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ABSTRACT

This paper describes a method for obtaining a reliable 3D
reconstruction of close-range objects by properly
combining edge- and area-based matching techniques. The
adopted acquisition system is a set of three calibrated low-
cost CCD cameras. By using an accurate camera model
and camera calibration, the method is capable of working
with any camera setup. The proposed technique has been
tested on some real scenes with encouraging results. Some
of these experimental results are presented here.

INTRODUCTION

Measurement and reconstruction of close-range object
surfaces is more and more often done in an automatic way
by means of multi-camera systems, through detection,
matching and back-projection of image features.

A class of image features that is very often used for stereo
matching is that of luminance edges. Image edges are
particularly suitable for 3-D reconstruction because of the
intrinsic precision and reliability of their localization on
the image [3]. Luminance edges, however, can only
provide us with sparse sets of 3-D points, as they are
concentrated where the object surface is jagged or highly
textured. For this reason, a different approach, in which
the luminance profile of small image patches is used as
image feature (area-based approach), can be usefully
employed in correspondence to image regions where the
luminance profiles are smooth. This approach, however,
suffers from perspective and radiometric distortion between
the different camera viewpoints.

In this paper an area-based matching technique which
takes into account for both the above distortions is
proposed and described. Through this technique it is
possible to estimate both 3-D position and local surface
orientation of a scene detail, starting from the luminance
patch that corresponds to its projection in one of the
images. As this estimation is an intrinsically ill-
conditioned operation, it is necessary to provide the
algorithm with an accurate “first guess™ of the 3-D position
to be determined. Hence, the proposed reconstruction
algorithm works as follows: first edge-based reconstruction
is performed and the 3-D coordinates of luminance edges
are determined; then, a first reconstruction of the 3-D

scene shape is obtained through an appropriate 3-D surface
interpolation, starting from the 3-D edges. Surface
interpolation is performed by means of a modified version
of the thin-plate spline algorithm (D.S.I. [2]). This choice
allows us to cope with depth discontinuities, that always
occur at object borders. The surface we obtain can thus be
used as "first guess" for area-based reconstruction. The
shape of the interpolated surface will, in fact, be refined
through the insertion of new 3-D points.

The paper is organized as follows: in the next Section, a
brief description of the adopted camera model is reported.
After that, Sections 3 and 4 are devoted to the description
of the edge- and area-based reconstruction techniques. The
performance of the proposed multi-approach algorithm has
been evaluated by employing it in the analysis of several
real scenes, acquired with a three-camera system. Some of
the obtained results are described in Section 5.

Fig. 1. The adopted camera model.

THE CAMERA MODEL

What it is normally meant with camera model consists of
the set of mathematical relationships that relate the
position of a point in the three-dimensional space imaged
by the camera to the projection of that point on the image
plane. The scheme of the adopted camera model is shown
in Fig. 1, where three reference frames are visible: the
world reference frame, attached to the imaged scene; the
camera reference frame, attached to the camera, and the
image reference frame, where the axes are attached to the
digital image.

The equations of the camera model define a mapping of a
generic point P of world-coordinates Py,=(Xy, Yy, Zy) into



the 2D coordinates (xg, vy of its projection on the image
plane. These equations are:
a) Change of reference frame, from world- to camera-
coordinates
Pcam = R U)W + T’

R being the rotation matrix and T the translation vector.
b) Perspective projection of a scene point to the image
plane (the center of projection is the center of the lens and
the projection plane is the camera CCD sensor):

pu = Pcam Eé

cam

¢) Lens distortion shift of the image point p,,, predicted via
perspective projection, to the actual position p; When
standard-resolution CCD cameras are being used, only the
radial component of distortion is normally considered.
Radial distortion is usually approximated by a power
series:

r,=r 4k B+ )+,

This series can be generally truncated at the fifth order
(only the first two coefficients are used) as the residual
error results as being far below 1 pixel [1].
d) Change of coordinate frame from camera-coordinates
pi~(Xayaq). to image-coordinates p~(xsyy).

X
x,=Cyp +-0 %:Q+%;

X Y
dy and d, being the horizontal and vertical size of an image
pixel, respectively, and (C..C,) the image-coordinates of
the optical center OC, which is the intersection between
the optical axis and the image plane. As we can see from
the above description, the camera model is completely
specified by a set of camera parameters. All these
parameters are estimated through an appropriate
calibration procedure, that we have developed as an
improvement of Tsai’s algorithm [1]. More precisely,
Tsai’s algorithm is first applied to a simpler camera model,
in order to provide a first estimation of most of the
parameters. A refinement of all parameters is then carried
out, through a nonlinear parametric estimation procedure
based on the minimization of the error between the actual
image position of a set of known reference points and the
position predicted by the estimated model [1,5].

THE EDGE-BASED APPROACH

After the acquisition of an image triplet of the considered
object, all significant edges are detected by means of a
modified version of Canny’s method [4]. After detection,
edge selection is performed on each image, in order to
preserve only those edges that are likely to correspond to
significant features of the scene objects. The relevance of
each edge is, in fact, quantified on the basis of its length (a
minimal length is set as a threshold) and its shape. The
selected edges are then labeled and divided into chains of

small segments. For each one of these segments, the stereo-
corresponding edges on the other two images are searched
for through an appropriate procedure.

Notice that, because of the lens distortion, which is
included in the camera model, the epipolar lines are no
longer straight. Consequently, for each edge point we need
to determine the “distorted” epipolar line on each one of
the other two images. The search for an homologous edge
is thus performed in the epipolar space, represented by
these curves. Using three cameras allows us to select the
best pair of views for a specific edge sterco-correspondence
and validate it through a check on the third view.
Congruence rules on the 3-D back-projections of each
element are used for reducing the risk of errors and solving
for possible ambiguities.

The output of the search algorithm (which is applied
starting from each one of the 3 images) is a set of matched
triplets of edge points, each one belonging to one image.
This information is analyzed by an edge matching
algorithm, whose aim is to find the most likely set of
matched triplets of edges. In fact, due to a different edge
fragmentation in the three views, the algorithm must be
able to find correspondences between triplets of multiple
edges, as an edge in one image could correspond to several
edges in another one.

As final step, each triplet of edges is back-projected onto
the 3-D scene space. The accuracy of the backprojection
also benefits from the availability of a triplet of images as
each 3-D point is given by the point having minimum
distance from the visual rays of each perspective view.

SURFACE INTERPOLATION

The above-described algorithm, like any edge-based
approach, is usually capable of providing a 3-D set of
points of the scene that is typically quite accurate, but very
sparse. This fact may be mainly attributed to the fact that
only small portions of the scene surfaces usually contain
edges that are suitable for matching. In order to obtain a
denser depth map, it is thus necessary to interpolate the
depth information all over the scene. This could be done by
interpolating the depth map as a 2-D field, in each one of
the image planes [6]. Representing 3-D shapes as a 2D
perspective map, however, causes inconsistency problems,
particularly for camera geometry with non-parallel optical
axes. Alternatively, we may generate directly a 3-D surface
which passes through all the computed 3-D edges. Such a
surface would be an approximation of the shape of the
observed scene.

The depth function of a 3-D scene is characterized by
discontinuities at object boundaries and discontinuities in
its first derivative at object ridges. Inside an object surface,
the depth function is continuous and quite regular. We thus
need the interpolation algorithm to be able to generate
smooth surfaces anywhere except some special locations.
Such an interpolator, introduced by Mallet [2], it is known



as Discrete Smooth Interpolation (DSI), and is based on a
modification of the thin-plate spline algorithm. Its
capability of preserving discontinuities is obtained through
the specification of both local and global surface roughness
parameters, which account for the presence of
discontinuities in the neighborhood.

An optimized version of this interpolator has been
implemented and employed for the construction of a
surface that approximates the shape of the scene, from the
sole information coming from the 3-D edges. This surface
can be used as a starting point for the area-based shape
refinement method.

THE AREA-BASED APPROACH

Once the first 3D reconstruction is available, we can
proceed with its refinement through area-matching,. This
operation adds information in correspondence to smooth
image regions, where there are no edges to match.

The luminance patches used by most arca-matching
techniques are normally assumed to have the same shape
in all views [6]. It is quite clear, however, that this
hypothesis is acceptable only whenever the angles between
the viewing directions of the three cameras are not too
large, which is not our case. In order to be able to use area-
matching with strongly convergent cameras, we have
developed a generalized areca-matching technique which
takes into account perspective distortion of the patch
shape.

As a first step, a small region (reference patch) of one
image is back-projected onto the 3-D surface
approximating the scene. The 3-D surface is locally
approximated by a plane (see Fig. 2). The resulting 3D
patch is then reprojected onto the image planes of the other
two cameras, by taking into account projective and
radiometric distortion. The minimum of a similarity
function between synthetic re-projected patches and
corresponding patches of the actual images is searched for
as a function of the position and the local orientation of the
3-D planc of the patch. As already said before, the
employed search technique is dramatically speeded up by
the fact that we already have an initial 3-D reconstruction
of the object surface which greatly limits the search space.
A significant improvement in the performance of this
method has been obtained by introducing two extra
parameters in the re-projection of the luminance patches: a
gain and an offset factor. By doing so we take into account
the fact that the electrical characteristics of low-cost
cameras are not exactly the same and, at the same time, we
account for non-Lambertian behavior in the reflectivity of
surface patches (specular reflections). A single offset factor
is determined for each camera, while a different gain is
determined for each luminance patch during the matching
process.

If a reference patch produces reliable 3D information, it
can be used for refining the 3D surface reconstruction (see

approximat-
ing plane

Fig. 2. Back-projection of an image patch.

Fig. 4). Once all reference regions have been considered, a
new surface interpolation is carried out (see Fig. 5), with
improvements in areas corresponding to smooth surfaces.

EXPERIMENTAL RESULTS

Some experiments of 3-D scene reconstruction have been
carried out on several test scenes. The results presented
here concern the acquisition of the head of a dummy (fig. 3
shows one of the three views). In fig. 4 the global 3-D
information extracted from the three views is shown; the
dotted lines represent the extracted 3-D edges, while the
scattered points represent 3-D information obtained by the
area matching approach. Fig. 5 shows the reconstructed
surface, generated by the DSI algorithm, which has been
initialized with the 3-D edges and then refined with the 3D
data obtained with the area matching procedure. This
refinement leads to a significant improvement of the
quality of the final reconstruction, especially on the areas
corresponding to nose, chin and cheeks. In order to
evaluate the reconstruction quality for the generation of
virtual views, a synthetic view of the face of the dummy is
shown in Fig. 6 after texture mapping. The virtual
viewpoint is intentionally chosen to be very different from
that of the cameras.

CONCLUSIONS

In this paper, a 3-D reconstruction system that combines
edge- and arca-matching techniques has been presented.
Significant results have been obtained in the reconstruction
of several real scenes. Some tests of 3D measurements
accuracy have also been performed, considering simple and
well-known objects. An accuracy of approximately one part
per 10,000 has been reached.

Further research is being carried out in order to improve
the 3D reconstruction by using more than one trinocular



view. Furthermore, "shape from shading" techniques are
being developed in order to obtain 3D information from
specular reflections of the objects and to synthesize more
realistic virtual views.
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Fig. 5. Surface reconstruction from edge- and
area-matching.

Fig. 6. Virtual view of the head of the dummy.



