int>();
10 config[" Visual izat ionImages "][" Filename "].get(Filename);

First, an XMLreader object config is created. There are multiple ways to access the
configuration data. To select the tag you would like to read, you just use an associative
array like syntax as shown above.

To get a specific value out of an XML parameter file, there are multiple methods. One
is to pass a predefined variable to the method get(), which automatically converts
the string in the config file to the correct type, if it is one of the basic C++ types. The
other method is to call get without a parameter but with the needed type as a template
paramenter, like get<int>(). For large subtrees with lots of parameters, you can also
create a subobject. For this, you just have to reassign your selected subtree to a new
XMLreader-object as is done above for Mesh.

78

8 Visualization with Paraview

As already mentioned, there are several data formats that can be used in Paraview. Use
‘File – Open’ and choose the set of data you want to use. If there is a plus in front of the
file name, choose this file to open the numbered collection of single files. The chosen
files should now be part of the ‘Pipeline Browser’, which should be on the left hand
side (if any of the panels are missing you can add them in the ‘View’ menu on the top).
Click on ‘Apply’ in the ‘Properties’ panel (usually located below the ‘Pipeline Browser’)
after opening.

Your data should now be visible in the center window. From within the ‘Properties’
or in one of the top tool bars, you can change the ‘Coloring’ properties, which selects
what shall be displayed (e.g. physical velocity, phys pressure), which part of this choice
shall be displayed (e.g. magnitude, x-value) and the way it is colored.

Make sure that ‘3D’ is part of the tool bar directly above the window where you can
see your objects. If you cannot find it click on ‘2D’ which should be written instead and
change it to ‘3D’ by doing this. The commands for moving your whole set of visible
objects and thus changing the perspective are the following:

• Using the mouse wheel, you can zoom in and out.

• Using the right mouse button or ‘Ctrl + left mouse button’, you can move the
object to the background or the foreground. In comparison to zooming in and
out, this changes the level of the 3D-effect.

• Using the left mouse button allows you to turn the object.

• Clicking the mouse wheel allows you to move the object centre.

Of course you can also stick to ‘2D’, although in this case the mouse commands might
change a bit.

You can visualize the temporal development of your simulation using the ‘Play’ but-
ton and the related buttons directly next to it. If you want to go to a certain time step,
use the input field ‘Time’, which is also located here.

To manipulate your data in Paraview numerous so called ‘Filters’ are provided in the
‘Filters’ menu in the top bar.

79

8.1 Clip

With this filter, you can cut off parts of your objects, for example, to make it possible to
look inside the geometry. There are several tool options to determine which part is cut
off. You can choose between plane, box and sphere.

If the “wrong” side is cut off, check ‘inside out’ to make the other side visible.

Contour

Using ‘Contour’ you can show lines or planes of certain data values, which you can set.

8.2 Glyph

If you have a point data set, you can represent it as spheres using the filter ‘Glyph’ and
choosing ‘Sphere’ as setting for ‘Glyph Type’. Using the resolution settings, you can
smooth the surface to make the sqhere look more rounded.

There are alternative ways to represent the data. As an example, arrows can be used
to show the direction of a velocity. Check ‘Glyph Type’ for further possibilities.

8.3 Stream Tracer

Using the Stream Tracer allows you to draw flow lines.

Temporal Interpolator

Using this filter, you can interpolate between sets of data.

8.4 Transform

Using ‘Transform’ you can change the position and orientation of your objects, as well
as the scale.

80

9 Functors – A General Concept For Input
and Output of Data

Roughly speaking, a functor is a class that behaves like a function. Objects of a func-
tor class perform computations by overloading the operator(). One big advantage
of functors over functions is, that they allow the creation of a hierarchy and bundle
”classes of functions”. Moreover, parameters that are constant over several function
evaluations only need to be passed once during instantiation.

9.1 Basic Functor Types

The functor concept is a user friendly and efficient technique to process lattice data
and extract relevant data for postprocessing. In the meanwhile, OpenLB deploys the
functors also for the geometry, which is a very intuitive and powerful choice.

Basically, functors are applications that operate either on the lattice N3 or more gen-
erally on R3. The values of such an functor may be three dimensional, e.g. velocity.

Functor : Ω→ Rd, d ∈ N (9.1)

The nomenclature is based on the dimension of the domain. Let’s say the functor acts
on a 3d (super) lattice, the the functor is called SuperLatticeF3D. If the functor value
is density, then this functor is called SuperLatticeDensity3D.

9.1.1 GenericF

The GenericF functor stands at the top of the hierarchy and is a virtual base class that
provides interfaces. Template parameter S defines the input data type and template
parameter T, the output. The essential interface is the unwritten (pure virtual function)
operator(). Commonly, this ()−operator is used as an evaluation of a certain functor,
e.g. pressure at position x.

81

9.1.2 AnalyticalF

This a subclass of GenericF for functions that lives in SI-units, e.g. for setting velocities
in m/s. Parts of this class are, for example, constant, linear, interpolation and random
functors, which can be evaluated by the ()−operator. There is a AnalyticalCalc class,
which inherits from AnalyticalF and establishes arithmetic operations (+,−, ∗, /) be-
tween every type of AnalyticalF.

AnalycialF3D : R3 → Rd, d ∈ N (9.2)

9.1.3 IndicatorF

This an other subclass of GenericF that returns a vector with elements 0 or 1. These are
used to construct geometries, e.g. IndicatorSphere3D creates a sphere using an origin
and radius. Evaluation returns 1, if the vector is inside the sphere and 0 elsewise. In
analogy to the AnalyticalF, there are arithmetic operations as well, but with a slightly
different definition. The returned object of an addition is the union, multiplication
returns the intersection and subtraction represents the relative complement.

IndicatorF3D : R3 → {0, 1} (9.3)

9.1.4 SmoothIndicatorF

SmoothIndicators are very similar to Indicators but their image is smooth from 0 to 1.
SmoothIndicators defines a small epsilon region around the object such that is has a
smooth transition form 0 to 1.

SmoothIndicatorF3D : R3 → [0, 1] (9.4)

9.1.5 BlockLatticeF/SuperLatticeF

These functors are defined on the lattice and commonly represent the raw simulation
data, e.g. pressure, velocity. SuperLattice functors are part of the parallelism layer and
they delegate the calculations to the corresponding BlockLattice functors.

SuperLatticeF3D : N3 → Rd, d ∈ N (9.5)

82

9.1.6 InterpolationF

functors establish conversion between the analytical and lattice functors. They are very
important in setting analytical boundary conditions, by evaluating the given analytical
function on the lattice points. The reverse direction - from lattice to analytical functors
- is where this functor receives its name, as the conversion is achieved by interpolation
between the lattice points.

9.2 Application of Functors

The concept of functors benefits from generality and therefore, they are used for many
applications.

9.2.1 Extract Simulation Data

Velocity, pressure and other information can be extracted from the lattice using pre-
defined functors, see Listing 9.1. All they need to know is a SuperLatticeXD and an
LBconverter - if dimension or physical units are wanted.

// Create functors
SuperLatticePhysVelocity3D<T,DESCRIPTOR> velocity(&sLattice,

&converter);
SuperLatticePhysPressure3D<T,DESCRIPTOR> pressure(&sLattice,

5 &converter);

Listing 9.1: Code example for calculating velocity and pressure using functors.

9.2.2 Define Analytic Functions

Often the inflow velocity has Poiseuille profile which is defined analytically, by means
of a function. OpenLB provide analytic functors to define e.g. Poiseuille velocity pro-
file, random values, linear and constant values.

Poiseuille2D<T> poiseuilleU(superGeometry, 3, maxVelocity,
distance2Wall);

Listing 9.2: Define a poiseuille velocity profile for inflow boundary condition.

83

9.2.3 Interpolation

Another case for interpolation functors is the conversion of a given analytical functor,
such as an analytical solution to a SuperLattice functor. Afterwards, the difference can
be easily calculated with the help of the functor arithmetic, see Listing 9.4. Finally,
specific norms implemented as functors facilitate analysis of convergence.

// define a analytic functor: R^3 -> R
AnalyticalConst3D<T,T> constAna(1.);
// get analytic functor on the lattice: N^3 -> R

4 SuperLatticeFfromAnalyticalF3D<T,DESCRIPTOR> constLat(constAna,
lattice);

Listing 9.3: Transition from an analytic functor to a lattice functor.

Application of this is shown in the example poiseuille2d, which is discussed in Sec-
tion 11.10

9.2.4 Arithmetic and Advanced Functor Usage

Functors can be added, subtracted, ... which is a very useful and elegant method to
treat data. Listing 9.4 showns how to compute the relative error over the whole three
dimensional problem.

int input[1];
T normAnaSol[1], absErr[1], relErr[1];
// define analytical solution: R^3 -> R
// for snake of simplicity it is a constant function,

5 // however it may be any specialization of AnalyticalF3D<T,T>
AnalyticalConst3D<T,T> dSol(1.);
// get analytical solution on the lattice: N^3 -> R
SuperLatticeFfromAnalyticalF3D<T,DESCRIPTOR> dSolLattice(dSol,

lattice);
// get density out of simulation data

10 SuperLatticeDensity3D<T,DESCRIPTOR> d(lattice);
// compute absolute error
SuperL2Norm3D<T,DESCRIPTOR> dL2Norm(dSolLattice - d,

superGeometry, 1);
// compute norm of solution

15 SuperL2Norm3D<T,DESCRIPTOR> dSolL2Norm(dSolLattice,
superGeometry, 1);

dL2Norm(absErr, input); // access absolute error
dSolL2Norm(normAnaSol, input); // access norm of the solution
relErr[0] = absErr[0] / normAnaSol[0];

20 clout << " denst i ty−L2−e r r o r (abs) =" << absErr[0] << " ; "

84

<< " denst i ty−L2−e r r o r (r e l) =" << relErr[0] << std::endl;

Listing 9.4: Computation of a relative error with respect to L2-norm.

For more detail, see the source code of example 11.10.
Assemble geometry with geometric primitives of type IndicatorFXD.

Vector<T,2> extendChannel(lx0,ly0);
Vector<T,2> originChannel;
IndicatorCuboid2D<T> channel(extendChannel, originChannel);
// setup step

5 Vector<T,2> extendStep(lx1,ly1);
Vector<T,2> originStep;
IndicatorCuboid2D<T> step(extendStep, originStep);
// remove step from channel
IndicatorIdentity2D<T> channelIdent(channel-step);

Listing 9.5: Deploy functor arithmetic to build geometry data.

9.2.5 Setting Boundary Value

Boundary cells are marked by a certain material number in the SuperGeometryXD. Us-
ing a functor, velocities can be set simultaneously on all cells of this material. First, a
vector that characterizes the maximum flow velocity and its directions is necessary.
Then, a special functor uses this vector to initialize a Poiseuille profile. The direc-
tion can be extracted in the case of axis-parallel inflow regions automatically from the
SuperGeometryXD. In the last step, the SuperLattice initializes all cells of a certain ma-
terial given by the SuperLatticeXD with the velocities computed by the functor.

// Creates and sets the Poiseuille inflow profile using functors
std::vector<T> maxVelocity(3,0);
maxVelocity[0] = 2.25*frac*converter.getLatticeU();
SquarePoiseuilleInflow3D<T> poiseuilleU(superGeometry, 3, maxVelocity

);
5 sLattice.defineU(superGeometry, 3, poiseuilleU);

Listing 9.6: Code example for setting a Poiseuille velocity profile and a constant
pressure boundary in cylinder3d.

85

9.2.6 Flux Functor

The flux of a quantity is defined as the rate at which this quantity passes through a fixed
boundary per unit time.

As a mathematical concept, flux is represented by the surface integral of a vector field,

Φ =

∫
~F · d ~A

where ~F is a vector field, and d ~A is an area element of the surface A, in the direction of
the surface normal ~n.

The flux functor calculates the discrete flux

Φh = h2
∑
i

~fi · ~n

with h as the grid length of the surface and ~fi the vector of the quantity at grid point i.
As the grid of the area has to be independent from the lattice, the value of ~fi will be

interpolated from the surrounding lattice points.
So, for the SuperLatticeFlux functor a surface needs to be defined, here a plane, and

an SuperLatticeF functor.
The plane can be defined by a circle indicator, a starting point and a normal, or a

starting point and two vectors. Optionally, you can set a radius for the plane. The
grid length of the area can be defined. The default for this value is the lattice length.
Another optional feature is a material list, so that only the points with the predefined
material numbers are used for calculation (the default material number is 1). Next is a
SuperLatticeF functor, which defines the quantity you want to measure.

Step 1: Define the plane by
a) a circle indicator

IndicatorCircle3D<T,T> circleInd(center1, center2, center3, normal1,
normal2, normal3, radius);

b) a normal, a starting point and, optionally, a radius

std::vector<T> startingPoint, planeNormal;
T radius;

c) two vectors, a starting point and, optionally, a radius

std::vector<T> startingPoint, planeVectorU, planeVectorV;
T radius;

86

Step 2 (optional): Define the grid length of the plane

T h = converter.getLatticeL();

Step 3 (optional): Define the material list

std::list<int> materials;

Step 4: Create a SuperLatticeF functor
a) for velocity flow

SuperLatticePhysVelocity3D<T,DESCRIPTOR> vel(sLattice, converter);

b) for pressure

SuperLatticePhysPressure3D<T,DESCRIPTOR> press(sLattice, converter);

c) or any other SuperLatticeF functor

SuperLatticeF3D<T, DESCRIPTOR> ...;

Step 5: create a SuperLatticeFlux functor (depending on how the plane was defined)
a)circle indicator

SuperLatticeFlux3D(SuperLatticeF3D<T,DESCRIPTOR>& f,SuperGeometry3D<T
>& sg, IndicatorCircle3D<bool,T>& circle, std::list<int> materials
, T h = T());

b)normal and startingPoint

SuperLatticeFlux3D(SuperLatticeF3D<T,DESCRIPTOR>& f, SuperGeometry3D<
T>& sg, std::vector<T>& n, std::vector<T> A, std::list<int>
materials, T radius = T(), T h = T());

c)two vectors and startingPoint

SuperLatticeFlux3D(SuperLatticeF3D<T,DESCRIPTOR>& f, SuperGeometry3D<
T>& sg, std::vector<T>& u, std::vector<T>& v, std::vector<T> A,
std::list<int> materials, T radius = T(), T h = T());

In addition to the arguments for the plane, the constructor takes 2 necessary and 3
optional arguments.

• f: the functor defined in Step 4

87

• sg: the SuperGeometry3D object

• materials: default is material number 1

• radius: default is the diameter of the geometry

• h: default is the lattice length

Step 6: Get results by using the operator()

int input[3];
T output[5];
flux(output, input);

• output[0]: flow rate, or force (if quantity has dimension 1)

• output[1]: size of the area

• output[2..4]: flow vector (ie. vector of summed quantities)

Because, in general, the SuperLattice functor is either the velocity functor or the pres-
sure functor, Step 4 and Step 5 can be combined. The constructors, depending on how
the plane is defined, are identical to the ones used for
SuperLatticeFluxF3D, only the SuperLatticeF3D argument is replaced by the two
arguments SuperLattice3D and LBconverter.

Step 4.1): Combined steps for velocity flow

SuperLatticePhysVelocityFlux3D<T,DESCRIPTOR> vFlux(SuperLattice3D<T,
DESCRIPTOR> sLattice, LBconverter<T> converter, ...);

Step 4.2): Combined steps for pressure

SuperLatticePhysPressureFlux3D<T,DESCRIPTOR> pFlux(SuperLattice3D<T,
DESCRIPTOR> sLattice, LBconverter<T> converter, ...);

For these two functors there is a print() function.

Step 5.1): Output for velocity functor (region size[m2], volumetric flow rate and mean
velocity)

88

vFlux.print(std::string fluxSiScale, std::string meanSiScale);

• fluxSiScale: ’ml/s’ or ’l/s’ or ’ ’ (default=m3/s)

• meanSiScale: ’mm/s’ or ’ ’ (default=m/s)

Step 5.2): output for pressure functor (region size[m2], force and pressure)

pFlux.print(std::string fluxSiScale, std::string meanSiScale);

• fluxSiScale: ’MN’ or ’kN’ or ’ ’ (default=N)

• meanSiScale: ’mmHg’ or ’ ’ (default=Pa)

Shown below are two code examples for the implementation of the flux functor in cylin-
der3d.

Example 1: circle indicator, material list and SuperLatticeFlux3D

std::list<int> materials;
materials.push_back(1);
materials.push_back(6);

4

IndicatorCircle3D<bool,T> circleInd(2., 0.205, 0.205, 1., 1., 0., 2.)
;

SuperLatticePhysVelocity3D<T,DESCRIPTOR> vel(sLattice, converter);
SuperLatticeFlux3D<T,DESCRIPTOR> flux(vel, superGeometry, circleInd);

9 clout << " flowRate=" << flux(input)[0];
clout << " reg ionS ize=" << flux(input)[1] << endl;

Listing 9.7: Code example for getting the volumetric flow rate of the velocity flow in
cylinder3d.

Example 2: normal, startingPoint and SuperLatticePhysPressureFlux3D

std::vector<T> A(3,T()), n(3,T());
A[0]=2.;A[1]=0.205;A[2]=0.205;

89

n[0]=1.;n[1]=1.;n[2]=0.;

5 SuperLatticePhysPressureFlux3D<T,DESCRIPTOR> pFlux(sLattice,
converter, superGeometry, n, A);

pFlux.print();

Listing 9.8: Code example for getting the pressure on a area in cylinder3d.

9.3 Functor Arithmetic

Simulation data often needs heavy post-processing, in order to get relevant data. With
the functor arithmetic OpenLB provides a very user friendly tool to process simulation
data during simulation time. E.g. it facilitates the computation of relative errors.

AnalyticalConst2D<T,T> one(1.);
AnalyticalConst2D<T,T> two(2.);
AnalyticalIdentity2D<T,T> tmp(one + two);

4 // or equivalent
AnalyticPlus2D<T,T> aPlus(one,two);
AnalyticalIdentity2D<T,T> tmp2(aPlus);

Listing 9.9: Basic showcase for arithmetic operations for AnalyticalF2D.

The following explains the memory management of the functor arithmetic in OpenLB.
It is strongly based on the example shown in Listing 9.9 and in particular on its third
line. First, the operator+() declared in AnalyticalF2<T,S> is called by the object
one, as shown in Figure 9.1. Its implementation is realized in the file analyticCalc2D.hh.
Basically, there happens two things. A new object of type AnalyticalPlus2D<T,S>
will be created and a shared_ptr to it, is stored into a variable of the object one. The
shared_ptr is used to free the memory allocated by the new object. By now, object
one cares about the arithmetic operation. However, if one is used for other arith-
metic operations, its shared_ptr may be overwritten, which can causes runtime errors.
It would be more intuitive if tmp cared about memory management. As a conse-
quence, tmp should hold the shared_ptr, which is achieved in two steps. First, con-
structing an AnalyticalPlus2D<T,S> object, moves the shared_ptr from object one
to AnaltycialPlus2D<T,S>. Then by constructing tmp the shared_ptr moves once
again to the created AnalyticalIdentity2D<T,S>. Finally, tmp holds the shared_ptr
and thus is responsible for the memory management.

90

Figure 9.1: Inheritance for AnalyticCalc2D is shown.

91

10 Parallel Program Execution

Whenever possible, an OpenLB application should be written in such a way that it
works well on both serial and parallel platforms. As applications in computational
fluid dynamics require a large amount of resources, it is essential to have the flexibil-
ity to switch to a parallel platform easily. This Section concentrates on parallelism on
distributed memory machines using MPI, as distributed memory is the most common
model on large-scale, parallel machines. Furthermore, MPI parallelism has become an
important option even on simple desktop computers, which quite often possess multi-
core processors. In this case, you will often find that MPI is actually more efficient
and/or easier to obtain in a non-commercial compiler setting than OpenMP. Fortu-
nately, it is straightforward to write parallelizable applications with OpenLB if a few
basic concepts are respected. As a matter of fact, all example programs in the OpenLB
distribution can be compiled with MPI and executed in parallel.

To achieve parallelism with programs that have the look and feel of serial applica-
tions, OpenLB distinguishes two classes of data. Data which is spatially distributed,
such as the lattice and scalar- or vector-valued data fields, is handled through a data-
parallel paradigm. The data space is partioned into smaller regions that are distributed
over the nodes of a parallel machine. In the following, these types of structures are
referred to as data-parallel strucures. Other data types that require a small amount of
storage space are duplicated on every node. These are referred to as duplicated data.
All native C++ data types are automatically duplicated by virtue of the Single-Program-
Multiple-Data model of MPI. These types should be used to handle scalar values, such
as the parameters of the simulation, or integral values over the solution (e.g. the aver-
age energy).

For output on the console it is strongly recommended to use OpenLB’s
OstreamManager since it can help reducing output in case of parallel execution (cf
Chapter 7.5).

92

10.1 Data-Parallel Structures

Obtaining data-parallelism in OpenLB is as easy as using the MultiBlockLatticeXD
instead of a BlockLatticeXD, a MultiScalarFieldXD instead of a ScalarFieldXD,
and a MultiVectorFieldXD instead of a VectorFieldXD. In most common situa-
tions, only the case of the BlockLatticeXD actually needs to be treated explicitly,
and this is handled in a single line of code, as it is shown in Lesson 10 (Section 2.11).
Scalar- and vector-valued fields are usually generated automatically, as in the following
expression:

// This yields an object of type ScalarFieldXD in serial,
// and an object of type MultiScalarFieldXD in parallel

lattice.getDataAnalysis().getVelocity();

The difference between the serial and the parallel case is handled transparently by ad-
dressing the data fields through the virtual base ScalarFieldBaseXD and Vector-

FieldBaseXD, which is the same for the serial and the parallel data type:

// The following instruction works for in serial as well as
2 // in parallel, because ScalarFieldBase2D is an abstract

// base to both ScalarField2D and MultiScalarField2D
ScalarFieldBase2D<T,Lattice> const& velocity
= lattice.getDataAnalysis().getVelocity();

The most important rule to respect when handling data-parallel types in application
programs is to never implement explicit loops over space dimensions. Although the
resulting code does yield the expected result, it is likely to run very slowly. The reason
for this is that the loops cannot be parallelized, and the code therefore runs at the speed
of a single processor, or even slower because of the implied MPI communications. An
example is given in Section 7, where it is shown how to use predefined functions for
I/O operations on data-parallel structures, instead of explicit space loops.

10.2 Duplicated Data Types

The rule for duplicated data types is simple: all data types except for the data-parallel
ones mentioned in the previous section are duplicated. The three following rules need
to be respected to ensure that the value from some input is properly duplicated over
processors:

1. The call to olbInit at the beginning of a program ensures distribution of input
from the command-line.

93

2. The use of cin ensures distribution of input from the terminal.

3. The use of olb_ifstream instead of fstream ensures distribution of input from
a data file.

94

11 The Example Programs

All the demo codes can be compiled with or without MPI, with or without OpenMP,
and executed in serial or parallel.

11.1 aorta3d

In this example, the fluid flow through a bifurcation is simulated. The geometry is
obtained from a mesh in STL-format. With Bouzidi boundary conditions, the curved
boundary is adequately mapped and initialized entirely automatically. A Smagorinsky
turbulent BGK model is used for the dynamics to stabilize the simulation for low reso-
lutions. The output is the flux computed at the inflow and outflow region. The results
have been validated through comparison with other results obtained with FEM and
FVM.

11.2 bifurcation3d

The bifurcation3d example simulates particulate flow through an exemplary bifurca-
tion of the human bronchial system. The geometry is a splitting pipe, with one inflow
and two outflows. The fluid is transporting micrometer scale particles and the escape
and capture rate is computed. There exist two implenetations of the problem. The first
one is a Euler–Euler ansatz, meaning that the fluid phase as well as the particle phase
are modelled as continua. The second is an Euler–Lagrange ansatz, where the particles
are modelled as discrete objects.

11.2.1 Euler – Euler

In this example the particles are viewed as a continuum and described by a advection–
diffusion equation. This is done similar to the example thermal3d where the tem-
perature is the considered quantity. For particles however, inertia has to be taken into
account. This is achieved by applying the Stokes drag force to the velocity field. Since
for this computations also the velocity of the previous time step is required, the new

95

descriptor particleAdvectionDiffusionD3Q7Descriptor has to be used, that is
capable of saving 2 velocity fields. Besides an extra lattice for the advection–diffusion
equation, a SuperExternal3D structure is required to manage the communication for
parallel execution.

SuperExternal3D<T,ADDESCRIPTOR> sExternal(
superGeometry,
sLatticeAD,
ADDESCRIPTOR<T>::ExternalField::velocityBeginsAt,

5 ADDESCRIPTOR<T>::ExternalField::numScalars,
sLatticeAD.getOverlap());

...

10 sExternal.communicate();

The function communicate() is called in the time loop and handles the communica-
tion analogue to the lattices.
Furthermore the new dynamics object ParticleAdvectionDiffusionBGKdynamics is
required to access the saved velocity fields correctly and use them in an efficient way.
For information on the coupling of the lattices we refer to the section on the advection–
diffusion equation for particle flow problems 5.8.1. In this example only the Stokes drag
is applied by

advDiffDragForce3D<T, NSDESCRIPTOR> dragForce(converter,radius,
partRho);

For the simulation of particles as a continuum, also new boundary conditions are re-
quired. Here addZeroDistributionBoundary represents an unidirectional outflow
condition, that removes particle concentrations that cross a boundary. For the usual
outflow at the bottom of the bifurcation a new ConvectionBoundary for advection–
diffusion lattices can be applied, that approximates a Neumann boundary condition,
for further reference see [36]. Since non-local computations (gradient is required) are
performed on the the external field, also a Neumann boundary condition is required
that is here implemented as addExtFieldBoundary.

11.2.2 Euler – Lagrange

The main task of his example is to show the using of Lagrangian particles with OpenLB.
As already described in chapter 6, similar to the BlockLattice and SuperLattice

structure a ParticleSystem and SuperParticleSystem structure exists. Besides the
particles the examples use the save feature of the SuperLattice. By

96

sLattice.save(" f l u i d S o l u t i o n ")

and

sLattice.load(" f l u i d S o l u t i o n ")

the current state of the SuperLattice can be saved and loaded again. Using this feature
the startup phase for the fluid has to be computed only once.

11.3 bstep2d and bstep3d

This example implements a backward facing step. Furthermore, it is shown how check-
pointing is used to regularly save the state of the simulation.

11.4 cavity2d and cavity3d

This example illustrates a flow in a cuboid, lid-driven cavity. The 2D version also shows
how to use the XML parameter files and has an example description file for OpenGPI.
This example is available in two different versions for sequential and parallel use.

11.5 cylinder2d and cylinder3d

This example examines a steady flow past a cylinder placed in a channel. The cylinder
is offset somewhat from the center of the flow to make the steady-state symmetrical
flow unstable. At the inlet, a Poiseuille profile is imposed on the velocity, whereas the
outlet implements a Dirichlet pressure condition set by p = 0, inspired by [37]. For high
resolution, low latticeU, and enough time to converge, the results for pressure drop,
drag and lift lie within the estimated intervals for the exact results. An unsteady flow
with Karman vortex street can be created by changing the Reynolds number to Re=100.
The 3D version also shows the usage of the STL-reader. The model was created using
the open source CAD tool FreeCAD [5].

11.6 power law

This example describe a steady non-Newtonian flow in a channel. At the inlet, a
Poiseuille profile is imposed on the velocity, whereas the outlet implements a Dirichlet
pressure condition set by p = 0.

97

11.7 multiComponent2d and multiComponent3d

This example demonstrates Rayleigh-Taylor instability in 2D and 3D, generated by a
heavy fluid penetrating a light one. The multi-component fluid model by X. Shan and
H. Chen is used [32]. These examples show the usage of multicomponent flow and
periodic boundaries.

11.8 nozzle3d

On the one hand this example describes building a cylindrical 3d geometry in OpenLB,
on the other hand it examines turbulent flow in a nozzle injection tube using different
turbulence models and Reynolds numbers.

For characterization different physical parameters have to be set. Resolution N de-
fines lots of physical parameters such as the velocity charU , the kinematic viscosity ν
and two characteristic lengths charL and latticeL. Physical length charL is used to
characterize the geometry and the Reynolds number. Lattice length latticeL defines
the mesh size and is calculated as latticeL = charL/N . More information about the
parameter definitions are in the file units.h.

Table 11.1: This table shows the preset simulation parameters.
parameter value
charL 1m

latticeL 1
3m

charU 1ms
ν 0.00002ms
Reinlet 5000

turbulence model Smagorinsky

Figure 11.1 illustrates the geometry and the nozzle’s size as a function of the char-
acteristic length charL. The nozzle consists of two circular cylinders. The inflow (red)
is located left in the inletCylinder. The outflow (green) is at the right end of the injec-
tionTube. At the main inlet, either a block profile or a power 1/7 profile is imposed
as a Dirichlet velocity boundary condition, whereas at the outlet a Dirichlet pressure
condition is set by p = 0 (i.e. rho = 1).

Two vectors, origin and extend, describe the centre and normal direction of the cylin-
der’s circular start (origin) and end (extend) plane. The radius is defined in the function.

As mentioned before, this example examines the turbulence. The flow behavior in
the inlet is characterized by the Reynolds number. The following turbulence models are

98

Figure 11.1: Cross section of a 3d geometry of nozzle3d in dependency of characteristic
length charL.

based on large eddy simulation (LES). The idea behind LES is to simulate only eddies
larger than a certain grid filter length, while smaller eddies are modeled. Different
models are currently implemented.

• The Smagorinsky model reduces the turbulence to a so called eddy viscosity.
This viscosity depends on the Smagorinsky Constant, which has to be defined.
This model has certain disadvantages at the wall.

• The Shear-improved Smagorinsky model (SISM) is based on the Smagorinsky
model. Compared to the original model, the SISM works at the wall very well. A
model specific constant has to be defined, too.

The following code shows the model selection. A model is selected, when the corre-
late line is uncommented. Below the model specific constants are defined. In this case
the Smagorinsky Model is selected. Smagorinsky Constant is equal to 0.15.

/// Choose your turbulent model of choice

#define Smagorinsky

99

5 ...

#elif defined(Smagorinsky)
bulkDynamics = new SmagorinskyBGKdynamics<T, DESCRIPTOR>(converter.

getOmega(), instances::getBulkMomenta<T, DESCRIPTOR>(),
0.04, converter.getLatticeL(), converter.physTime());

As an example, Figure 11.2 shows the results with preset parameters.

Figure 11.2: Physical velocity field after 200 seconds with preset parameters (Smagorin-
sky Model, CS = 0.15, latticeL = 1

3m, Reinlet = 5000).

The simulations strongly depends on the constant’s value, used in the turbulence
model. But, the constant is not a general calculable value and valid for one model. It
could be a function of the Reynolds number and/or another dimensionless parame-
ter. Thus, Engineering background knowledge and experience are demanded to find
physical useful values.

Generally, if the constant’s value is chosen to small, the simulation will be unphysical.
If the value is to big, the turbulence will straighten turbulence.

11.9 phaseSeparation2d and phaseSeparation3d

In these examples the simulation is initialized with a given density plus small, random
variation over the domain. This condition is unstable and leads to liquid-vapor phase

100

Figure 11.3: Increasing Smagorinsky Constant straightens turbulence.

separation. Boundaries are assumed to be periodic. These examples show the usage of
multiphase flow.

11.10 poiseuille2d

This example examines a 2D Poseuille flow. Computation of error norms via functors
is also shown. bgkPoiseuille2d and mrtPoiseuille2d use a velocity or pressure
boundary at the inlet/outlet. In forcedPoiseuille2d the boundaries are periodic
between the inlet and outlet. As the flow is driven by a body force, it illustrates both
the use of a body force and periodic boundaries. In addition to different flavors of
BGK [16] and the regularized LB model [27], OpenLB offers implementations of en-
tropic and multiple-relaxation-time (MRT) models. mrtPoiseuille2d illustrates the
use of MRT. An example program for the entropic model is not yet available.

11.11 tgv3d

The Taylor-Green-Vortex (TGV) is one of the simplest configuration, where you can
investigate the generation of small structures and the resulting turbulence. The 2π pe-
riodic box domain and the single mode initial conditions contribute to the simplicity.
In consequence, the TGV is a common benchmark case for Direct Numerical Simula-
tions (DNS) and Large Eddy Simulations (LES). This example shows the usage and the

101

Figure 11.4: Taylor-Green-Vortex vorticity plot by t = 12 s

effects of different subgrid scale turbulence models. The molecular dissipation rate,
the eddy dissipation rate and the effective dissipation rate are calculated and plotted
over the simulation time. This results can be compared with a published DNS solution
by Brachet et al. [12].

11.12 thermal2d and thermal3d

This example demonstrates Rayleigh-Bénard convection rolls in 2D and 3D, simulated
with the thermal LB model by Guo et al. [22], between a hot plate at the bottom and a
cold plate at the top.

11.13 venturi3d

This example examines a steady flow in a venturi tube. A Venturi tube is a cylindrical
tube, which has a reduced cross-section in the middle part. At this constriction is an
injection tube. As a result of the accelerating fluid in the constriction, the static pressure

102

decreases and the injection tube’s fluid is pumped in the main tube.
The overall geometry is built with adding together single bodies. Each body’s ge-

ometry is defind by certain points (position vetors) in the coordinate system and their
radius. A cone-shaped cylinder needs the centre of the start an end circle as well as the
radii. Following code builds the geometry and shows the semantics.

/// Definition of the geometry of the venturi

//Definition of the cross-sections’ centers
Vector<T,3> C0(0,50,50);

5 Vector<T,3> C1(5,50,50);
Vector<T,3> C2(40,50,50);
Vector<T,3> C3(80,50,50);
Vector<T,3> C4(120,50,50);
Vector<T,3> C5(160,50,50);

10 Vector<T,3> C6(195,50,50);
Vector<T,3> C7(200,50,50);
Vector<T,3> C8(190,50,50);
Vector<T,3> C9(115,50,50);
Vector<T,3> C10(115,25,50);

15 Vector<T,3> C11(115,5,50);
Vector<T,3> C12(115,3,50);
Vector<T,3> C13(115,7,50);

//Definition of the radii
20 T radius1 = 10 ; // radius of the tightest part

T radius2 = 20 ; // radius of the widest part
T radius3 = 4 ; // radius of the small exit

//Building the cylinders and cones
25 IndicatorCylinder3D<T> inflow(C0, C1, radius2);

IndicatorCylinder3D<T> cyl1(C1, C2, radius2);
IndicatorCone3D<T> co1(C2, C3, radius2, radius1);
IndicatorCylinder3D<T> cyl2(C3, C4, radius1);
IndicatorCone3D<T> co2(C4, C5, radius1, radius2);

30 IndicatorCylinder3D<T> cyl3(C5, C6, radius2);
IndicatorCylinder3D<T> outflow0(C7, C8, radius2);
IndicatorCylinder3D<T> cyl4(C9, C10, radius3);
IndicatorCone3D<T> co3(C10, C11, radius3, radius1);
IndicatorCylinder3D<T> outflow1(C12, C13, radius1);

35

//Addition of the cylinders to overall geometry
IndicatorIdentity3D<T> venturi(cyl1 + cyl2 + cyl3 + cyl4 + co1 + co2

+ co3);

Following figure visualizes the defined point’s position.

103

Figure 11.5: Schematic diagramm visualizing the defined points position.

Figure 11.6: Built geometry as used in simulation.

At the main inlet, a Poiseuille profile is imposed as a Dirichlet velocity boundary
condition, whereas at the outlet and the minor inlet, a Dirichlet pressure condition is
set by p = 0 (i.e. rho = 1).

104

Figure 11.7: Simulation after 200 simulated time steps.

105

Bibliography

[1] The Cygwin project. http://www.cygwin.com/.

[2] LB model with adjustable speed of sound. Technical report. http : / / www .
lbmethod.org/openlb/techreports.html.

[3] How to implement your DdQq dynamics with only q variables per node. Techni-
cal report. http://www.lbmethod.org/openlb/techreports.html.

[4] Installing OpenLB in Windows/Cygwin. Technical Report. http://optilb.
org/openlb/tech-reports.

[5] FreeCAD: An Open Source parametric 3D CAD modeler. http://free-cad.
sourceforge.net/.

[6] The OpenGPI project. http://www.opengpi.org.

[7] The VTK data format documentation. http://www.vtk.org/VTK/img/
file-formats.pdf.

[8] The Paraview project. http://www.paraview.org.

[9] S. Ansumali. “Minimal kinetic modeling of hydrodynamics”. PhD thesis. Swiss
Federal Institute of Technology Zurich, 2004.

[10] T. Borrvall and J. Petersson. “Topology optimization of fluids in Stokes flow”. In:
International Journal for Numerical Methods in Fluids 41.1 (2003), pp. 77–107. DOI:
10.1002/fld.426.

[11] M. Bouzidi, M. Firdaouss, and P. Lallemand. “Momentum transfer of a Boltzmann-
lattice fluid with boundaries”. In: Physics of Fluids 13.11 (2001), pp. 3452–3459.
DOI: 10.1063/1.1399290.

[12] M. E. Brachet, D. I. Meiron, S. A. Orszag, B. Nickel, R. H. Morf, and U. Frisch.
“Small-scale structure of the Taylor–Green vortex”. In: Journal of Fluid Mechanics
130 (1983), pp. 411–452.

[13] H. Brinkman. “A calculation of the viscous force exerted by a flowing fluid on
a dense swarm of particles”. English. In: Applied Scientific Research 1.1 (1949),
pp. 27–34. DOI: 10.1007/BF02120313.

106

http://www.cygwin.com/
http://www.lbmethod.org/openlb/techreports.html
http://www.lbmethod.org/openlb/techreports.html
http://www.lbmethod.org/openlb/techreports.html
http://optilb.org/openlb/tech-reports
http://optilb.org/openlb/tech-reports
http://free-cad.sourceforge.net/
http://free-cad.sourceforge.net/
http://www.opengpi.org
http://www.vtk.org/VTK/img/file-formats.pdf
http://www.vtk.org/VTK/img/file-formats.pdf
http://www.paraview.org
http://dx.doi.org/10.1002/fld.426
http://dx.doi.org/10.1063/1.1399290
http://dx.doi.org/10.1007/BF02120313

[14] H. Brinkman. “On the permeability of media consisting of closely packed porous
particles”. English. In: Applied Scientific Research 1.1 (1949), pp. 81–86. DOI: 10.
1007/BF02120318.

[15] A. Caiazzo and M. Junk. “Asymptotic analysis of lattice Boltzmann methods for
flow-rigid body interaction”. In: Progress in Computational Physics 3 (2013), p. 91.

[16] S. Chen and G. D. Doolen. “Lattice Boltzmann Method for Fluid Flows”. In: Ann.
Rev. Fluid Mech. 30 (1998), pp. 329–364.

[17] B. Chopard, A. Dupuis, A. Masselot, and P. Luthi. “Cellular Automata and Lattice
Boltzmann techniques: an approach to model and simulate complex systems”. In:
Adv. Compl. Sys. 5 (2002), pp. 103–246. DOI: 10.1142/S0219525902000602.

[18] D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.-S. Luo. “Multiple-
relaxation-time lattice Boltzmann models in three dimensions”. In: Phil. Trans. R.
Soc. Lond. A 360 (2002), pp. 437–451.

[19] D. d’Humières, M. Bouzidi, and P. Lallemand. “Thirteen-velocity three-dimensional
lattice Boltzmann model”. In: Phys. Rev. E 63 (2001), p. 066702. DOI: 10.1103/
PhysRevE.63.066702.

[20] T. Dornieden. “Optimierung von Strömungsgebieten mit adjungierten Lattice
Boltzmann Methoden”. Diplomarbeit. Karlsruhe Institute of Technology (KIT),
2013.

[21] Z. Guo, C. Zheng, and B. Shi. “Discrete lattice effects on the forcing term in the
lattice Boltzmann method”. In: Phys. Rev. E 65 (2002), p. 046308.

[22] Z. Guo, B. Shi, and C. Zheng. “A coupled lattice BGK model for the Boussinesq
equations”. In: Int. J. Num. Meth. Fluids 39 (2002), pp. 325–342. DOI: 10.1002/
fld.337.

[23] X.-Y. L. H-B Huang and M. C. Sukop. “Numerical study of lattice Boltzmann
methods for a convection-diffusion equation coupled with Navier-Stokes equa-
tions”. In: J. Phys. A: Math. Theor. 44.5 (2011).

[24] T. Henn, G. Thäter, W. Dörfler, H. Nirschl, and M. J. Krause. “Parallel dilute par-
ticulate flow simulations in the human nasal cavity”. In: Computers & Fluids 124
(2016), pp. 197–207.

[25] T. Inamuro, M. Yoshina, and F. Ogino. “A non-slip boundary condition for lattice
Boltzmann simulations”. In: Phys. Fluids 7 (1995), pp. 2928–2930.

107

http://dx.doi.org/10.1007/BF02120318
http://dx.doi.org/10.1007/BF02120318
http://dx.doi.org/10.1142/S0219525902000602
http://dx.doi.org/10.1103/PhysRevE.63.066702
http://dx.doi.org/10.1103/PhysRevE.63.066702
http://dx.doi.org/10.1002/fld.337
http://dx.doi.org/10.1002/fld.337

[26] M. J. Krause. “Fluid Flow Simulation and Optimisation with Lattice Boltzmann
Methods on High Performance Computers: Application to the Human Respira-
tory System”. eng. PhD thesis. Kaiserstrasse 12, 76131 Karlsruhe, Germany: KIT,
Universität Karlsruhe, 2010.

[27] J. Latt and B. Chopard. “Lattice Boltzmann Method with regularized non-equilibrium
distribution functions”. In: Math. Comp. Sim. 72 (2006), pp. 165–168.

[28] A. A. Mohamad. Lattice Boltzmann Method - Fundamentals and Engineering Applica-
tions with Computer Codes. Springer-Verlag, 2011.

[29] P. Nathen, D. Gaudlitz, M. J. Krause, and J. Kratzke. “An extension of the Lattice
Boltzmann Method for simulating turbulent flows around rotating geometries of
arbitrary shape”. In: 21st AIAA Computational Fluid Dynamics Conference. Amer-
ican Institute of Aeronautics and Astronautics. 2013. DOI: doi:10.2514/6.
2013-2573.

[30] G. Pingen, A. Evgrafov, and K. Maute. “Topology optimization of flow domains
using the lattice Boltzmann method”. English. In: Structural and Multidisciplinary
Optimization 34.6 (2007), pp. 507–524. DOI: 10.1007/s00158-007-0105-7.

[31] R. Rannacher. Einfuehrung in die Numerische Mathematik (Numerik 0). Vorlessungsskrip-
tum SS 2005. Universitaet Heidelberg, 2006.

[32] X. Shan and H. Chen. “Lattice Boltzmann model for simulating flows with mul-
tiple phases and components”. In: Phys. Rev. E 47 (1993), pp. 1815–1819. DOI:
10.1103/PhysRevE.47.1815.

[33] X. Shan and G. Doolen. “Multicomponent lattice-Boltzmann model with inter-
particle interaction”. In: Journal of Statistical Physics 81 (1995), pp. 379–393.

[34] P. A. Skordos. “Initial and boundary conditions for the lattice Boltzmann method”.
In: Phys. Rev. E 48 (1993), pp. 4824–4842.

[35] S. Stasius. “Identifikation von Strömungsgebieten mit adjungierten Lattice Boltz-
mann Methoden (ALBM)”. Diplomarbeit. Karlsruhe Institute for Technology (KIT),
2014.

[36] R. Trunk, T. Henn, W. Dörfler, H. Nirschl, and M. Krause. “Inertial Dilute Partic-
ulate Fluid Flow Simulations with an Euler-Euler Lattice Boltzmann Method”.
In: Journal of Computational Science 17, Part 2 (2016), pp. 438–445. DOI: http:
//dx.doi.org/10.1016/j.jocs.2016.03.013.

108

http://dx.doi.org/doi:10.2514/6.2013-2573
http://dx.doi.org/doi:10.2514/6.2013-2573
http://dx.doi.org/10.1007/s00158-007-0105-7
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/http://dx.doi.org/10.1016/j.jocs.2016.03.013
http://dx.doi.org/http://dx.doi.org/10.1016/j.jocs.2016.03.013

[37] S. Turek and M. Schäfer. “Benchmark computations of laminar flow around cylin-
der”. In: Flow Simulation with High-Performance Computers II. Vol. 52. Notes on
Numerical Fluid Mechanics. Vieweg, Jan. 1996, pp. 547–566.

[38] D. Yu, R. Mei, L.-S. Luo, and W. Shyy. “Viscous flow computations with the
method of lattice Boltzmann equation”. In: Progress in Aerospace Sciences 39.5 (2003),
pp. 329–367.

[39] Q. Zou and X. He. “On pressure and velocity boundary conditions for the lattice
Boltzmann BGK model”. In: Phys. Fluids 9 (1997), pp. 1592–1598.

109

12 License

GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and
useful document “free” in the sense of freedom: to assure everyone the effective free-
dom to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifica-
tions made by others.

This License is a kind of “copyleft”, which means that derivative works of the doc-
ument must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. Applicability and definitions

This License applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the terms

110

of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Doc-
ument that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains noth-
ing that could fall directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available draw-
ing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without

111

markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title ei-
ther is precisely XYZ or contains XYZ in parentheses following text that translates XYZ
in another language. (Here XYZ stands for a specific section name mentioned below,
such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it
remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect
on the meaning of this License.

2. Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license no-
tice saying this License applies to the Document are reproduced in all copies, and that
you add no other conditions whatsoever to those of this License. You may not use tech-
nical measures to obstruct or control the reading or further copying of the copies you
make or distribute. However, you may accept compensation in exchange for copies. If
you distribute a large enough number of copies you must also follow the conditions in
section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. Copying in quantity

112

If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free of added mate-
rial. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after the last
time you distribute an Opaque copy (directly or through your agents or retailers) of
that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. Modifications

You may copy and distribute a Modified Version of the Document under the condi-
tions of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

113

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed in
the “History” section. You may omit a network location for a work that was pub-
lished at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Ti-
tle of the section, and preserve in the section all the substance and tone of each of
the contributor acknowledgements and/or dedications given therein.

114

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties–for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this License give permis-
sion to use their names for publicity for or to assert or imply endorsement of any Mod-
ified Version.

5. Combining documents

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,

115

unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identi-
cal Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements”.

6. Collections of documents

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various doc-
uments with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. Aggregation with independent works

A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium, is
called an “aggregate” if the copyright resulting from the compilation is not used to
limit the legal rights of the compilation’s users beyond what the individual works per-
mit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Docu-
ment.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Document’s
Cover Texts may be placed on covers that bracket the Document within the aggregate,

116

or the electronic equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.

8. Translation

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and all the license no-
tices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices
and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
“History”, the requirement (section 4) to Preserve its Title (section 1) will typically re-
quire changing the actual title.

9. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or dis-
tribute the Document is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. Future revisions of this license

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

117

	Introduction
	Fluid Flow Simulations
	Lattice Boltzmann Methods
	The OpenLB Project
	What is OpenLB?
	Getting help with OpenLB
	Compiling OpenLB programs
	Which features are currently implemented?
	Project Participants

	Using OpenLB for Applications
	Lesson 1: Getting Started - Sketch of Application
	Lesson 2: Understand the BlockLattice
	Lesson 3: Define and use boundary conditions
	Lesson 4: Converter - Lattice and Physical Units
	Lesson 5: Extract data from a simulation
	Lesson 6: Convergence Check
	Lesson 7: Use an external force
	Lesson 8: Understand genericity in OpenLB
	Lesson 9: Use checkpointing for long duration simulations
	Lesson 10: Save memory when domain boundaries are irregular
	Lesson 11: Run your programs on a parallel machine

	Install Dependencies
	Linux
	Mac
	Windows

	Geometry
	Creating a Geometry
	Setting Material Numbers
	Building Geometry by Geometric Primitives
	Excursion: Creating STL-files

	Lattice Boltzmann Models and Core Data Structures
	Concept - Data Organization
	Cell - BlockLattice - SuperLattice
	Descriptor
	Dynamics

	Classic BGK Model
	MRT Model
	Porous Media Model
	Power Law Model
	External Force
	Multiphysics Couplings
	The Shan-Chen Model
	Implementation of Shan-Chen Two-phase Fluid
	Implementation of Shan-Chen Two-component Fluid
	Thermal Fluid with Boussinesq Approximation

	Advection Diffusion Equation
	Particle Flows as Advection Diffusion Problem

	Discrete Particle Method
	Structure of the Particles Systems
	Interpolation of fluid velocity
	The class SuperParticleSystem3D
	Implementation of the communication optimal strategy
	Shadow Particles

	Input / Output
	Output Data Structure
	Write Simulation Data to VTK File Format
	Write Images Instantaneously
	Gnuplot Interface
	Console Output
	Read and write STL files
	XML Parameter Files

	Visualization with Paraview
	Clip
	Glyph
	Stream Tracer
	Transform

	Functors – A General Concept For Input and Output of Data
	Basic Functor Types
	GenericF
	AnalyticalF
	IndicatorF
	SmoothIndicatorF
	BlockLatticeF/SuperLatticeF
	InterpolationF

	Application of Functors
	Extract Simulation Data
	Define Analytic Functions
	Interpolation
	Arithmetic and Advanced Functor Usage
	Setting Boundary Value
	Flux Functor

	Functor Arithmetic

	Parallel Program Execution
	Data-Parallel Structures
	Duplicated Data Types

	The Example Programs
	aorta3d
	bifurcation3d
	Euler – Euler
	Euler – Lagrange

	bstep2d and bstep3d
	cavity2d and cavity3d
	cylinder2d and cylinder3d
	power law
	multiComponent2d and multiComponent3d
	nozzle3d
	phaseSeparation2d and phaseSeparation3d
	poiseuille2d
	tgv3d
	thermal2d and thermal3d
	venturi3d

	License

