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Abstract. The V&V practices of safety-critical industries (e.g. avion-
ics) are currently based on either unit testing or unit proof to verify that
a function satisfies its low-level requirements in order to be compliant
with the highest certification levels [26] (e.g. DO-178C level A for avionic
software). In this context, the verification engineer must assess sufficient
coverage of both code (structural coverage) and specification (functional
coverage). However, there is no shared method for test and proof to
measure structural coverage. In practice, this prevents the verification
engineer from combining test and automatic proof to verify low-level re-
quirements of a common piece of code in order to mitigate the verification
cost. This paper fills this gap between test and proof by introducing a
new notion of verification coverage based on mutation coverage. It sub-
sumes functional coverage and structural coverage for both unit testing
and unit proof. Consequently, it allows the verification engineer to mix
test tools and automatic provers in the verification process for the sake of
reducing verification cost, in the sense that the more automation is used
during the verification, the less resource is spent to verify the program.
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1 Introduction

In software development of critical systems, the code verification step is crucial
since it prevents unexpected behaviors to arise during program execution. In
particular, the verification engineers must ensure that the program satisfies its
specifications. For this purpose, testing is the most commonly used technique to
reach the expected level of confidence. It consists in running the tested program
on some input data and comparing the expected results according to the given
oracles derived from the program specifications [28,32]. Program proof is another
suitable verification technique [9]. It consists in statically verifying the program
with respect to its specifications for all possible executions by means of logical
reasoning [17–19].

Whatever the underlying technique, one must ensure that enough verification
has been performed. This part of the verification process is usually performed
by measuring coverage, e.g. test coverage. For this purpose, the DO-178 stan-
dard for avionic software [29] introduces two processes: functional analysis and



structural analysis. The former guarantees that all the program specifications
are verified, while the latter guarantees that every path and every piece of code
in the program is reached and contributes to producing the expected results.

Functional analysis is independent from the verification technique. The ver-
ification of a function achieves full functional coverage as soon as one succeeds
to test or prove all the specifications [12,13], thus all program specifications are
verified. Structural analysis depends on the underlying verification technique.
For testing, it relies on various structural coverage criteria (statement coverage,
branch coverage, MC/DC coverage, etc.) [2] to ensure that executing a test suite
covers each path and/or piece of code in the right way. For program proof, struc-
tural analysis may be performed by fulfilling different objectives. For instance, in
DO-333 [30], one must ensure four objectives [10,26]: assumption coverage (each
proof assumption is checked); completeness (the specifications specify outputs
for every input condition and, conversely, input conditions for every output),
data-flow (all the dependencies between inputs and outputs are found) and ex-
traneous code (every piece of code depends on at least one specification). By
guaranteeing their objectives, we ensure that neither path nor piece of code
contributes to producing a result unexpected in any specification existed.

This current workflow has a major limitation: while test coverage on the one
hand and proof coverage on the other hand are well-known concepts, it is not
possible to use test coverage for proof and conversely. Test coverage can only
be used when testing the entire program with the oracle derived from program
specification, while proof coverage is only defined when all the program specifi-
cations are proved. Consequently, for a particular piece of code, it is not possible
to test some specifications while proving the others, because there is no way to
define the coverage of the combined verification.

Nowadays, during a proof campaign, the engineer relies on automated the-
orem provers in the hope to prove all program specifications and to ensure all
objectives defined in DO-333 [9]. Usually most proof obligations are automat-
ically discharged, but sometimes a few of them might not. In such a case, on
account of the above-mentioned limitation, the engineer may either manually
prove them and verify coverage through DO-333, or discard the proof campaign
and rely on testing as defined in DO-178. In both cases, the verification process
is much more expensive because it requires a lot of additional manual work.

This paper presents a new notion of verification coverage which aims at re-
ducing the verification cost by keeping the existing proofs and adding only the
necessary tests to complete the verification process. It subsumes functional cov-
erage and structural coverage for both test and proof. It also relies on a new
notion of witness that formalizes a verification activity and allows the verifica-
tion engineer to sum up which verification technique has been used to validate
that a particular piece of code contributes to enforcing some specifications. Fur-
thermore, we introduce a methodology and a companion algorithm that allow the
verification engineer to check whether a verification campaign is complete with
respect to this coverage.



The remainder of our paper is organized as follows. First, Section 2 discusses
related work. Then, Section 3 introduces a running example. Section 4 presents
the general idea of our work, which is then formalized in Section 5. Section 6
explains how to automatize as much as possible a verification campaign with
respect to our new verification coverage. Finally, Section 7 exemplifies our process
on the running example.

2 Related Work and Discussion

As previously mentioned, coverage is a major obstacle for combining test and
proof. Typically, it prevents us from complete a partial proof campaign by means
of testing. Several existing works already study different kinds of combinations
of testing and formal verification techniques [3, 8, 21, 33], but they do not deal
with the coverage issue. According to Bishop et al. [8], these combinations can be
divided into four levels described below. We aim at defining a notion of coverage
for the last two ones:

– Level 1 (Separately): test and proof are applied separately to verify different
parts of the system;

– Level 2 (Assistance): proof supports test or conversely;
– Level 3 (Friendship): proof contributes to the automated generation of tests

and their results are combined;
– Level 4 (Unification): test and proof are fully combined.

Our notion of coverage is based on existing notions of label coverage and
mutation coverage. Label coverage [5, 6] relies on labels. Labels are logical for-
mulae attached at program points. They can encode most structural coverage
criteria. Originally, they were used to automatically generate test suites that
satisfy a given structural criterion. Then, in [4], their usage has been extended
in order to detect unfeasible labels when combining program proof and abstract
interpretation. However, in these works, formal methods were only used for sup-
porting testing (level 2 above). In particular, structural coverage was still limited
to testing and cannot be applied to program proof. More recently, labels have
been extended to hyperlabels [23, 24] to enlarge the variety of criteria that can
be represented. We believe that our technique can be extended to hyperlabels,
but we leave this to future work.

Our work also relies on mutants (in the sense of [16,25]) to check our coverage
metrics. A mutant m of a program p is a program obtained by slightly modifying
p. Mutation testing consists in verifying that the outputs for p and m differ. In
that case, one says that the mutant m is killed. Mutation coverage is defined by
the number of killed mutants. Our work extends the usage of mutants to program
proof. Many different mutation schemes exist [1, 27] for various programming
languages. Our work relies on statement deletion to create mutants inspired by
Delamaro et al. [15]. But we also use other mutation operators like expression
modification when it is more beneficial than statement deletion. Our proposed
methodology is indeed independent from the underlying mutation schemes, but
they may lead to different results: the choice of the best mutation scheme for
a particular use case is let to the end-user. Mutation has also been explored



to propose a notion of coverage for model checking [11]. The model is mutated
and the model part is considered covered if the mutant survives. Their notion of
coverage does not apply to testing. However, it inspired our more general notion
of verification coverage.

3 Running Example

This section introduces a running example that illustrates current issues when
combining test and proof in order to verify a C function in the context of a
DO-178 certification.

Fig. 1 presents a scheme of a function transform The complete C code is
omitted for the sake of brevity This function is typical of reactive embedded
software: it computes an output signal from an input by a linear regression
depicted in Fig. 2. Here, all the values are bounded by an upper bound smax and
a lower bound smin. In C program, these bounds are global variables. The linear
regression also depends on parameters x1, x2, y1 and y2 that must satisfy the
following consistency constraints:

smin ≤ x1 < x2 ≤ smax and smin ≤ y1 ≤ smax and smin ≤ y2 ≤ smax.

Signals are implemented by a structure named Signal. Each Signal con-
tains a floating-point value in interval [smin,smax], and an error flag indicating
whether the constraints are satisfied. Parameters xi and yi (i = 1, 2) are passed
to the C function via another structure named Block. Furthermore, the function
returns 0 when the constraints are satisfied and an error code otherwise.

1 int transform (Block *p, Signal *input , Signal *output ){
2 // 1. verify block validity
3 // 2. modify the value of the output signal w.r.t. the input signal
4 // 3. set the error flag
5 }

Fig. 1: Scheme of function transform.

The verification objectives for this function are the informal requirements
defined in the spirit of DO-178. They may be formalized and split in four groups
of specification:

ERR 7 specifications defining the error code in case of invalid parameters.
OK 1 specification formalizing the result when the constraints are satisfied.
VALUE 3 specifications defining the expected value of the output signal.
VALID 1 specification controlling the error flag of the output signal.

The function has been implemented in C and formally specified in the ACSL
specification language [7]. Then, we tried to verify this code with Frama-C [20].
This framework has already been (successfully employed) for experimenting com-
binations of test and proof of C programs [22]. Here, E-ACSL [31], the runtime
verification plug-in of Frama-C, is first run to check that the C code satisfies
its formal ACSL specifications. For this purpose, we need to manually define at
least 10 test cases, 7 among them for testing all situations when the constraints
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Fig. 2: Linear regression for transformation.

are invalid and 3 other used to test the expected value of output signal when
the constraints are valid, to cover all the possible cases (or even more, depend-
ing on the chosen structural coverage criterion). Then, WP, the Frama-C plug-in
for deductive verification, was used to (automatically) prove this function. Yet,
one specification in group VALUE remained unproved because of floating-point
computations in the code. Consequently, neither test nor proof alone allows us
to complete the verification process with reasonable resource spent.

Careful code review allows us to argue that only a limited piece of code con-
tributed to the unproved properties. Therefore, the intuitive goal of our approach
is to complete the obtained proofs by adding only a few test cases that cover
the remaining code fragments and the unproved specifications. We also aim at
defining a notion of verification coverage for this use case.

4 Verification Campaign

This section provides additional details about the new kind of verification cam-
paigns combining test and proof that we propose.

4.1 Labeled Mutant

Our technique is independent from a particular structural coverage criterion by
relying on a notion of labels which can be used to encode most structural coverage
criteria [6]. Each label is a property associated to a program point and divides the
code source in two pieces that the below one is the corresponding code fragment
of label. A label is satisfied when a verification activity demonstrates that there
is an execution passing through this label and satisfying its associated property.
A structural coverage criterion holds if and only if all the labels for this criterion
are satisfied.



In order to gain additional results during a verification campaign, each label
is associated to a mutant that modifies the corresponding code fragment. Such a
mutant is named labeled mutant. Any method of mutation is possible whenever
it fulfills the following condition: the mutant shall only modify the executions
that pass the label.

In this paper, two kinds of mutation operators are used to generate labeled
mutants: the replace and erase operators. The former replaces a statement by
another one, while the latter removes it. Their formal definitions (omitted here)
inspired by [1] and fulfill the above-mentioned condition. Mainly, they consist
of introducing a conditional statement guarded by the labeled property. Fig. 3
provides an example of such mutations for a small piece of code from our running
example.

1 ....
2 if(p->y2 < smin){
3 // label Lreturn6:
4 // label condition: true;
5 // labeled mutant: replace (0) ;
6

7 // initial statement: return (-6);
8

9 // mutant created before simplify:
10 // if (1)
11 // then {return 0;}
12 // else {return -6;}
13

14 // mutant after simplify:
15 return 1 ? 0 : -6;
16 }
17 ....

(a) Replace

1 ....
2 if(x->v >= p->x2){
3 // label Lstmt2:
4 // label condition: true;
5 // labeled mutant: erase;
6

7 // initial statement: y->v = p->y2;
8

9 // mutant created before simplify:
10 // if (1)
11 // then {}
12 // else {y->v = p->y2;}
13

14 // mutant after simplify:
15 if (! (1)) {y->v = p->y2;}
16 }
17 ....

(b) Erase

Fig. 3: Example of labeled mutant.

Mutants are actually created for trying to kill them. Indeed, killing a mutant
means that the corresponding statement in the initial program was meaningful
for the checked criterion. Our method consists in finding out specifications that
are validated in the initial program but not any more in a mutant (i.e. the mutant
is killed by that specification) through various verification activities (inspired by
the definition of mutation testing [16, 25]). It allows us to conclude that the
mutated piece of code, denoted by a label, has a strong connection with these
specifications. Full coverage is therefore achieved by establishing such a strong
connection for each specification and piece of code corresponding to each label.

4.2 Verification Campaign

Our verification campaign assumes the existence of the source code, its spec-
ifications and labels encoding a particular structural coverage criterion. These
labels may actually be automatically generated [5]. A verification campaign con-
sists in a sequence of verification activities (either test or proof). Each of them
provides two pieces of information: verification information indicating which



specifications S is validated and coverage information indicating which labels
L are covered. These pieces of information are grouped together through the
notion of witness, as informally explained below.

Proof Activities. Automated deductive verification may provide verification in-
formation about the validity or the invalidity of each specification S. In our
context, invalidity of S means validity of its negation ¬S4. If S is validated in
the initial code, it means that no execution passing any label contradicts the
specification. This information is recorded through a proof witness between this
specification and every label. However, if S is validated / invalidated in a labeled
mutant (of label L), it means that S and L have no correlation at all (i.e. label
L is associated to a piece of code that no matter how we modify this piece,
specification S is still proved) / are strongly connected.

Consider our running example in which we successfully prove a specification
of ERR named error6. Therefore, for each label L, one proof witness is recorded
between error6 and L. Furthermore, the specification is still proved in labeled
mutant of label Lstmt2 (Fig. 3b) but it is invalidated in labeled mutants of label
Lreturn6 (Fig. 3a). Thus, we conclude that there is no correlation between spec-
ification error6 and label Lstmt2, while this specification and label Lreturn6
are strongly connected.

Test Activities. Testing a specification S requires to manually define test cases.
After defining them, testing the specification in source code and in mutants is
an automatic process that provides us with test witnesses between labels and
specifications. These witnesses are more precise than proof witnesses, since they
assess that the corresponding label is reached.

In our running example, a particular test case activates the specification
error6 (its assumptions are fulfilled). It also covers several statements, one of
them being the statement (a code fragment) associated to label Lreturn6. Yet,
the statement associated to label Lstmt2 is uncovered. Therefore, there is a test
witness for the pair (error6, Lreturn6), but none for the pair (error6, Lstmt2).

Error Detection. If a specification S is invalidated in the original source code
as a results of a verification activity, we get an error which is recorded as error
witness between S and all the existing labels.

Coverage Analysis. A specification S and a label L are strongly connected if
and only if there is one verification witness that validates the pair (S,L) in
the original source code and one witness that invalidates this pair in the corre-
sponding mutant. All the strong connections between specifications and labels
are stored in a coverage matrix. Its columns represent specifications, while its
rows represent labels. Fulfilling our verification coverage means positively filling
this matrix. Indeed, it means that all the specifications S are verified (ensuring
functional coverage), while all labels are covered (ensuring structural coverage).

The matrix may be quite large. Thus, analyzing it may be painful. Con-
sequently, we provide a way to consolidate it by merging all the cells of the

4 Usually, one only tries to prove S. Here, one tries to prove both S and ¬S in order
to get additional coverage information as explained later.



same column or row into a single one whenever possible. It helps the verification
engineer in the analysis.

5 Formalization of Verification Witnesses

This section formalizes the underlying concepts of a verification activity intro-
duced in the previous section, in particular verification witnesses.

5.1 Basic Concepts

Execution Given a program P with L list of program point andM list of possible
memory state for P ,

→
x denotes an input vector for P . An execution P (

→
x) of a

program P on some input datum
→
x = x1, ..., xn is a (finite or infinite) sequence

(li,mi)0≤i of (program) states. Each state is a pair composed of a program point
l ∈ L and a memory state m ∈M. A memory state m at a point l of an execution
P (
→
x) denotes the association of a value to each variable when P (

→
x) reaches l.

For a particular execution P (
→
x) = (li,mi)0≤i, a sub-sequence of states between

two program points li and lj (i ≤ j) is denoted by (li,mi) ↪→P (
→
x )

(lj ,mj).

Specification & Functional Coverage A program requirement R is formalized by
a collection of specifications, denoted by R , {S1, . . . , Sn}. Functional coverage
is achieved once all specifications in R are verified. A specification S in our
framework is an implication H ⇒ C which consists in a hypothesis H and a
conclusion C. The hypothesis H is a pair (l, h) where l is a program point and
h ∈ P(M) denotes a property over memory states. Similarly, the conclusion C
is a triplet (l, l′, r) where l and l′ denote two program points and r is a relation
between two memory states, i.e. a subset of P(M ×M). For a specification
S , H ⇒ C, the first program point l of C must be the same as the one of the
hypothesis H.

Given an execution P (
→
x) of program P and a specification S = H ⇒ C,

P (
→
x)  (l, h) (resp. P (

→
x)  (l, l′, r)) denotes that P passes through the hy-

pothesis H = (l, h) (resp. conclusion C = (l, l′, r)). However, there is a different

when P (
→
x) passes through the hypothesis H and P (

→
x) passes through the con-

clusion C. In the case of P (
→
x)  (l, h), it means that this execution reaches l

and the corresponding memory state satisfies h. However, P (
→
x) (l, l′, r) means

that each time l′ is reached from l (i.e. each sequence (l,m) ↪→
P (

→
x )

(l′,m′) ),

then its corresponding memory state satisfies r (i.e. (m,m′) ∈ r). More formally,
passing through an hypothesis (resp. a conclusion) is defined as follows:

P (
→
x) (l, h) , ∃(li,mi) ∈ P (

→
x), li ≡ l ∧mi ∈ h;

P (
→
x) (l, l′, r) , ∀(m,m′) ∈M2 s.t. (l,m) ↪→

P (
→
x )

(l′,m′), (m,m′) ∈ r.

Label & Structural Coverage A label exactly matches the notion of hypothesis
introduced above: it is a pair of a program point l and a condition h that memory
states must satisfy at l. Therefore, the notion of passing through an hypothesis
is extended to a label.



Extending a label {l, h} to a mutant M at label l (that is, the original pro-
gram mutated at program point l) defines a new label {l, h,M}, named label
with mutant. From this point, all labels in the following are considered labeled
mutants. Formally, given a program P , a label {l, h,M}, and an input datum
→
x , P (

→
x) and M(

→
x) shall contain the same series of program states if and only

if P (
→
x) does not pass through {l, h,M}, since the mutant shall modify the exe-

cution trace of the original program.

Verification Activity In our context, a verification activity is either a unit proof
or a unit test. Both of them tries to provide evidence that each program execution
satisfies each program specification. However, both processes are not performed
in the same way in practice. It results in difference when measuring coverage.

Consider a program P , an hypothesis H = (l, h), a conclusion C = (l, l′, r)
and a specification S = H ⇒ C. Unit test checks that the specification is satisfied
in the program by observing some program executions. Each observation is a test
case. A successful test case with input datum

→
x validates both the hypothesis

H and the conclusion C. It provides us the evidence P (
→
x)  H ∧ C. A test is

successful whenever all its test cases are themselves successful.
For unit proof, verifying a specification ensures that no execution violates

the specification, which means either the verification passes through both H
and C, or through the negation of H. Therefore, the evidence for a successful
unit proof is ∀→x, either (P (

→
x) H ∧ C) or (P (

→
x) ¬H). Thus, even if such

an evidence ensures that every possible execution satisfies the specification, it
does not ensure that the goal C is actually satisfied since the hypothesis H could
be invalidated. (contrary to evidence provided by unit testing).

5.2 Verification Witness about the Initial Program

A witness results from a verification activity. It consists of two pieces of infor-
mation: a verification technique (either proof or test) and a verdict indicating
which specification is satisfied and by which means. We introduce one kind of
witness by verification technique:

– A test witness (denoted by T) represents the existence of some test evidence,
passing through the label L:

T(S,L,
→
x) , P (

→
x) H ∧ C ∧ L.

– A proof witness (denoted by P) indicates the existence of a proof for some
specification S. It ensures that S is satisfied for every execution of program P :

P(S) , ∀→x, either (P (
→
x) H ∧ C) or (P (

→
x) ¬H).

Another witness (less considered here than the other ones) is the error wit-
ness. It comes when the verification technique finds an error in the code.

– Error Witness (denoted by ER) indicates the existence of an error during the
verification of some specification S = H ⇒ C:

ER(S) , ∃→x, (P (
→
x) H ∧ ¬C).



Hence, witnesses provide us with a formal evidence of all activities performed
during our verification campaign.

5.3 Verification Witness about a Mutant

As already explained, our methodology requires a verification of mutants: com-
bining the result of verification in source code and in labeled mutant allows
us to deduce relationships between specifications and pieces of code (denoted
by labels). In order to separate witnesses provided by verification of a labeled
mutant M from the ones coming from the verification of the original code, we
introduced additional types of witnesses. Even if the verification of a specifica-
tion S = H ⇒ C for a mutant may produce many different results, only the
following two cases are useful in our contexts:

– The specification H ⇒ C is satisfied in the mutant,
– The opposite specification of S, H ⇒ ¬C, is satisfied by the mutant.

Each result can be obtained by any verification activity (either test or proof).
Hence, the verification of a specification S for a mutant M of a label L can lead
to one of the four following witnesses:

– Witness SP of proof for the labeled mutant: when the specification S is proved
on the mutant M of label L:

SP(S,L) , ∀→x, either (M(
→
x) H ∧ C) or (M(

→
x) ¬H).

– Witness ST of test for the labeled mutant: when the specification S is tested
on the mutant M of label L with input datum

→
x :

ST(S,L,
→
x) , M(

→
x) H ∧ C ∧ L.

– Witness OP of proof for the opposite specification on the labeled mutant: when
the opposite specification H ⇒ ¬C is proved on the mutant M of label L:

OP(S,L) , ∀→x, either (M(
→
x) H ∧ ¬C) or (M(

→
x) ¬H).

– Witness OT of test for for the opposite specification on the labeled mutant:
when the opposite specification H ⇒ ¬C is tested by an execution M(

→
x)

that passes the label L:

OT(S,L,
→
x) , M(

→
x) H ∧ ¬C ∧ L.

5.4 Witness Precedence

Since formal proof assesses properties for all input data, while testing only checks
a sample of data, there is a natural precedence of proof witnesses (P, SP, OP)
over test ones (T, ST, OT). Other combinations of witnesses are also comparable.

In particular, it is possible to have two contradicting witnesses: one witness
shows that a specification S is satisfied by the mutant M , while the other one
shows that S is violated by M . It could arrive in two different cases:



– Both witnesses are proof witnesses SP(S,L) and OP(S,L). From those wit-
nesses, we know that the specification S and its opposite were proved. This
situation only occurs when no execution satisfies the hypothesis of S (i.e.
the specification is completely useless in the mutant). In this case, OP(S,L)
(which is required to claim that S and L are strongly connected) brings harm
to the coverage measure. Therefore, we only keep witness SP and reject OP.

– Both witnesses are test witnesses ST(S,L,
→
x) and OT(S,L,

→
y ). This situation

can only occur when
→
x 6= →

y . In this case, we only keep witness OT because
it leads to better coverage.

Hence, we can define a partial ordering over witnesses, illustrated by the
diagram below. It shows that SP is greater than any witness over labeled mutants.

P SP→ OP

↓ ↓ ↓
T ST← OT

6 Formalization of Verification Campaigns

6.1 Coverage Matrix

A coverage matrix allows an engineer to check the advancement of a verification
campaign. Each column of such a matrix represents a specification, while each
row represents a label. The matrix records the results of a (possibly still ongoing)
verification campaign. Table 1 depicts the possible marks stored in the matrix
cells with respect to verification witnesses of specification S that have been
computed for the original program P and the mutant M associated to the label L.

Spec. on P Spec on M Witness Verification
information

Coverage
information

no witness no witness (empty)

error any witness ER(S) 7

no witness
proved & SP(S,L)

?
opp. proved OP(S,L)

proved
no witness & P(S)

P
?tested P(S) ∧ (∃→x.ST(S,L,

→
x))

tested tested ∃→x. ( T(S,L,
→
x) ∧ ST(S,L,

→
x) ) T

proved proved P(S) ∧ SP(S,L) P −
tested proved (∃→x.T(S,L,

→
x)) ∧ SP(S,L) T

proved
opp. proved & P(S) ∧ OP(S,L)

P
3opp. tested P(S) ∧ (∃→x.OT(S,L,

→
x))

tested
opp. proved & (∃→x.T(S,L,

→
x)) ∧ OP(S,L)

T
opp. tested ∃→x.( T(S,L,

→
x) ∧ OT(S,L,

→
x) )

Table 1: Marks recording verification and coverage information.

Marks in cells encode verification and coverage information for a pair of a
specification S and a label L. Fig. 4 provides a synthetic view of the possible



connections between labels and specifications. An empty cell means that no
verification activity occured. Otherwise, each line contains either one or two
marks. When one mark is used, mark 7 means that S is invalidated in the original
program (thus no coverage information is required), while mark ? means that we
only have coverage information. When two marks are used, the first mark (either
T or P ) denotes verification information (either test or proof). The second mark
denotes coverage information. Here, mark ? means that S is validated while
there is no information about the connection between S and L. Mark − means
no correlation between S and L, while S is validated. Mark 3 means validation
of S in source code and invalidation of S in the mutant of L, so S and L are
strongly connected.

Specification

Label

(empty)
7

?
P? T?
P− T−
P3 T3

Fig. 4: Possible marks in coverage matrix cells.

6.2 Consolidated Coverage Matrix

A coverage matrix is usually quite large. For instance, our running example have
11 specifications and 12 labels, with made a total 132 cells in the coverage matrix.
Consequently, it is not easy for a verification engineer to handle it in a useful way.
For solving this issue, we provide a way to consolidate it by gathering columns
and rows. This consolidation results in adding one column named specification
consolidation and one row named label consolidation as shown in Fig. 5.

Specification label
consolidation

Label

(empty)
7 3

? −
P? T? ?
P− T− 7

P3 T3

specification
consolidation

P T ? − 7

Fig. 5: Consolidated coverage matrix.

Mark meanings are slightly modified in the new cells as depicted in Table 2.
For a specification S, mark P (resp. T ) denotes that S is tested (resp. proved)
and strongly connected to at least one label. Mark 7 means that S is invalidated.



Mark − indicates no correlation of S with any label, which means that either
one piece of code is missing (in other words, one expected functionality is prob-
ably not implemented), or the specification is absurd (e.g. it has unsatisfiable
hypotheses). This kind of information may be particularly useful for debugging
code and/or specification. Mark ? means that the verification is currently in-
conclusive: an additional verification activity is required.For a label L, mark 3
means that L is strongly connected to at least one specification. Mark − means
no correlation between L and any specification. Mark ? is used for all the other
cases which are inconclusive with respect to the coverage criterion.

If specification S has
· · ·

Then the symbol for the
consolidation cell of S is · · ·

It means · · ·

At least one cell P3 P S are proved

At least one cell T3 T S is tested

All cells are either
P− or T−

− either S is absurd, or one label is
missing for S

At least one cell 7 7 S is invalidated

Other case ? Verification of S is inconclusive

If label L has · · · Then the symbol for the
consolidation cell of L is · · ·

It means · · ·

At least one cell P3
3

L is strongly connected to at least
one specificationAt least one cell T3

All cells are either
P− or T−

− no correlation between L and any
specification

Other case ? not enough coverage information
for label L

Table 2: Consolidation rules for specifications and labels.

Full coverage (as per DO-178) is reached if, after consolidating the coverage
matrix, the resulting consolidated specification table only contains marks P or
T , meaning that every specification is verified, while the resulting consolidated
label table only contains mark 3, meaning that every label is covered.

6.3 Verification Campaign Automatization

This section proposes an algorithm, shown in Fig. 6 and currently being im-
plemented as a new Frama-C plugin. It consists of two consecutive steps that
automatize as much as possible a verification campaign, in order to quickly
reach full coverage.

1. Proving.
(a) Manually provide all the necessary data (initial code, formal specifica-

tion, labels and mutants) to an automatic proof technique (e.g. plug-in
WP of Frama-C with an associated SMT solver).

(b) Automatically, from the results, fill the (consolidated) coverage matrix.
(c) Manually choose the next action according to the coverage matrix:

– if full coverage is reached, the verification campaign is complete;



– if an error is found, correct it and restart the verification campaign;
– if no error is found but coverage is yet incomplete, continue the ver-

ification campaign by using another technique (e.g. another prover)
or testing. If one goes for testing, goto step 2.

2. Testing.

(a) Manually define test cases in order to test the uncovered specifications
(not containing any mark 3 in the coverage matrix). In order to quickly
reach full coverage, try as much as possible to choose test cases which
can pass through the remaining labels (not containing any mark 3 in
the coverage matrix).

(b) Manually provide all the necessary data (specification, code, label, mu-
tant) and test case to a testing tool (e.g. plug-in E-ACSL of Frama-C).

(c) Automatically, from the results, fill the (consolidated) coverage matrix.
(d) Manually choose the next action according to the coverage matrix:

– if full coverage is reached, the verification campaign is complete;
– if an error is found, correct it and restart the verification campaign;
– if no error is found but coverage is yet incomplete, continue the

verification campaign by defining (at least) one other test case.

User

Specification

Source Code

Label +
Mutation
operator

Mutant
generator

Automatic

Source + Mutant
for Proof

Source + Mutant
for Test

Objective

Proof
Frama-C/WP

Automatic
Witness

Test input

Test
Frama-C/E-ACSL

Automatic
Witness

Result
display

Automatic

Coverage
matrix

Fig. 6: Algorithm for automatizing a verification campaign.

7 Experiment

This section applies the previous algorithm to our running example of Section 3.
To demonstrate that our verification coverage is able to detect a missing speci-
fication, we intentionally remove the VALID specification from our example.

Labels and their associated mutant are defined according to statement cov-
erage criterion. Therefore, one label is attached to each statement. Two kinds
of mutant operators, replace and erase, are used to define the labeled mutant of
each label, as explained in Section 4.1.



ERR OK VALUE consol.
labelerror

1
error

2
· · · error

6
error

7
ok low

signal
medium
signal

high
signal

Lreturn1 P3 P− · · · P− P− P− P− P− 3

Lreturn2 P− P3 · · · P− P− P− P− P− 3

· · · · · ·
Lreturn6 P− P− · · · P3 P− P− P− P− 3

Lreturn7 P− P− · · · P− P3 P− P− P− 3

Lstmt1 P− P− · · · P− P− P− P? P− ?
Lstmt2 P− P− · · · P− P− P− P− P? ?
Lstmt3 P− P− · · · P− P− P− P− P− ?
Lstmt4 P− P− · · · P− P− P− P− P− ?
Lreturn0 P− P− · · · P− P− P3 P− P− 3

consol. spec. P P · · · P P P ? ? ?

Fig. 7: Coverage matrix after running plug-in WP.

We now apply the algorithm of Section 6.3. First, we try to prove that the
function satisfies its specifications by using plug-in WP of Frama-C. The results
are stored in the coverage matrix (partially) shown in Fig. 7.

Except for the four rows from label Lstmt1 to label Lstmt4, all rows of the
matrix contain at least one mark P3 which means a mark 3 in the consolidated
label table. Similarly, each column in categories ERR and OK contains at least
one mark P3 which means a mark P in the consolidated specification table.
It means that the verification campaign already succeeds for the corresponding
labels and specifications: plug-in WP was able to validate them alone.

The four rows from label Lstmt1 to label Lstmt4 do not contain mark P3.
They lead to four marks ? in the consolidated label table. Also, no column in the
category VALUE contains mark P3, hence three marks ? in the corresponding
cells of the consolidated specification table. Consequently, these 4 labels and the
3 specifications in category VALUE were not covered by plug-in WP.

We now choose the plug-in E-ACSL to test them. For that purpose, we define
three test cases which pass through the remaining labels Lstmt1 to Lstmt4. Fig. 8
shows the resulting updated cells of the coverage matrix. From the consolidated
label table, we conclude that label Lstmt4 is the only label not yet covered.
It prevents us to complete the verification campaign. Proofreading the code
allows us to establish that the related piece of code has no correlation with any
specification.

low
signal

medium
signal

high
signal

consol
label

Lstmt1 P3 P− 3

Lstmt2 P− P3 3

Lstmt3 P− T3 P− 3

Lstmt4 P− T? P− ?

consol. spec T T T

Fig. 8: Interesting subset of the coverage matrix after running plug-in E-ACSL.



We now add an additional specification corresponding to that piece of code.
It matches the previously removed VALID specification. Running the very same
test cases again leads to an updated coverage matrix. Fig. 9 shows the only inter-
esting cells. It allows us to conclude that our verification campaign is complete:
we reach full functional and structural coverage by combining proof with plug-in
WP and test with plug-in E-ACSL run on only three test cases.

VALUE VALID consol
labelmedium signal valid flag

Lstmt4 T? T3 3

consol spec T T

Fig. 9: Coverage cells of the added specification after running E-ACSL again.

8 Conclusion and Future Work
By combining and enhancing labels [5,6] and mutations [16,25], we introduce a
new notion of verification coverage that allows us to combine test and proof for
verifying a group of specifications related to the same piece of code. It subsumes
both the usual notions of functional coverage and structural coverage.

Our verification coverage establish connections between pieces of code repre-
sented by labels and functional specifications. It allows us to measure verifica-
tion and coverage rates through the number of specifications and labels strongly
connected. Thus it provides a way to decrease the influence of a particular veri-
fication method when measuring coverage.

Based on this verification coverage, we also introduce an algorithm that au-
tomatizes most parts of a verification campaign combining test and proof in
order to complete the verification process as quickly as possible. This algorithm
is currently being implemented as a new Frama-C plug-in.

We also formalize our work thanks to new notions of verification witnesses
and coverage matrices. Coverage matrices are consolidated per specification and
per label in order to synthesize the verification and the coverage results. Such
consolidations help the verification engineer to decide the next verification ac-
tivity to be performed.

Future work includes studying the impact of mutation and coverage criteria
on verification coverage. We also aim at extending existing toolchains in order
to automatize label generation, choice of mutation operators and test case gen-
eration with respect to different coverage criteria. It would reduce the parts of
our algorithm that are not yet automated.
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