
MPI-based tools for large-scale
training and optimization at HPC sites

 Vladimir Loncar 1, Jean-Roch Vlimant 2, Sofia Vallecorsa 1, Gul Rukh Khattak 3, Maurizio
Pierini 1, Thong Nguyen 2, Federico Carminati 1

1 CERN
2 California Institute of Technology

3 University of Peshawar

1

Overview
- Challenges in large-scale network training
- Distributed training
- Types of parallelism in distributed training
- Distributed network optimization
- NNLO library
- Performance analysis
- Conclusion

2

Challenges in large-scale network training
- Machine learning prototyping is easier than ever

- Many libraries: Keras, PyTorch, Tensorflow...

- Out-of-the-box support for training with CPU
and a (single) GPU

- Modern computing resources provide access to
many GPUs simultaneously

- It is likely that many central tasks (simulation,
reconstruction) will move to Deep Learning
solutions

- We will have to train periodically large models
- We could exploit these resources for that

3

Neural network training
- Iterate:

1) Sample a batch of data
2) Forward it to the network to obtain the predictions
3) Backpropagate the errors
4) Update the weights

- (A variant) of stochastic gradient descent (SGD)
- Adagrad, Adadelta, RMSprop, Adam...

4

Distributed training
- Divide the training data into N subsets
- N workers train a copy of the model
- Workers compute gradients and communicate with the parameter server
- Parameter server handles gradients to update the central model

- Downpour SGD
- Elastic averaging SGD
- Gradient Energy Matching (GEM)

M
W

5

Gradient energy matching
- A variant of distributed asynchronous SGD
- Core principle:

- Make workers collectively adhere to the dynamics of a sequential SGD with momentum
- Perform the rescaling of the gradient updates before sending them to the master node
- Estimated energy of the asynchronous system is matched with the energy of the target proxy

- GEM ensures the stability of the collective asynchronous system
- Assuming that the proxy converges

- Scales to a high number of workers

J. Hermans et al arXiv:1805.08469
6

https://arxiv.org/abs/1805.08469

Types of parallelism
- Data parallelism

- Compute the gradients on several batches independently
and update the model (a)synchronously

- Applicable to large dataset

- Model parallelism
- Compute the gradient and updates of part of the model

separately in chain
- Applicable to large model

W

GPU

W

GPU

W

GPU

M

7

Types of parallelism
- Data parallelism

- Compute the gradients on several batches
independently and update the model (a)synchronously

- Applicable to large dataset

- Model parallelism
- Compute the gradient and updates of part of the model

separately in chain
- Applicable to large model

GPU

W

GPU

8

Gradient distribution
- A logical worker is spawn over multiple MPI

processes
- Workers formed using horovod

- Uses NCCL for fast GPU-GPU communication

- “Allreduce” setup
- all work in lockstep processing a large minibatch
- Each computes gradients on its local shard

(partition) of the minibatch
- Send and receive gradients to/from neighbours
- All gradients travel in the same direction on the ring
- Once all have received all the gradients computed

for the minibatch, update the weights
- Same copy of the model on every after this update

step

M

W L L L

W L L L

W L L L

W L L L

L

L
L

L

L
9

Distributed network optimization
- Various parameters of the model cannot

be learned by gradient descent
- Learning rate, batch size, number of layers, size

of kernels...

- Full parameter scan is resource/time
consuming

- Find a way to reach the optimum
hyper-parameter set for a provided figure
of merit (e.g., the loss)

- Two optimization engine integrated:
- Bayesian optimization
- Evolutionary algorithm

Parameter set group 1

W W W W

M

Parameter set group 2

W W W W

M

Parameter set group 3

W W W W

M

Parameter set group 4

W W W W

M

H

10

K-fold cross validation
- Estimate the performance of multiple model training over different validation

part of the training dataset
- Allows to take into account variance from multiple source

- Choice of validation set, choice of random initialization, ...

- Training on folds can proceed in parallel

11

NNLO library
- Neural network learning and optimization: NNLO

- https://github.com/vlimant/NNLO/

- User-friendly library supporting multiple backends and different cluster
architectures

- Keras, PyTorch, TensorFlow

- Downpour, Elastic Averaging SGD, GEM training
- Hyperparameter optimization with bayesian optimization and evolutionary

algorithm
- Checkpointing (save and restore)
- Integrated profiling and monitoring tools

12

https://github.com/vlimant/NNLO/

Distributing the work with MPI
- Message Passing Interface Standard (MPI) is a message passing

library standard widely used for parallel programming
- Readily available on many HPC sites
- Portable code, agnostic to underlying hardware architecture
- Available in many programming languages

- C, Fortran, Python, Java...

➜ Natural choice for NNLO

13

Basic training with NNLO
- User provides:

- Model from Keras/PyTorch/TensorFlow (as JSON file, pickle, or python module)
- Training and validation dataset
- Choice of training algorithm and hyperparameters

- Start training with:

mpirun -np 3 python3 TrainingDriver.py \

--model cifar10_arch.json \

--train train_cifar10.list \

--val test_cifar10.list \

--loss categorical_crossentropy \

--epochs 5

Run as standard
MPI program

Provide the model

Training and
validation data

Training
parameters

1 master and 2 workers

14

NNLO training interface
- Python API for training

- Model, data and data adaptor

15

def get_model():
 model = Sequential()
 model.add(Conv2D(32, kernel_size=(3, 3),
 activation='relu',
 input_shape=(1, 28, 28)))
 model.add(Conv2D(64, (3, 3), activation='relu'))
 model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Dropout(0.25))
 model.add(Flatten())
 model.add(Dense(128, activation='relu'))
 model.add(Dropout(0.5))
 model.add(Dense(10, activation='softmax'))
 return model

def get_name():
 return 'mnist'

def get_train():
 all_list = glob.glob('mnist_*.h5')
 l = int(len(all_list) * 0.70)
 train_list = all_list[:l]
 return train_list

def get_val():
 all_list = glob.glob('mnist_*.h5')
 l = int(len(all_list) * 0.70)
 val_list = all_list[l:]
 return val_list

def get_features():
 return ('features', lambda x: x)

def get_labels():
 return 'labels'

Full MNIST example

1 2

Model definition

Training and
validation dataset

Data adaptor

Basic hyperparameter optimization with NNLO
- User provides:

- NNLO training configuration
- Optimization parameters

- Start hyperparameter optimization with:

mpirun -np 13 python3 OptimizationDriver.py \

--model examples/example_mnist.py \

--block-size 6 \

--num-iterations 10 \

--n-fold 2 \

--epochs 5

Run optimizationNumber of MPI
processes per block

Number of steps in
optimization process

K-fold

Model

1 coordinator, 2 blocks
with 6 processes (1M 5W)

16

Useful options for HPC deployments
- Tracking resource utilization with --monitor

- Tracks CPU/GPU memory usage and CPU/GPU utilization
- Handy when tweaking a configuration for a specific cluster

- Profiling with --timeline
- Traces function calls and record the execution times
- Useful for analyzing bottlenecks

- Checkpointing with --checkpoint
- Save/load functionality
- Useful when training/optimization time > job execution time
- Same command to checkpoint/restore ➔ same job submission script

17

Performance analysis
- Tested on GPU cluster at Flatiron Institute
- Computing node specs:

- 36-core Skylake, 768GB RAM
- 4 x Nvidia V100 with 32GB each, NVLink connected

- Software stack:
- Open MPI 2.1
- Python 3.7
- CUDA 10.1
- TensorFlow 1.14.0
- Torch 1.1.0

18

Performance analysis
- JEDI-net - Graph network for particle identification (arXiv:1908.05318)

- Computationally expensive: 33625 parameters, 116M FLOPs
- Speedup measured w.r.t. one worker
- Also shown performance for standalone run w/o MPI (dashed lines)

19

https://arxiv.org/abs/1908.05318

Conclusions
- NNLO library

- https://github.com/vlimant/NNLO/

- Powerful and feature-rich library for training
- Multiple backends: Keras, PyTorch, TensorFlow
- Multiple optimizers: Downpour, Elastic Averaging SGD, GEM

- Hyperparameter optimization
- Bayesian optimization and genetic algorithm
- K-fold cross validation

- Demonstrated good scalability
- Have access to HPC and model with long training time? Contact us!

20

https://github.com/vlimant/NNLO/

