MPIl-based tools for large-scale
training and optimization at HPC sites

Vladimir Loncar ', Jean-Roch Vlimant 2, Sofia Vallecorsa ', Gul Rukh Khattak 3, Maurizio
Pierini ', Thong Nguyen 2, Federico Carminati

' CERN
<] 2 California Institute of Technology
.’A‘ = 3 University of Peshawar

PP

Overview

- Challenges in large-scale network training
- Distributed training

- Types of parallelism in distributed training
- Distributed network optimization

- NNLO library

- Performance analysis

- Conclusion

Challenges in large-scale network training

- Machine learning prototyping is easier than ever
Many libraries: Keras, PyTorch, Tensorflow...

- Out-of-the-box support for training with CPU
and a (single) GPU

- Modern computing resources provide access to
many GPUs simultaneously

- ltis likely that many central tasks (simulation,
reconstruction) will move to Deep Learning

solutions
We will have to train periodically large models
We could exploit these resources for that

Neural network training

- lterate:
1) Sample a batch of data
2) Forward it to the network to obtain the predictions

3) Backpropagate the errors

4) Update the weights
- (A variant) of stochastic gradient descent (SGD)
Adagrad, Adadelta, RMSprop, Adam...

Distributed training

- Divide the training data into N subsets
- N workers Mtrain a copy of the model
- Workers compute gradients and communicate with the parameter server m

- Parameter server handles gradients to update the central model
Downpour SGD

1) Compute gradient,
Elastic averaging SGD s 2) Update network

w— VQ w) weights
Gradient Energy Matching (GEM) m

3) Send new weights to Worker

Gradient energy matching

- Avariant of distributed asynchronous SGD
- Core principle:
- Make workers collectively adhere to the dynamics of a sequential SGD with momentum
- Perform the rescaling of the gradient updates before sending them to the master node
- Estimated energy of the asynchronous system is matched with the energy of the target proxy

- GEM ensures the stability of the collective asynchronous system
- Assuming that the proxy converges

- Scales to a high number of workers = oo

=®= DOWNPOUR
=@=_Adaptive Staleness

100 4

)

4
L

Training loss

10—1 i

J. Hermans et al arXiv:1805.08469

5 10 15 20 25 30
Asynchronous workers

https://arxiv.org/abs/1805.08469

LD SEO
PRIRIRN PRI
\M «w«n«nz/m/ \M\\w««nmnﬁm/

>
..m —_
© <
© o
c
o e
()
(O]
3o) =
c Y—
-m O
@ =
S > 3
“— Y—
L :
—_ C %
S 5 o
O @©
> 0 O
O ¢ o
c IS TR
c L o © —
S O @© W (- [}
D £3% 3 5 _E
Ie 5 2 o S5 E O
Q] mrea = 5 ©
— O *+= O = O c O
© D <2 KO =
= 0 O 5 T L o 5
Q. ® S 383 ® 528
U - o 5 9 apmm
O amdp pmpp
Q O & o — O o o
acaA O O nw <
(/p) 8 5]
e m_ 1 m_ 1
_y 1 I

Types of parallelism

- Data parallelism
- Compute the gradients on several batches
independently and update the model (a)synchronously
- Applicable to large dataset

- Model parallelism
- Compute the gradient and updates of part of the model
separately in chain
- Applicable to large model

N X \ X ¥ ¥V] ¥V 7

Gradient distribution

- Alogical worker = is spawn over multiple MPI
processes
- Workers formed using horovod

- Uses NCCL for fast GPU-GPU communication \

- “Allreduce” setup : Ol :
- all work in lockstep processing a large minibatch m i m i

- Each computes gradients on its local shard - || ST
(partition) of the minibatch e . ‘
- Send and receive gradients to/from neighbours I::! Iz!
- All gradients travel in the same direction on the ring i R !
- Once all have received all the gradients computed
for the minibatch, update the weights

- Same copy of the model on every after this update
step 9

Distributed network optimization

- Various parameters of the model cannot
be learned by gradient descent

- Learning rate, batch size, number of layers, size :"Parameter setgroup 1 " Parameter set group 2

of kernels... i i | |

- Full parameter scan is resource/time
consuming

- Find a way to reach the optimum R ’ e ’

hyper-parameter set for a provided figure

of merit (e.g., the loss) i % ; ; % |
- Two optimization engine integrated: | | | |
- Bayesian optimization m m m m m m m m

- Evolutionary algorithm et e

R
Q
=
Q
3
0]
—
[©]
=
[
0]
—_
«Q
=
o
[
©
w
R
Q
=
Q
3
0]
—
®
=
(2
0]
~—
«Q
=
o
[
©
N

K-fold cross validation

- Estimate the performance of multiple model training over different validation

part of the training dataset
- Allows to take into account variance from multiple source
- Choice of validation set, choice of random initialization, ...

- Training on folds can proceed in parallel

[] Validation Set

- Training Set

Round 1 Round 2 Round 3 Round 10

90% 91% 95%

Validation
Accuracy: 93%
1"

Final Accuracy = Average(Round 1, Round 2, ...)

NNLO library

Neural network learning and optimization: NNLO
https://github.com/vlimant/NNLO/

- User-friendly library supporting multiple backends and different cluster

architectures
Keras, PyTorch, TensorFlow

- Downpour, Elastic Averaging SGD, GEM training

- Hyperparameter optimization with bayesian optimization and evolutionary
algorithm

- Checkpointing (save and restore)

- Integrated profiling and monitoring tools

12

https://github.com/vlimant/NNLO/

Distributing the work with MP|

- Message Passing Interface Standard (MPI) is a message passing
library standard widely used for parallel programming

- Readily available on many HPC sites

- Portable code, agnostic to underlying hardware architecture

- Available in many programming languages
13

C, Fortran, Python, Java...

=» Natural choice for NNLO

Basic training with NNLO

User provides:
- Model from Keras/PyTorch/TensorFlow (as JSON file, pickle, or python module)
- Training and validation dataset
- Choice of training algorithm and hyperparameters

Start training with:

mpirun -np 3 python3 TrainingDriver.py \
--model cifarl0 arch.json \

--train train cifarl0.list \

--val test cifarl0.list \

--loss categorical crossentropy \

--epochs

14

NNLO training interface

- Python API for training
- Model, data and data adaptor

1 |def get_model():

model = Sequential()
model.add (Conv2D(32, kernel size=(3, 3),
activation= ,

input shape=(1, 28, 28)))
model.add (Conv2D(64, (3, 3), activation=
model.add (MaxPooling2D(pool size=(2, 2)))
model.add (Dropout(0.25))
model.add (Flatten())
model.add (Dense (128, activation=))
model.add (Dropout(0.5))
model.add (Dense (10, activation=))

return model

def get name():
return

def

def

def

def

get_train():

all list = glob.glob(

1 = int(len(all list) * 0.70)
train list = all list[:1]

return train list

get val():

all list = glob.glob(

1 = int(len(all list) * 0.70)
val list = all list[l:]
return val list

get features():
return (, lambda x: Xx)

get labels():
return

15

Basic hyperparameter optimization with NNLO

User provides:

- NNLO training configuration
- Optimization parameters

Start hyperparameter optimization with:

mpirun -np 13 python3 OptimizationDriver.py \
--model examples/example mnist.py \
--block-size 6 \

--num-iterations 10 \

--n-fold 2 \

--epochs 5

16

Useful options for HPC deployments

- Tracking resource utilization with --monitor
- Tracks CPU/GPU memory usage and CPU/GPU utilization
- Handy when tweaking a configuration for a specific cluster

- Proflllng Wwith --timeline
- Traces function calls and record the execution times
- Useful for analyzing bottlenecks

- Checkpointing with --checkpoint
- Save/load functionality
- Useful when training/optimization time > job execution time
- Same command to checkpoint/restore = same job submission script

17

Performance analysis

- Tested on GPU cluster at Flatiron Institute

- Computing node specs:
36-core Skylake, 768GB RAM
4 x Nvidia V100 with 32GB each, NVLink connected

- Software stack:
Open MPI 2.1
Python 3.7
CUDA 10.1
TensorFlow 1.14.0 —
Torch 1.1.0 N\~ FLATIRON
\ | N S T | T U T E
of Simo

18

Performance analysis

- JEDI-net - Graph network for particle identification (arxiv:1908.05318)
- Computationally expensive: 33625 parameters, 116M FLOPs
- Speedup measured w.r.t. one worker
- Also shown performance for standalone run w/o MPI (dashed lines)

0.85
-®
R -._._...?.E?_E‘_.‘_!:'.’_!f-’_-'}?_.‘_e{f_zr'fst.V!!t.*)ae's_w?! ______
B FSERER AL A s o * 10.80
n 12 =
¥ ol
<3 o
o 2
o 10 -
o i 0.755.
o ’ 8]
— 8 o S
[2 3
£ . g
g / 0.70<
5 6
(] P
@ .
& 4
4 standalone worker without MPI L0.65
........ SR BRSNS OO S RS SR TR I |
2 ’
¢
. - 0.60
2 4 6 8 10 12 14

19

Workers

https://arxiv.org/abs/1908.05318

Conclusions

- NNLO library
- https://github.com/vliimant/NNLO/

- Powerful and feature-rich library for training

- Multiple backends: Keras, PyTorch, TensorFlow
- Multiple optimizers: Downpour, Elastic Averaging SGD, GEM

- Hyperparameter optimization
- Bayesian optimization and genetic algorithm
- K-fold cross validation

- Demonstrated good scalability
- Have access to HPC and model with long training time? Contact us!

20

https://github.com/vlimant/NNLO/

