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Abstract: Portable spectroscopic instruments are an interesting alternative for in-field and on-line 
measurements. However, the practical implementation of visible-near infrared (VIS-NIR) portable 
sensors in the forest sector is challenging due to operation in harsh environmental conditions and 
natural variability of wood itself. The objective of this work was to use spectroscopic methods as an 
alternative to visual grading of wood quality. Three portable spectrometers covering visible and 
near infrared range were used for the detection of selected naturally occurring wood defects, such 
as knots, decay, resin pockets and reaction wood. Measurements were performed on wooden discs 
collected during the harvesting process, without any conditioning or sample preparation. Two 
prototype instruments were developed by integrating commercially available micro-electro-
mechanical systems with for-purpose selected lenses and light source. The prototype modules of 
spectrometers were driven by an Arduino controller. Data were transferred to the PC by USB serial 
port. Performance of all tested instruments was confronted by two discriminant methods. The best 
performing was the microNIR instrument, even though the performance of custom prototypes was 
also satisfactory. This work was an essential part of practical implementation of VIS-NIR 
spectroscopy for automatic grading of logs directly in the forest. Prototype low-cost spectrometers 
described here formed the basis for development of a prototype hyperspectral imaging solution 
tested during harvesting of trees within the frame of a practical demonstration in mountain forests. 

Keywords: NIR spectroscopy; wood defects; portable instruments; in-filed measurement 
 

1. Introduction 

Wood log grading is an action used to determine a set of characteristics regarding wood quality 
that are later used by forest resources managers, traders and manufacturers. Overall log quality and 
prospective end use have a major influence on the log’s economic value. The grader’s challenge is to 
properly assess all visible characteristics of each log, including the log’s geometry and 
presence/location of defects. Subsequently, the expert can identify the quality class corresponding to 
such a unique set of characteristics. Strict following of clearly defined assessment procedures as well 
as an objective grading verdict corresponding to established grading rules must be guaranteed along 
the whole inspection process [1]. Consequently, the role of the expert grader is to assure proper 
assessment and, particularly, determine the log’s gross dimensions to estimate what portion of the 
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log is available to produce a given product and evaluate the quality of the product that could be 
produced from the log. 

The procedure for log quality grading is formalized and described in dedicated standards (e.g., 
EN 1309, EN 1316) or established as commonly recognized procedures [2]. Grading results in a 
quality class, typically A, B, C or D, with the first considered as superior. In that case, a trained expert 
visually detects all wood imperfections or defects as well as manually measures log dimensions and 
geometrical features. Commercial value of the resource is determined after combining all the 
available information into the unique quality grade. An important limitation of this approach is that 
it relies on visual assessment by a person, which, from its nature, is subjective and of limited 
reliability/repeatability. Industries, therefore, wish to adopt more objective methodologies for 
resource quality determination by integrating sensors and novel descriptors of the quality, better 
adjusted to specific needs of the value chain players [3]. 

Wood defects are abnormalities or irregularities found in wood that may be responsible for 
reducing wood strength, durability, appearance and, as a consequence, its economic value. Defects 
investigated in this work were related to the natural growth of trees, which has an effect on 
development of wooden tissue during tree lifetime under certain environmental conditions and 
influences. Recently used methods rely on visual rating, which is subjective, operator-dependent, 
time-consuming and not precise. Therefore, it is desired that grading should be conducted by means 
of automatic assessment to assure a faster, more reproducible and reliable way of quality sorting. 

Near infrared (NIR) spectroscopy has great potential for wood quality evaluation [4,5], mapping 
of wood properties [6,7] and mechanical properties estimation [8]. However, its practical application 
in field/forest is challenging [9–11]. Portable NIR instruments were successfully used in the field for 
tree breeding [12–14], prediction of tracheid length [15], assessment of wood and fiber properties in 
standing mountain pine beetle-attacked trees [16], wood species recognition [17], wood moisture 
content prediction [18] and estimation of leaf quality [19]. However, until now, only a few 
applications have been implemented in real-world wood processing industries, mostly for on-line 
sorting of wooden products and quality control of production [20–22]. 

Vibrational spectroscopy techniques are well suited to be used as portable or handheld due to 
their speed, selectivity, simplicity and no need for samples preparation [23]. Recent hardware 
development, combined with a miniaturizing trend in highly performing sensors and accessories, 
has enabled the development of state-of-the-art portable NIR equipment dedicated for forest/wood 
industries. Such instruments should operate in harsh environments with due precision, reliability 
and accuracy. Relatively fast measurement time, lightweight and ergonomic design, intuitive user 
interface and absence of moving parts makes such equipment an interesting alternative for in-field 
and on-line measurements [24–26]. 

The overall objective of this work was to use spectroscopic methods as an alternative to visual 
grading usually performed while assessing wood quality. Sensors were intended both for manual 
use and installation on timber processor heads, making possible an automatic grading of logs during 
their production in the forest or at the roadside. For that reason, an original solution for a low-cost 
and portable spectroscopic instrument capable of automatic detection of selected wood defects was 
built and examined. 

2. Materials and Methods 

2.1. Sample Collection 

Twenty-five wood discs of Norway spruce (Picea abies L. Karst) cut from trees of diameters 
between 100 and 400 mm were collected in Forchtenstein (Burgenland, Austria) in the spring of 2015. 
Directly after sampling, all samples were wrapped in aluminum and plastic foil, frozen and stored at 
−21 °C in order to avoid wood drying and/or biological degradation. Laboratory measurements of 
the defrosted samples were performed at a surface temperature of approximately 15 °C, without any 
additional sample conditioning or surface preparation. The target set of researched logs contained 
several wood defects frequently present in naturally grown trees, such as resin pockets, compression 
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wood, knots and decay. Some examples of the experimental samples and diverse wood deficiencies 
identified on the disks’ surface are shown in Figure 1. In addition to defected samples, a set of optimal 
quality wooden disks (containing normal wood tissue and bark) was collected in order to allow direct 
comparison between diverse quality classes. As a result, it was possible to measure spectra of at least 
36 independent replicas for each defect. 

 

Figure 1. Experimental samples in a form of wooden disks containing diverse wood defects as used 
for spectroscopic measurements. 

2.2. Spectroscopic Measurements 

Three portable spectrometers covering different spectral ranges were selected for testing. A 
summary of technical characteristics is presented in Table 1 and Figure 2. 

The commercially available sensor MicroNIR Pro 1700 produced by VIAVI (Santa Barbara, CA, 
USA) was used for both laboratory and in-field measurements. The sensor is compact and includes 
all components (linear variable filter, CCD detector, light source and processing unit) integrated 
within a single easy-to-handle assembly. The sensor was connected to a portable laptop computer by 
USB cable and did not require any additional electric power supply. Spectra were acquired with a 
scanning frequency of 80 Hz allowing 12.5 ms of the integration time. The effective spectral range 
covered by the senor was 950–1650 nm (10,526–6060 cm−1), with the extreme parts of the spectra 
excluded due to the low signal-to-noise ratio. A custom software for data acquisition and post-
processing was developed in LabView by integrating tools available in the Software Development 
Kit. 

Table 1. Basic characteristic of tested spectrometers. 

 Bruker MPA MicroNIR Pro 
1700 

Hamamatsu NIR 
C11708MA 

Hamamatsu VIS 
C12666MA 

sensor 
technology 

FT (Fourier 
Transform) 

Linear Variable 
Filter 

MEMS micro-
electro-

mechanical 
systems 

MEMS micro-
electro-

mechanical 
systems 
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range (nm) 833–2500 950–1650 640–1050 340–780 
resolution (nm) 0.8 6.2 20 15 

weight (g) 15,000 64 9 5 
portable no yes yes yes 

instrument 
available on the 

market 
yes yes no no 

measurement 
time (s) for a 

single spectrum 
30 0.05–0.5 0.05–0.5 0.05–0.5 

 

 

Figure 2. Absorbance spectra measured on the wood surface by different instruments evaluated. 

In addition, Hamamatsu C12880MA and C11708MA (Hamamatsu City, Japan) micro-
spectrometers were identified as low-cost instruments potentially useful for measuring experimental 
samples. Both sensors cover different spectral ranges, including 340–780 nm (29,411–12,820 cm−1) and 
640–1050 nm (15,625–9524 cm−1) for HamamatsuVIS (C12880MA) and HamamatsuNIR (C11708MA), 
respectively. The commercially available hardware included only a spectrometer module integrating 
optical and electronic components assembled together in a compact and resistant box. It was 
necessary, therefore, to build fully functional instruments by adding focusing optics, illumination 
and signal processing units. Detailed description of the developed prototype instruments is 
presented in the following chapter. 

Portable instruments were compared with a benchmark FT-NIR MPA (Fourier Transform-Near 
infrared Multi-Purpose Analyzer) spectrometer produced by Bruker Optics (Ettlingen, Germany). 
Absorbance spectra were acquired by means of a fiber optic probe covering the measurement area of 
10 mm2. The spectral range of the FT-NIR instrument was 1000–2380 nm (10,000–4200 cm−1) and the 
zerofilling factor was 2. Fifty scans per spectrum were collected with a resolution of 8 cm–1. Spectra 
acquired by FT-NIR instrument were averaged to minimize natural variability due to anatomical 
alterations within investigated wood samples. Therefore, these were used as model spectra related 
to specific wood defects in order to highlight physical-chemical differences as recorded by near 
infrared. 
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2.3. Prototypes Development 

The core of the first prototype sensor was micro-spectrometer Hamamatsu C11708MA, capable 
of measuring electromagnetic radiation in the near infrared spectral range with a spectral resolution 
of 20 nm. The sensor itself is compact (thumb size: 27.6 × 16.8 × 13 mm3) and light (weight: 9 g). 
However, it does not include any focusing optics nor built-in illumination. For that reason, one × 60 
Zoom Mini Phone Camera Lens Microscope Magnifier was installed in front of the spectrometer and 
a second lens in front of the illuminating bulb, as shown in Figure 3. The solution was cost-effective 
and allowed measurements at an optimal distance of D = 3 mm between lenses and the object surface. 

 
(a)                     (b)                      (c) 

Figure 3. Focusing optics used in prototype spectrometers (a), the lenses, spectrometer with 
illumination installed on the breadboard (b) and assembled instruments ready for measurements (c). 

Selection of the optimal illumination was the most challenging task and several light sources 
(including LED illuminators, halogen and fluorescence bulbs) were chosen for testing during the 
preparatory phase. Images of some evaluated bulbs as well as responses from the HamamatsuNIR 
spectrometer are presented in Figure 4. In this case, the spectra of the light reflected from the reference 
surface (Spectralon) are plotted together. Considering its compact size, sufficient light intensity and 
optimal coverage of the complete spectral band, bulb #3 was selected for integration within the 
prototype instrument. All parts, including spectrometer, optics, illumination and controller unit, 
were assembled together in a simple carton box protecting the optical system from external 
illuminations (Figure 3). 

A similar procedure was implemented for setting up the second sensor (Hamamatsu 
C12880MA), where identical light source (bulb #3) and focusing optics were integrated with the 
spectrometer. 

The electronic system used for controlling both spectrometers was developed on Arduino UNO 
microcontroller frames. The simplified wiring schema for connections is presented in Figure 5. The 
system worked properly in that configuration, even though it is recommended to add digital buffers 
for low power electronic circuits. The basic software code uploaded to the microcontroller internal 
memory is provided as Appendix A and B for Hamamatsu C11708MA and C12880MA, respectively. 
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Figure 4. Different sources of light tested for suitability in developed prototypes and the spectral 
response recorded by the Hamamatsu NIR C11708MA sensor. 

 
(a)                                            (b) 

Figure 5. Connection diagram of Hamamatsu C12880MA (a) and C11708MA (a) micro-spectrometers 
to the Arduino UNO microcontroller. 

Total cost of the hardware required for implementing the prototype in-field systems presented 
here varied from a few hundred (Hamamatsu sensors) to several thousands (MicroNIR sensor). 
However, additional resources should be considered when integrating these with a dedicated 
controller (instead of a laptop PC as used in this study) as well as all-weather cover and protection. 
Even then, overall investment to that solution is far less costly when compared to the corresponding 
laboratory equipment (Fourier transform infrared (FT-NIR)) and still provides a unique set of quality 
characteristics impossible to acquire with alternative technologies. 

2.4. Data Evaluation and Mining 

Two alternative classification methods, PLS-DA (Partial Least Square Discriminant Analysis) 
and SVMC (Support Vector Machine Classifier) were used for spectroscopic data post-processing. 
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PLS_Toolbox 8.0 (Eigenvector Research, Manson, WA, USA) and LabView 13 (National Instruments, 
Austin, TX, USA) were used as software platforms for spectral data analysis and the generation of 
chemometric models. The best configuration for the model was identified with the Model Optimizer 
software tool as part of the PLS_Toolbox package. Optimization included testing of all combinations 
for discrimination algorithms, principal components number, spectra pre-processing and selected 
ranges of spectra. Extended Multiplicative Scatter Correction (EMSC), spectra smoothing, first and 
second derivatives (Savitzky-Golay), as well as area normalization, were used as spectra pre-
processing routines. 

3. Results and Discussion 

3.1. Quality Parameters of Logs Detectable by NIR Spectroscopy 

Visual grading is the traditional method for determining log quality and is based on types, sizes 
and positions of physical characteristics that are not allowed for each quality class. A short 
description of wood defects downgrading Norway spruce log quality class is briefly summarized 
below. 

Knots are the portion of a branch or limb that has been surrounded by subsequent xylem grown 
during tree life. The size, type and distribution of knots have the most important impact on lumber 
mechanical resistance and are main considerations when applying grading rules. Knot size (usually 
diameter) is measured in centimeters. The severity of grain deflection caused by the knot is correlated 
with its size. The knot reduces lumber (log) quality when its diameter is >2 cm. The distribution of 
knots in logs depends on the tree species and position within the stem. It is also determined by the 
growth characteristics of the stand and the age of the tree among the others. 

Resin pockets are small discontinuities within the xylem that are filled with resin and wound 
tissue. They are usually occluded after some years of wood formation and tree growth. The 
occurrence of resin pockets is characteristic for softwoods possessing resin canals (such as Norway 
spruce) or trees exposed to stresses (animal/insect attacks, sites exposed to winds, etc.). The influence 
of resin pockets on the strength properties is insignificant; however, it downgrades visual appeal of 
products made from such wood and may result in continuous release of the resin on the wood surface 
when it is used for high-end finishing products (e.g., clear wood, windows, veneers). 

Compression wood is a type of defect that tends to form in conifers exposed to strong winds or 
trees growing on a slope. Compression wood is often characterized by a dense hard brittle grain and 
reacts to seasonal moisture changes. Properties of compression wood are considerably different from 
those in normal mature wood. Compression wood tracheids, for example, are about 30% shorter than 
normal and have higher microfibril angle. In addition, compression wood contains about 10% less 
cellulose and 8–9% more lignin and hemicelluloses than normal wood. These factors reduce the 
desirability of compression wood for pulp and paper manufacture. Compression wood not only 
yields less cellulose but produces low strength pulp. The general effects of compression wood on the 
performance of sawn timber are reduction in the strength, stiffness and dimensional stability, 
resulting in a decrease in yield of high-quality end products. Compression wood may cause problems 
in processing the log by exhibiting bow and spring in the manufactured product. 

Rot is caused by a variety of fungi that break down and digest wood chemical components. 
Fungi attack wood according to their specific enzymatic system. Brown-rot fungi have limited impact 
to lignin structure; however, they easily degrade polysaccharides. White-rot fungi have the capability 
to degrade mainly lignin structure but also carbohydrate wood cell components (cellulose and 
hemicellulose) [27]. Rot is the wood defect for which quality grade reduction is obligatory. Rot fungus 
enters the tree through a root, broken branch, damaged treetop or scar on the stem. Logs cut from 
older trees are suspected to contain more developed rot. The final stage of rot is a complete or 
extensive material loss forming internal cavities. 

Finally, bark, which is not a wood defect but the tree’s external protective layer, might be 
detected by spectroscopy. Bark tissues make up 10–20% of tree weight and consist of various 
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biopolymers, tannins, lignin, suberin, suberan and polysaccharides [28]. The wood/bark ratio is an 
important parameter that affects lumber yield [29]. 

3.2. Model Spectra of Wood and Wood Defects 

NIR spectrometers are highly suitable for assessment of heterogeneous organic matter, 
including living trees and wood [3,10,30]. The NIR spectrum contains information regarding both 
chemical composition and physical state of measured samples. The spectral peak position and its 
shape corresponds to the presence of specific functional groups possessing dipole momentum. The 
low frequency component of spectra (scatter) is related to the optical properties of the matter and 
highly depends on sample preparation and presentation. FT-NIR spectroscopy, as the most sensitive 
technique among those tested in this research, was selected to highlight effects of wood defects on 
the spectral fingerprint. Therefore, Figure 6 presents a second derivative spectra for all wood 
deficiencies investigated. The interpretation of spectra includes identification of spectral features 
differentiating its outline and assigning these according to the literature references [31,32] as 
summarized in Table 2. 

An unwanted effect of the derivatization process is that the signal-to-noise ratio decreases at 
higher orders of derivatives. It is a consequence of the discrimination effect and the fact that, by its 
nature, the noise contains the sharpest features in the spectrum. As a consequence, the bandwidth of 
noise corresponds to the interval of the spectral data used in the derivative calculation. The decrease 
in signal-to-noise ratio can be reduced by using smoothing properties of the Savitzky-Golay 
algorithm, even if a high degree of smoothing can distort the derivative spectrum [33]. 

Table 2. Band assignment characteristic for wood, according to Schwanninger et al. [31] and Vagnini 
et al. [32]. 

 Wavenumber 
(cm−1) 

Wavelength 
(nm) 

Wood Component Functional 
Group 

1 4198 2382 holocellulose CH 
2 4280 2336 cellulose CH, CH2 
3 4404 2270 cellulose, hemicellulose CH, CH2, OH, CO 
4 4620 2164 cellulose, hemicellulose OH, CH 
5 4890 2044 cellulose semicrystalline and crystalline OH, CH 
6 5219 1916 water OH  
7 5464 1830 cellulose semicrystalline and crystalline C=O 
8 5587 1790 cellulose semicrystalline and crystalline CH 
9 5700 1754 extractives CH2 

10 5800 1724 hemicellulose (furanose/pyranose) CH 
11 5812 1720 extractives CH2 
12 5883 1700 hemicellulose CH 
13 5909 1692 extractives CH 
14 5980 1672 lignin  CH 
15 6117 1635 extractives CH2 
16 6287 1590 cellulose crystalline OH 
17 6450 1550 cellulose crystalline OH 
18 6722 1487 cellulose semicrystalline OH 
19 6785 1474 cellulose OH 
20 7008 1426 amorphous cellulose/water OH 
21 7309 1368 aliphatic chains CH 
22 7344 1361 extractives CH 
23 7418 1348 aliphatic chains CH 

The most dissimilar spectrum was that corresponding to the resin pocket. Resin serves to protect 
the tree from dehydration and microbial attack and is typically composed of monoterpenes and resin 
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acids [34]. Resin pockets spectra contain unique spectral bands not present in other wood features 
(5700, 5812, 5909, 6117, 7344 cm−1). All of the above are assigned to -CH or -CH2 groups of aromatic 
and aliphatic chains in wood extractives [32]. Knots, compression wood and bark contain more lignin; 
therefore, their band at 5980 cm−1 is more profound as compared to the reference spectrum of normal 
wood. The model spectrum of decayed wood appeared to have similar shape to that of normal wood. 
However, it was noticed that the decay on the samples investigated was at the very early stage when 
degradation of woody polymers was still negligible. Therefore, it was problematic to assuredly assign 
specific decay type (white or brown rot) on the basis of FT-NIR spectra only. 

 
Figure 6. Model spectra of wood and wood defects detected by Fourier transform infrared (FT-NIR) 
instrument. 

3.3. Recognition of Wood Defects by Automatic Classification Methods 

Two alternative chemometric methods, PLS-DA and non-linear SVMC, were used for spectral 
data classification. Both methods belong to the group of supervised techniques and require complete 
information regarding the membership of each sample/measurement to a certain category. The 
algorithm is capable (after proper calibration) to classify a new/unknown sample into one of the pre-
defined classes on the basis of its spectral pattern [35]. 

PLS-DA is a multivariate inverse least-squares analysis method used to classify samples. It 
decomposes the spectra as linear combinations of principal components (PC) that express the major 
part of information contained in the overall dataset. The predictor variables or latent variables (LVs) 
are generated from the input variables to maximize the variance between sample classes in the model 
[36]. PLS-DA is widely used in the analysis of multivariate data. It helps to determine if groups of 
samples are distinct and identify all the spectral features that can describe the differences between 
groups. All these differences are expressed as model loadings or latent variables. An important 
advantage of PLS-DA is its availability to handle highly colinear and noisy data. Moreover, it 
provides a visual interpretation of a complex dataset through easily interpretable scores plots that 
highlight the differences between groups. 

SVM is a flexible method that makes no assumption regarding data. It is a nonlinear 
classification method that constructs a set of hyperplanes in a high or infinite dimensional space and 
a good separation is achieved by the hyperplane that has the largest distance to the nearest training 
data point of any class [36]. It works by obtaining the optimal boundary of two groups in a vector 
space independent of the probabilistic arrangements of vectors in the training set. When the linear 
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boundary in low dimension input space is not enough to separate two classes, SVM can create a 
hyperplane that allows linear separation in the higher dimension feature space [35]. Support Vector 
Machine is a supervised machine learning algorithm useful for solving both classification and 
regression problems. In this approach, data are presented in n-dimensional space, corresponding to 
the number of variables describing the data. In contrast to PLS-DA, SVM is not influenced by the 
distribution of diverse sample classes. The methods allow flexibility in the choice of kernel function 
that leads to the separation of two groups of samples by solving either linear or non-linear problems. 
An important limitation is that SVM does not provide interpretable model’s statistics, such as scores 
or loadings [37]. 

Results of the PLS-DA classification for MicroNIR and both prototype Hamamatsu sensors are 
presented in Figure 7 in a form of the confusion table. All columns located on the diagonal running 
from bottom left to top right (excluding unsigned row) correspond to the properly identified samples. 
In that case, the spectra of a given defect was identified as a member of the class describing exactly 
such defect. Therefore, it is desired that the optimal discrimination model results in majority of 
validation samples appearing on the diagonal of the confusion table. All the other spectra (not laying 
on the table diagonal) are considered as undesirable or wrong classifications. The case when normal 
wood is identified as defect is defined as false negative, in contrast to false positive when deficient 
wood as identified as normal. A convenient numerical quantifier of the discrimination model 
accuracy is the success rate (SR) computed as a percent ratio of the correctly classified to total number 
of samples. It has to be noted that more than 1800 independent spectra were used for the models 
development, considering 66% of spectra used for calibration and 34% for independent data set 
validation. 

 
Figure 7. Automatic identification of defects on wood samples with Partial Least Squares discriminant 
analysis (PLSDA) (SR—success rate). 

The PLS-DA model capably fit the microNIR spectral data and only five lateral variables 
(explaining 95.4% of the variance) were enough to reduce the cross-validation error of prediction 
below 15%. The outline of loadings (variables) is presented in Figure 8, where all the spectral features 
allowing proper samples differentiation can be identified. The classification decision was taken by 
the system considering two alternative approaches. The first algorithm identifies the class 
considering the highest value of the affinity probability among the all confronted classes. In that case, 
all samples are assigned to only one class and none belongs to the “unsigned.” The second algorithm 
confronts the PLS model results with a predefined threshold. The sample is assigned to a given class 
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if it passes the threshold; otherwise, it is considered as “unsigned.” The second algorithm is more 
reliable but also very sensitive to minor disturbances within the source spectra. For that reason, in 
case of real-word implementation of the discrimination of wood defects, the “Prediction Most 
Probable” approach is recommended. It is clear that the best performance of wood defects 
discrimination was by modeling spectra acquired with microNIR spectrometer (success rate SR = 
91%). However, low-cost prototype sensors were also capable of properly identifying wood defects, 
even though the success rates were lower (58% and 74% for Hamamatsu VIS and NIR, respectively). 
The most problematic was the differentiation between knots and reaction wood. This was due to 
several physical-chemical similarities between both defects and also limited spatial 
resolution/accuracy of prototype spectrometers. The high number of unsigned samples identified 
with “Prediction Strict” algorithm highlights the drawback of this method and confirms the high 
similarities between spectra obtained on the wood surface. 

 
(a)                           (b)                           (c) 

Figure 8. First four loadings (lateral variables LV) for PLSDA models of wood defects as obtained for 
HamamatsuVIS (a), HamamatsuNIR (b) and microNIR (c). 

The greatest advantage of PLS-DA is a possibility for the model interpretation by means of 
loadings. However, the practical implementation may not be optimal as not all the variance within 
source data may be represented by a limited number of principal components. Therefore, it is 
frequently applied to use machine learning algorithms for data representation and identification. 
Support Vector Machine is one of these routinely used tools for spectral data processing and was, 
therefore, implemented to assess the identical data set as in PLS-DA. Confusion tables for resulting 
SVMC models obtained are presented in Figure 9, assuming both classification rules. The success rate 
for all sensors is evidently higher than those obtained with PLS-DA. Only a few samples were 
misclassified, mostly in the case of Hamamatsu NIR and resin mixed with normal wood. The 
performance of the microNIR sensor was nearly faultless even if implementing “Prediction Strict” 
rule for classification. The number of unsigned samples was considerably lowered for both 
Hamamatsu prototype sensors. It was assumed, therefore, that the overall performance of the SVMC 
was superior to PLS-DA. Unfortunately, no direct interpretation of the model was possible and only 
the independent validation was proof of the model reliability. 
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Figure 9. Automatic identification of defects on wood samples with Support Vector Machine (SVM) 
classification. 

4. Conclusions and Practical Recommendations Regarding the Implementation of the (Prototype) 
Sensors for Wood Defects Detection 

Portable spectroscopic instruments are an interesting alternative to laboratory equipment, 
allowing fast and reliable measurements for chemical/physical properties of materials. In this work, 
one commercially available and two self-constructed prototype instruments were tested with the 
purpose of wood defects discrimination. The performance of all spectrometers was compared by 
means of PLS-DA and SVMC methods. 

The most convenient place to measure spectra with sensors developed in this research is on the 
cross section of logs after tree felling or on the pile of stored logs. Utilization of spectrometers to asses 
log sides is problematic as the bark layer prevents light from accessing the log’s interior. The only 
information available to scrutinize are traces of knots appearing on the side of the log visible over the 
bark layer. Even if determination of the log’s quality by assessing its cross section may be considered 
as limited, it can provide an enormous possibility to improve the state-of-the-art in quality grading 
and managing of value chains. The functionality of the proposed low-cost spectroscopic system can 
be extended to predict chemical composition of wood polymers as well as its distribution (map) over 
the log section or whole volume. It can lead toward development of new methodologies where raw 
resources are optimally destinated to down-stream conversion following the paradigm of “proper 
wood resources for proper use”. 

The up-to-date results and experiences highlight the MicroNIR sensor as a superior technique 
for fast and automatic discrimination of wood deficiencies. It is especially advantageous as it is a 
compact system integrating all optical and electronic components. It allows minimization of electrical 
noises and, therefore, increases overall signal-to-noise ratio. An important drawback of this solution 
is its relatively high cost, especially when considering the use of an array of sensors for better spatially 
defined analysis in-field or on-line. The prototype low-cost sensors, therefore, may be a good 
alternative, allowing further customization of the technical solution and, consequently, improvement 
of the system’s performance. Both, hardware assembly and necessary software, are rather simple for 
implementation, offering a wide range of possibilities for the sensor’s fit-to-purpose design. 

An important issue is proper spatial calibration of the hardware. The field of view is controlled 
in our solution by adjusting the focusing optics and distance between the lenses and measured 
surface. However, the depth of field for microscopic lenses is very narrow, resulting in likely blurring 
of the image and reduction of light quality reaching the spectrometer. It is especially significant when 
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evaluating wooden disks having excessive surface roughness resulting from log cutting with a chain 
saw. 

As a rule of thumb, it is necessary to assure sufficiently frequent white and black reference 
calibration of the sensor while working with portable equipment. This is due to the fact that resulting 
spectra is highly affected by the sensors and surface temperatures recurrently changing when 
operating in-field. Previous studies [38,39] reported that temperature variations degrade the quality 
of agri-food products assessment models. Similarly, effect of temperature on NIR spectra in solid 
wood samples of Norway spruce or OSB boards was studied by References [40,41]. They observed 
that with temperature increases, the two main hydroxyl absorbance bands at approximately 1450 and 
1930 nm shifted by about 0.4 nm·°C−1 towards shorter wavelengths. More pronounced shift was 
noticed for heartwood due to higher moisture content in the sapwood. Ice crystals on wooden 
surfaces cause light scattering when sample temperature is below 0 °C. Consequently, it was 
recommended that the temperature should be taken into account in order to correctly predict 
moisture content, especially if it fluctuates around 0 °C [42]. The practical solution to compensate 
effect of temperature variation on the detector, measured object or ambience is a frequent 
measurement of dark and white references. This routine was also implemented in the presented 
research. 

Work reported here was an essential part of the research project related to practical 
implementation of NIR spectroscopy for automatic grading of logs directly in the forest [43]. 
Extensive screening tests presented here resulted in development of a prototype hyperspectral 
imaging solution containing an array of sixteen micro-spectrometers simultaneously acquiring 
spatially resolved spectra from the surface of wood samples. All the instruments presented were also 
tested during real operation conditions while harvesting trees directly in the forest. 

All the data used to support the findings of this study are available from the corresponding 
author upon request. The software codes used to program Arduino controllers are included as 
Appendix A and Appendix B. 
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Appendix A. Arduino Code for Hamamatsu C11708MA Micro-Spectrometer 

 

Figure 1. Timing chart for signal input and output for micro-spectrometer Hamamatsu C12880MA 
(source: https://www.hamamatsu.com/resources/pdf/ssd/c10988ma-01_etc_kacc1169e.pdf). 

//This code is inspired by the sketch from Peter Jansen https://github.com/tricorderproject/arducordermini 
//it follows the timing chart defined in the official datasheet documentation downloadable from 
https://www.hamamatsu.com/resources/pdf/ssd/c10988ma-01_etc_kacc1169e.pdf 
 
//DEFINITION OF PINS 
// 5V: pin 9 
// GND: pin 2 
#define SPEC_GAIN         A0   //pin 6 
#define SPEC_ST            A1   //pin 4 
#define SPEC_CLK          A2   //pin 1  
#define SPEC_VIDEO       A3   //pin 10 
#define SPEC_CHANNELS    256 
uint16_t data[SPEC_CHANNELS]; 
 
void setup() { 
pinMode(SPEC_GAIN, OUTPUT); 
pinMode(SPEC_ST, OUTPUT); 
pinMode(SPEC_CLK, OUTPUT); 
digitalWrite(SPEC_ST, HIGH); 
digitalWrite(SPEC_CLK, HIGH); 
digitalWrite(SPEC_GAIN, LOW); //High Gain 
Serial.begin(115200); 
} 
 
void readSpectrometer() 
{ 
int delay_time = 1;     // delay per half clock (in microseconds) ultimately controls the integration time 
int idx = 0; 
int read_time = 1; 
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int intTime = 100;  
int accumulateMode = false; 
int i; 
 
// STEP 1: START LEADING CLOCK PULSES 
for (int i = 0; i < SPEC_CHANNELS; i++) { 
digitalWrite(SPEC_CLK, LOW); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, HIGH); 
delayMicroseconds(delay_time); 
} 
// STEP 2: SEND START PULSE TO SIGNAL START OF INTEGRATION/LIGHT COLLECTION 
digitalWrite(SPEC_CLK, LOW); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, HIGH); 
digitalWrite(SPEC_ST, LOW); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, LOW); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, HIGH); 
digitalWrite(SPEC_ST, HIGH); 
delayMicroseconds(delay_time); 
// STEP 3: INTEGRATION TIME -- SAMPLE FOR A PERIOD OF TIME DETERMINED BY THE INTTIME PARAMETER 
int blockTime = delay_time * 8; 
long int numIntegrationBlocks = ((long)intTime * (long)1000) / (long)blockTime; 
for (int i = 0; i < numIntegrationBlocks; i++) { 
digitalWrite(SPEC_CLK, LOW); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, HIGH); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, LOW); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, HIGH); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, LOW); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, HIGH); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, LOW); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, HIGH); 
delayMicroseconds(delay_time); 
} 
// STEP 4: SEND START PULSE TO SIGNAL END OF INTEGRATION/LIGHT COLLECTION 
digitalWrite(SPEC_CLK, LOW); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, HIGH); 
digitalWrite(SPEC_ST, LOW); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, LOW); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, HIGH); 
digitalWrite(SPEC_ST, HIGH); 
delayMicroseconds(delay_time); 
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// STEP 5: READ DATA 2 (THIS IS THE ACTUAL READ, SINCE THE SPECTROMETER HAS NOW SAMPLED DATA) 
idx = 0; 
for (int i = 0; i < SPEC_CHANNELS; i++) { 
digitalWrite(SPEC_CLK, LOW); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, HIGH); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, LOW); 
if (accumulateMode == false) { 
data[idx] = analogRead(SPEC_VIDEO); 
} else { 
data[idx] += analogRead(SPEC_VIDEO); 
} 
idx += 1; 
if (delay_time > read_time) delayMicroseconds(delay_time - read_time); 
digitalWrite(SPEC_CLK, HIGH); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, LOW); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, HIGH); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, LOW); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, HIGH); 
delayMicroseconds(delay_time); 
} 
// STEP 6: TRAILING CLOCK PULSES 
for (int i = 0; i < SPEC_CHANNELS; i++) { 
digitalWrite(SPEC_CLK, LOW); 
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, HIGH); 
delayMicroseconds(delay_time); 
} 
} 
void print_data() 
{ 
for (int i = 0; i < SPEC_CHANNELS; i++)  
{ 
//SENDING DATA ACQUIRED FROM SENSOR TO THE SERIAL PORT  
Serial.print(data[i]); 
Serial.print(','); 
} 
Serial.print("\n"); 
} 
 
void loop()  
{ 
readSpectrometer(); 
print_data(); 
delay(10);  
} 
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Appendix B. Arduino Code for Hamamatsu C12880MA Micro-Spectrometer 

 

Figure A2. Timing chart for signal input and output for micro-spectrometer Hamamatsu C12880MA 
(source: https://www.hamamatsu.com/resources/pdf/ssd/c12880ma_kacc1226e.pdf). 

//This code is implementation of the timing chart defined in the official datasheet documentation downloadable from 
https://www.hamamatsu.com/resources/pdf/ssd/c12880ma_kacc1226e.pdf 
 
//DEFINITION OF PINS 
// +5V: pin 1 and pin 3 
// GND: pin 2 
 
#define SPEC_ST          A1   //pin 6 
#define SPEC_CLK         A2   //pin 4 
#define SPEC_VIDEO       A3   //pin 10 
#define SPEC_EOS         A4   //pin 9 
#define SPEC_TRG         A5   //pin 7 
#define SPEC_CHANNELS    381 // is same as number of cycles: integration time + 375 
uint16_t data[SPEC_CHANNELS]; 
 
void setup()  
{ 
pinMode(SPEC_ST, OUTPUT); 
pinMode(SPEC_CLK, OUTPUT); 
int integrationTime = 6;   //minimum integration time is 6  
int thpST = 54;            //integration time + 48 
int numberCycles = 381;    // integrationTime+375  
Serial.begin(230400);  
} 
 
void loop() 
{ 
//SETTING OF INTEGRATION TIME: CHANGE THIS VALUE IF THE SIGNAL IS SATURATED 
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int delay_time = 5;      
int idx = 0; 
int i; 
for (int i = 0; i < 381; i++) { 
digitalWrite(SPEC_CLK, LOW); 
if (i < 54)  
{  digitalWrite(SPEC_ST, HIGH);  } 
else 
{ digitalWrite(SPEC_ST, LOW);  } 
//SENDING DATA ACQUIRED FROM SENSOR TO THE SERIAL PORT  
Serial.print(analogRead(SPEC_VIDEO));  
Serial.print(',');    
delayMicroseconds(delay_time); 
digitalWrite(SPEC_CLK, HIGH); 
delayMicroseconds(delay_time); 
} 
Serial.print("\n"); 
} 
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