
Integrating Interactive Jupyter 
Notebooks at the BNL SDCC

D. Allan, D. Benjamin*, M. Karasawa, K. Li, O. Rind, W. Strecker-Kellogg

Brookhaven National Laboratory, *Argonne National Laboratory



BNL Scientific Data & Computing Center (SDCC)

• Located at Brookhaven National Laboratory on Long Island, NY — 
Largest component of the Computational Science Initiative (CSI)


• Serves an increasingly diverse, multi-disciplinary user community:  
RHIC Tier-0, US ATLAS Tier-1 and Tier-3, Belle-II Tier-1, Neutrino, 
Astro, LQCD, NSLS-II, CFN, sPHENIX….more than 2000 users 
from 20+ projects


• Large HTC infrastructure accessed via HTCondor (plus 
experiment-specific job management layers)


• Growing HPC infrastructure, currently with two production clusters 
accessed via Slurm


• Limited interactive resources accessed via ssh gateways

!2



Two modes, Two workflows
• HPC & HTC (parallel vs interlinked, accelerator vs plain-cpu) 
‣ High-performance systems for GPUs / MPI / accelerators 
‣ High-throughput systems for big data parallel processing 

• Batch & Interactive (working on code/GPUs vs submitting large workflows) 
‣ Job workflow management 
‣ Direct development & testing on better hardware  

Traditional “Interactive SSH + Batch” paradigm places requirements on the users: 
• Must be sufficiently motivated to learn and use batch systems 
• Need to buy in to the workflow model:  Develop, compile, move data, small-scale 

run on interactive nodes, full-scale processing on batch

!3



Data Analysis As A Service

!4

• New paradigm:  Jupyter Notebooks (IPython) 
‣ Expanding the interactive toolset 
‣ “Literate Computing”: Combines code, text, equations 

within a narrative 
‣ Easy to document, share, and reproduce results; 

create tutorials…Lower barrier of entry, both for 
learning curve and user-base 

‣ Provides a flexible, standardized, platform 
independent interface through a web browser 

‣ Can run with no local software installation 
‣ Many language extensions (kernels) and tools 

available



Jupyter Service UI

!5

!5

Jupyterlab

Kernels
Notebook Documents



Production Architecture
• Goal:  leverage already successful pre-existing resources, expertise, and infrastructure (batch) instead 

of rolling a new backend service

‣ Allow users to leverage any type of computational resource they might need — implies enabling 

both HTC and HPC/GPU, e.g. upcoming ATLAS ML workflows

• Requirements


‣ Expose to the world via unified interface https://jupyter.sdcc.bnl.gov — common solution for HTC 
and HPC resource access


‣ Satisfy cybersecurity constraints

• Design


‣ Insert authenticating proxy as frontend to decouple jupyterhub from cybersecurity requirements 
(e.g. MFA)


‣ Scale notebooks via load-balancing as well as via batch systems

- Automated deployment of multiple hub instances using Puppet


‣ Enable access to GPU nodes in a user-friendly way 

• User-specific UI for Slurm spawner support

!6

https://jupyter.sdcc.bnl.gov


Jupyterhub Service Architecture

!7

Users

configurable-http-proxy

notebook-server

. . . . .

Local Machine

Slurm / 
HTCondor DB 

(session 
state)

notebook-server

Authenticating 
Proxy

$REMOTE_USER

!7



Frontend Proxy Interface
• For Orchestration: a small cluster of directly-

launched jupyter instances

‣ HTTP-level Load-balanced from frontend proxy

‣ One each on IC and HTCondor shared pool


• For Develop and Test: Use existing batch systems

‣ HTCondor and Slurm support running a 

jupyterlab session as a batch job

‣ Containers can enter at batch level to isolate 

external users or can be based on choice of 
environment


‣ Best way to ensure exclusive, fair access to 
scarce resources (e.g. GPUs)


‣ Open questions: Latency, Cleanup, Starvation

!8



Multifactor Auth

!9

• Using Keycloak MFA tokens

• Google Authenticator or FreeOTP app

• Easy setup by scanning QR code first time



Custom Slurm Spawner Interface

!10

* For form spawner code see https://github.com/fubarwrangler/sdcc_jupyter 

Display only 
partitions/accounts to 
which user has access

Select here and will 
launch Local instead 
of Batch spawner

Account and 
Options defined by 
selected partition

https://github.com/fubarwrangler/sdcc_jupyter


Challenges of Experiment Environments
• When you get a session (start a notebook-server), which environment?

‣ Customization at the kernel level or via notebook-server container 


• Whose problem is setting up the environments?

‣ Work for a software librarian

!11

Kernel Customization

Custom Container



Example: sPHENIX Test Beam

!12

** Notebook analysis courtesy of Jin Huang  
using custom sPHENIX Root Kernel



Orchestration: Integrating Jupyter with Compute

• How to make it easier to use compute from 
Jupyter?

‣ HTMap library from condor

‣ Dask / IPyParallel / Parsl etc...


• Goal: abstract away the fact that you are 
using a batch system at all

‣ Either through trivial substitutes


- map()→htmap()

‣ Or through cell "magics"


- %slurm or equivalent

‣ Or via nice pythonic decorators that submit 

to batch systems (e.g. Dask-jobqueue)

!13



Notebook Sharing: Short Term
• Low-effort, short-term sharing 

between users on the same Hub

• Sender creates shareable link 

that provides last saved version 
of notebook to link recipient

‣ Short-term link expires after 

certain time

‣ Link encodes notebook 

options, such as container, to 
ensure compatible software 
environment


• See https://github.com/
danielballan/jupyterhub-share-
link

!14

* Courtesy Daniel Allan, illustrative gif:   
https://github.com/danielballan/jupyterhub-share-link/blob/master/demo.gif?raw=true

https://github.com/danielballan/jupyterhub-share-link
https://github.com/danielballan/jupyterhub-share-link
https://github.com/danielballan/jupyterhub-share-link
https://github.com/danielballan/jupyterhub-share-link/blob/master/demo.gif?raw=true


Notebook Archiving/Sharing
• Prepare a gallery of notebooks on a local Binder 

deployment, with a carefully defined software environment 
that anyone can recreate from a git repo with standard 
environment specs (e.g. requirements.txt)


1. Enter URL of the repo

2. Clicking "launch"

3. Waiting and watching the build logs

4. Copy a special link that will route directly to a Jupyter 

notebook running in a container that has repo 
contents and all software needed to run it successfully.


• Easy way for people to try your code and get running 
immediately


• Tightly coupled to Kubernetes and Docker, but developing 
similar workflows on HPC using Singularity

!15

* Courtesy Daniel Allan



Conclusions
• The SDCC at BNL is deploying a Jupyterhub infrastructure enabling 

scientists from multiple disciplines to access our diverse HTC and HPC 
computing resources


• System designed to meet facility requirements with minimal impact on the 
backend


• Built-in support for experiment-based computing environment with a 
number of flexible access modes and workflows


• Continuing to develop new techniques for user collaboration

!16



Extra Slides

!17



HTTP Frontend Configuration
• Authentication via Mellon plugin (for Keycloak)


• Subdivide URL space for different hub servers


‣ /jupyterhub/$cluster for HTC/HPC/others


• Load-balancing configuration


‣ Need cookie for sticky-sessions


‣ Newest apache on RHEL7 


- Requires websockets support

!18


