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ABSTRACT
Typical HPC job scheduler software determines scheduling order
by a linear sum of weighted priority terms. When a system has
a rich mix of job types, this makes it difficult to maintain good
productivity across diverse user groups. Currently-implemented
fair-share algorithms tweak priority calculations based on past
job handling by modifying priority, but don’t fully solve problems
of queue-stuffing and various classes of under-served job types,
because of coupling between different terms of the linear calculated
priority .

This paper proposes a new scheme of scheduling jobs on an
HPC system called “Simultaneous Fair-share” (or “SFS”) that works
by considering the jobs already committed to run in a given time
slice and adjusting which jobs are selected to run accordingly. This
allows high-throughput collaborations to get lots of jobs run, but
avoids the problems of some groups starving out others due to
job characteristics, all while keeping system administrators from
having to directly manage job schedules. This paper presents Si-
multaneous Fair-share in detail, with examples, and shows testing
results using a job throughput and scheduler simulation.

CCS CONCEPTS
• Theory of computation→ Scheduling algorithms; • Comput-
ing methodologies → Planning under uncertainty.
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1 INTRODUCTION
Scheduling software in HPC systems typically prioritizes jobs using
a linear sum of weighted terms which are calculated based on the
job’s characteristics[2][7]. Such a linear priority scheme is simple to
configure and simple to understand, but that simplicity comes with
the price that different scheduling considerations are consequently
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coupled, because their effect is to raise or lower the priority of the
job, which is a single number. As the mix of submitted jobs changes,
so does how jobs flow through the system changes, and administra-
tors are constantly faced with the task of shifting priorities to make
sure jobs are flowing through the system in a reasonable fashion.

The proposed Simultaneous Fair-Share ("SFS") job scheduling
algorithm solves that issue. SFS separates fair-share considerations
from other linear priority algorithm factors. Administrators can
weigh job priority according to what jobs should be weighted while
the SFS algorithm itself makes sure all groups of users are getting
jobs through. This has several benefits. It increases user satisfaction
because the system is perceived to be more responsive, especially
for debug or testing jobs. It increases the throughput of chained jobs,
such as a physical simulation that must operate multiple sessions
on a single evolved physical simulation that is handed from job to
job. Most importantly, it promotes fair job throughput as part of
the scheduling algorithm rather than as a consequence of priority
weighting.

2 LINEAR SCHEDULING OVERVIEW
In default versions of popular schedulers, like Moab and Slurm, jobs
are selected to be scheduled to run in order of "priority", which
is a calculation performed for each job at the beginning of every
scheduling pass. Numerical priority for a job is the sum of terms of
characteristics of that job, each multiplied by a numerical weight
assigned as part of the configuration of the scheduler software
assigned by the system administrators. The weights are assigned to
emphasise or de-emphasise certain characteristics of jobs that are
considered desirable to run on the given computational resource.

2.1 Priority by job size
A common weighing factor is to have the numerical priority for
a queued job increased proportionally to the number of resources
that a job requests (the “size”, or the number of nodes in a job).
This prioritizes large jobs over small jobs, counteracting the ease
of scheduling small jobs. Node size is one of the important factors
used in operational scheduling with Moab on Blue Waters[6]. Blue
Waters was promoted as a capability systems, so our priority of
getting very large capability jobs through the system quickly has
been reflected in a strong weight on priority due to job size.

2.2 Priority by job age
Another common adjustment factor is how much a long wall time
increases the job’s priority. This factor counter-acts the fact that
shorter jobs are easier to schedule than long ones. All of the other
adjustment factors must be balanced against factors that further
increase a job’s numerical priority the longer that it has been in
the queue eligible to run. This factor counteracts the other priority
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factors and works to make sure that jobs don’t get too stale waiting
in the queue. As a job ages, its priority goes up with time and its
priority is eventually greater than that of other, newer jobs that
would have otherwise gone first.

These are just a few common competing priorities that typical
scheduling software allows admins to adjust. They’re adjusted to
allow different types of jobs to flow through the scheduling system
and be run on the machine. They will need to be adjusted when
the characteristic workload changes significantly. They can stay
the same if the workload stays roughly the same, and users (and
groups of users) submit jobs to the system at a steady rate that is
reasonably close to the rate that the system can run the jobs.

2.3 Priority Calculation
The stock configuration of Slurm and Moab calculate the instan-
taneous priority of a job as a linear sum of terms, as follows:
Pi = A · ai + B · bi ... The term weights A and B are weighting
factors set by the configuration of the scheduling software, and
are typically constant for all jobs. The other factors in the terms
(ai , bi , and so on) are calculated on a per-job basis based on the
characteristics of the job, and perhaps other outside information
such as the eligibility of the user or the job.

Linear priority calculation focuses on the characteristics of the
job, not the characteristics of the user. Jobs of certain character-
istics (say, larger jobs) are going to be prioritized over jobs with
other characteristics that aren’t weighed as much. Due to random
circumstances of timing and other consistencies in jobs submitted
by groups of users, jobs for one group may tend to dominate over
jobs by other groups. Fair-share strategies are employed to combat
this tendency in schedulers.

2.4 History-based Fair-share
Both Moab and Slurm have fair-share mechanisms[1][11] available.
These mechanisms add a negative term to the priority sum that low-
ers the priority of a user’s (or user group’s) jobs based on resource
usage of jobs they have run in a recent time window. Because that
group exceeded some administratively defined threshold of usage,
that group’s job’s priority is lowered so their jobs are less likely to
run than users’ or groups’ that hadn’t been running as much.

3 PROBLEMS WITH LINEAR PRIORITY
SCHEDULING

Linear priority scheduling inherently couples all of the priority fac-
tors and so makes it difficult to decouple Fair-share considerations
from other job characteristics. This is why a scheme that separates
out Fair-share considerations from other priority calculations is
vital to good job flow through a system.

3.1 Queue Stuffing
Jobs flow through an HPC system reasonably as long as most users
submit jobs at a slow steady rate. But frequently users running
on a system don’t follow that pattern. Sometimes a group on a
system will have all of their input data ready when their allocation
opens, and so they can submit jobs that represent a large chunk of
their total allocation in a sort time. If an allocation is large enough,
they could submit enough workload at once that the system could

take weeks to run all of their jobs. If the scheduler is configured
to increase job priority due to age, then just by job plurality alone,
this large group of jobs will dominate the queue until they have
been depleted, making it hard for other jobs to run.

This phenomenon is called "queue-stuffing". It’s a great way for
users to submit jobs. If all users did this, then the scheduler would
be able to weigh what jobs to run for the maximum total efficiency
of the system over a long period of time. However, other groups,
who submit fewer jobs at first and start submitting jobs later in the
year, might only get jobs through after a very long latency. This
makes it difficult for those other allocations to get their jobs tuned
and tested before they need to get their main production workflow
running. It’s also frustrating for a smaller or newer allocation to
not be able to get anything through for weeks because larger, more
well-established allocations are completely dominating the queue.
Simultaneous Fair-share deals with this exact problem.

Let us make one very specific point about the phenomenon of
queue-stuffing: it is a natural consequence of a large system with
large, well-prepared user groups. A well-organized collaboration
with a lot of input data to process may well squeeze other user
groups who aren’t immediately ready to deploy their entire pro-
duction workload. Queue-stuffing is not a user problem–is a failure
of the scheduler infrastructure to balance the use of the system
among users of different input patterns. Schedulers should be able
to usher through user jobs reasonably and efficiently even when
user groups significantly differ in their submission techniques, and
SFS does this.

3.2 Problems with History-based Fair-share
Fair-share1 is a mechanism in popular schedulers[1][11] that at-
tempts to mitigate the effects of queue stuffing. However, it is only
a partial solution. History-based fair-share in those scheduler appli-
cations lowers the linear numerical priority of queued jobs whose
recent finished user’s jobs exceed a target occupancy of job re-
sources. The problem is they’re only sensitive to jobs that have
been completed and logged by the rolling fair-share calculation.
Scheduling of the jobs of an allocation will only be effected by jobs
that have finished, not that are currently running. If a group sub-
mits a bunch of jobs quickly, they could potentially fill the entire
system with their jobs. History-based allocation wouldn’t effect fu-
ture queued jobs until those jobs had all finished and the fair-share
calculation registered them. Because jobs tend to get reservations
because they’re high in the queue, by the time that group’s priority
has been lowered, some of that group’s next jobs may already be
scheduled to run.

In addition to the generic problems with history-based schedul-
ing, Moab specifically has characteristics that make this problem
worse. Sometimes it takes a couple of scheduler iterations in Moab
for the fair-share results to propagate and the results felt in the
priority calculation. So one group can fill the machine with jobs,
and fair-share won’t effect the jobs at the top of the queue currently
waiting to be scheduled. Those waiting jobs will be scheduled and

1Fair-share as commonly implemented in Moab and Slurm is based on job history. I’m
defining the term "history-based fair-share" in this paper, and referring to traditional
fair-share as that, to contrast it to "Simultaneous Fair-share", to make it clear which of
the two I’m referring to.
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have reservations when the first jobs finished. Because of the la-
tency in the fair-share logging, the second wave of jobs will be
scheduled and start running before the first wave of jobs have been
entered into the fair-share job log. By the time the first wave has
been entered, the second wave of jobs have already started. If a
group has stuffed the queue, then they can sometimes get one wave
of jobs, and a second wave of jobs before fair-share effects that
group’s priority values. In the recent period of Blue Waters oper-
ations, this would result in another group having to wait at least
4 days (two times the maximum allowed job duration) between
submitting a first job and any chance of having it run.

3.3 Under-served Job Classes
Depending on the input data requirements and the application
workflow, there are at least two different job types that users tend
to submit. One type of job operates on a discrete piece of data, and
that data is known at submit time. This paper calls these “bulk”
jobs. The bulk jobs can be run in any order, many of them at a time.
Many well-established collaborations have workflows that look like
this. Physics collaborations, for instance, that have large ensemble
calculations to run have large collections independent data sets that
need to be processed. Those jobs can be run in any order, at any
time. This kind of workflow, because it can be submitted all at once,
tends to dominate queue structure and can very easily, through no
fault of the people submitting it, squeeze other, smaller jobs out of
contention for running.

Another common type of job is a “serial” job. Those kinds of
jobs are typical of a long physical simulation, the results of one job
become the input to the next job. Only one job can usefully run
at a time, and the next job in the trail must wait until the first is
finished before being eligible to run.

With the current versions of Moab and Slurm, serial jobs have
problems getting through the queue when there are a lot of bulk
jobs in the queue at the same time. It’s difficult to configure linear
job parameters such that serial jobs chain together efficiently. There
are mechanisms within the scheduling software to help serial jobs
work better, but configuring those in scheduling software opens
up that effect for exploitation by users to get their jobs to run
artificially fast.

In historical system running on Blue Waters, serial jobs tend to
be under-served because of the scheduler configuration conflicts
listed above. Jobs in the range of 256 to 1500 nodes tend to be served
poorly as well. They sometimes take 2 and 3 days to run, even when
the system load is fairly light. Worse, serial jobs in the 256 to 1500
node range are especially poorly served. These jobs’ performance
on Blue Waters were a large portion of the motivation for this work
of trying to find a better way to schedule jobs on a large system,
taking fair-share into account at a fundamental level, rather than
patching it in with historically-based fair-share.

3.4 Linear Priority Scheduling Promotes
Gaming The Scheduler

Linear priority scheduling, by its nature, selects jobs that have
certain desired characteristics. With current versions of Moab and
Slurm and other available schedulers, The system administrators
must adjust the priority weighting of certain job characteristics

in order to make sure that all groups are being represented in the
job mix that the system is running. That also means that users are
incentivized to construct their jobs to match what the scheduler
currently "wants". Because linear priority scheduling combines all
of the job characteristics to a single number, adjusting the priority
weightings to match the current job workload is inescapable. As
new groups move on and off the system, this becomes a resource
drain on the administrators to keep abreast of changes in user
behavior and allocation mixes.

3.5 Managing the Scheduler with Reservations
With traditional scheduling systems, the admins must adjust priori-
ties to try to make sure all types and sources of jobs are running. If
adjusting parameter weights isn’t sufficient, then job groups that
are being under-served can be promoted by giving them standing
reservations on the system. This is very effective for that group of
jobs, but keeping track of reservations requires accounting on both
the sysadmins’ and the user’s parts. It also means the admins have
to in turn remove reservations to let large jobs through, otherwise
they won’t have room to run at all. Having manually-managed
static user reservations has become common in the 2018-2019 op-
erational year of Blue Waters, Simultaneous Fair-share directly
addresses this specific problem and and all the general problems
with linear priority weighting.

4 SIMULTANEOUS FAIR-SHARE
Simultaneous Fair-share is a new way of ordering and running
jobs in a scheduler system that deals with the shortcomings of the
above scheduling compromises in a way that makes scheduling
more efficient and also requiring far less effort from the system
administrators to keep things flowing well.

This proposed definition of the Simultaneous Fair-share sched-
uling strategy assumes an underlying scheduling system such as
Moab or Torque as discussed above. There’s a pool of jobs, which
have linear numerical priorities assigned to roughly balance out
their running orders. However, Simultaneous Fair-share replaces
scheduling logic based purely on running the highest numerical
priority first with a multi-pass loop that gates when jobs are eligible
to be run at a given time. What jobs get scheduled at a given time
is a function of what other jobs are running, what allocation they
are under. This scheduling logic knows what jobs are attached to
what allocations, and more information specific to that allocation
as outlined below.

4.1 Ideal Throughput and Target Throughput
Simultaneous Fair-share is based on the idea that every allocation
on a system has an “ideal occupancy” (sometimes also referred to
as “ideal throughput”). That’s a size of job that if they had one job
of that size continuously running for the entire calendar period of
their allocation, they would exactly use their allocation up just as
the allocation period expired. This ideal occupancy is calculated by
dividing the total amount of their allocation (which is in units of
resource size times time, for instance CPU*hours) and then dividing
by the length of the allocation. So for instance, if allocation “Alice”
has one million CPU*hours on a system and their allocation goes

2019-09-28 11:58. Page 3 of 1–9.
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for one year, then their ideal occupancy (or throughput) T is:

T idealAlice =
1e6 CPU ∗ hr

1yr
×

1yr
365dy

×
1dy
24hr

≈ 114 nodes (1)

If the Alice collaboration configured their application to use exactly
114 nodes, and the application started runningwhen their allocation
was awarded, and it ran the entire year, their allocation amount
would be exhausted exactly when their allocation calendar time
expired. The idea is that if all the allocations on a system used their
allocation at their ideal occupancy rate, the system would be 100%
utilized and every allocation would be able to get their science done
in their alloted time.

In Simultaneous Fair-share scheduling scheme, ideal occupancy
is an important illustrative concept, but it’s not used directly. No
allocation is prepared to run continuously. Operationally there has
to be the assumption there is time for debugging, run preparation,
and presumably sleep on the part of the people doing the work.
So every allocation has a “target occupancy” defined. This is some
factor larger than their ideal throughput. For the purposes of illus-
tration and simplicity, this paper defines the Alice collaboration’s
target occupancy as double their ideal occupancy.

T
tarдet
Alice = (2) ×T idealAlice = 228 nodes (2)

Every allocation on a system has this target occupancy defined.
It’s static over time, it’s only a function of the original awarded
amount of use time, it doesn’t change as the allocation is used.
Typically each allocation’s target occupancy would be the same
factor above their ideal occupancy as other allocations, but that
could be adjusted by the administrators on a case-by-case basis. The
target occupancy for each allocation is used in the Simultaneous
Fair-share job placement algorithm which is described in following
sections.

4.2 Description of Simultaneous Fair-share
Scheduling Process

When traditional schedulers prioritize jobs, they do so using the nu-
merical priority values of the individual jobs, and place (or reserve
space for them) in order of numerical priority and nothing else. All
the scheduling considerations for each job are built into that one
numerical value. That limits prioritization to a one-dimensional
continuum and leaves out many subtleties of context and history
of other jobs being run, which is why that scheme often has to be
adjusted when the job load changes significantly.

Simultaneous fair-share still uses numerical priority for ordering
jobs, but that’s not the overriding consideration for job placement.
Instead, Simultaneous Fair-share splits job placement decisions into
several separate logical passes through the eligible job list. The job
list that each pass uses is specific to that pass and can be dynamic
within the pass.

4.2.1 Scheduling Pass 1. When there’s an opportunity to schedule
jobs to be run on the resource, SFS first builds its local first-pass
job list out of the overall list of eligible jobs. To do this, SFS builds
a list of all of the allocations on the system. For the time slice that
needs to have jobs scheduled, it goes through jobs that are already
running or scheduled to run at that time and totals the size (in
resources, CPUs or nodes) of jobs running or scheduled to run at

that time slice. Then the total for each allocation (within the time
slice) is compared to that allocation’s target occupancy. Allocations
whose occupancy for that time slice exceed their target occupancy
have their jobs removed from the local job list. Allocations whose
occupancy are equal to or below their target have their jobs left on
the job list.

Once the local job list is built for this pass and this time slice,
then scheduling is done for that time slice from the remaining job
list, ordered by numerical priority as in traditional scheduling. After
each job is placed, the per-allocation occupancy list is updated to
reflect the placed job. If the placed job causes an allocation now be
above target occupancy for this time slice, the all remaining jobs for
that allocation are removed from the local job list. This continues
until either no more jobs from the local list can fit at this time, or
else the local job list is empty.

4.2.2 Scheduling Pass 2. SFS then makes a second pass of sched-
uling for that same time slice, but this time using the full eligible
job list, numerically prioritized as before. In the second pass, no
consideration is made whether or not allocations are above their
target occupancy.

5 EXPLICIT EXAMPLE OF SFS WORKING ON
A SMALL SET OF JOBS

This is a simple example to illustrate the Simultaneous Fair-share
process. We have a system with 1000 nodes. There are two alloca-
tions running on the system. The “Alice” collaboration and the “Bob”
collaboration. Their target occupancies are T tarдetAlice = 288 nodes
andT tarдetBob = 58 nodes . The Alice allocation runs jobs that are 200
nodes, the Bob allocation’s jobs are 50 nodes each. Each allocation
has submitted 10 jobs, Alice’s jobs are A,B,C,D,E, F ,G,H , J ,K ,
and Bob’s jobs areM,N , P ,Q,R, S,U ,V ,W ,X . There’s a numerical
weight in the scheduler to favor larger jobs, so Alice’s jobs are
higher in priority and higher in prominence in the overall job list.

The overall job list is:

[A,B,C,D,E, F ,G,H , J ,K ,M,N , P ,Q,R, S,U ,V ,W ,X ]

. The ordering favors Alice’s jobs because they are larger and that
decision has been made by the administrators. There are no jobs
scheduled for the first time slice (the system has just come out
of a maintenance period, the system is empty, and there are no
reservations), so the currently running/scheduled job list for this
time slice is empty: {}.

5.0.1 First Time Slice: First Scheduling Pass. SFS tallies the total
occupancy for each allocation based on the currently scheduled
job list and then builds the first-pass local job list. The currently-
scheduled list is empty, so all occuppancies are zero OC(Alice) =
0, OC(Bob) = 0. All current occupancies in the current time slice
are less than target occupancies, so the local job list is the same as
the overall eligible job list:

local[A,B,C,D,E, F ,G,H , J ,K ,M,N , P ,Q,R, S,U ,V ,W ,X ]

.
The first SFS pass determines job placement based on the local

list. In the first job placement iteration, it places the top priority
2019-09-28 11:58. Page 4 of 1–9.
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job, A, so the new local list is

local[B,C,D,E, F ,G,H , J ,K ,M,N , P ,Q,R, S,U ,V ,W ,X ]

and the running/scheduled list is {A}. Total occupancy (how we
keep track if the machine is full for this time slice) is 200 (out of
1000 nodes)

Second job placement iteration: evaluate occupancies,

OC(Alice) = 200 < T tarдetAlice , OC(Bob) = 0 < T tarдetBob

, all occupancies are still below target, so the local job list doesn’t
change. Job B is highest on the local list, and it’s placed in this time
slice. After placement, the local eligible job list is

local[C,D,E, F ,G,H , J ,K ,M,N , P ,Q,R, S,U ,V ,W ,X ]

and the current running/scheduled list is {A,B}. Total occupancy
is 400.

Third job placement iteration: evaluating occupancies, the Bob
allocation is still below target, OC(Bob) = 0 < T

tarдet
Bob , but the

Alice allocation is now above target for this time slice:

OC(Alice) = 400 > T tarдetAlice

so before further placement considerations, all jobs from the the
Alice allocation are removed from the local eligible jobs list:

local[M,N , P ,Q,R, S,U ,V ,W ,X ]

. After the occupancy considerations, scheduling continues. The
next job placed isM ; at the end of this iteration the local list is

local[N , P ,Q,R, S,U ,V ,W ,X ]

and the scheduled/running list is {A,B,M}. Total occupancy is 450.
4th iteration: Occupancies:

OC(Alice) = 400 > T tarдetAlice ,OC(Bob) = 50 < T tarдetBob

. local[N , P ,Q,R, S,U ,V ,W ,X ], place top priority job N .

local[P ,Q,R, S,U ,V ,W ,X ], {A,B,M,N }

. Total occupancy: 500.
5th iteration: Occupancies:

OC(Alice) = 400 > T tarдetAlice

, now the Bob allocation has exceeded its target occupancy:

OC(Bob) = 50 > T tarдetBob

, so Bob’s jobs are removed from the local list, which is now empty
local[]. Since the local list is empty, there are no jobs to place, and
the first SFS pass ends with scheduled/running list: {A,B,M,N }.
Total occupancy remains 500.

5.0.2 First Time Slice: Second Scheduling Pass. The second sched-
uling pass continues where the first one left off, but now using the
full job list unchanged by occupancy calculations. After the first
scheduling pass, the eligible job list is

[C,D,E, F ,G,H , J ,K , P ,Q,R, S,U ,V ,W ,X ]

and running list {A,B,M,N }. The second pass iterates through the
job list, scheduling the jobs to run, until the machine is full or the
list is empty.

Place job C ,

[D,E, F ,G,H , J ,K , P ,Q,R, S,U ,V ,W ,X ], {A,B,M,N ,C}

, total occupancy 700.
Place job D,

[E, F ,G,H , J ,K , P ,Q,R, S,U ,V ,W ,X ], {A,B,M,N ,C,D}

, total occupancy 900.
The highest current priority job is E, but it’s 200 nodes and there

are only 100 nodes free.

[E, F ,G,H , J ,K , P ,Q,R, S,U ,V ,W ,X ], {A,B,M,N ,C,D}

. How the scheduler deals with this depends on the software. We’ll
assume that we have a reservation depth[5] of 2, so up to 2 jobs can
be considered to be placed with the primary scheduling loop. Job
E won’t fit because it’s 200 nodes and there are only 100 left. The
next job in priority order is F , and can’t be placed in the current
time slice for the same reason. We’ve reached the bottom of the
reservation depth, so the second scheduling pass ends.

5.0.3 First Time Slice: Backfill Pass. Now the scheduler does its
backfill pass, to see if there are any more jobs that it can fill in,
no matter their priority. The Alice allocation jobs won’t fit in the
remaining 100 nodes, but two of the Bob allocation jobs will. Jobs P
andQ get scheduled, so all nodes are occupied for the first time slice,
with an occupancy of 1000. At the end of scheduling for the first
time slice, the running assignment list is {A,B,M,N ,C,D, P ,Q}

and the eligible job list is [E, F ,G,H , J ,K ,R, S,U ,V ,W ,X ].

6 EFFECTS OF SIMULTANEOUS FAIR-SHARE
This example illustrates several advantages of Simultaneous Fair-
share over traditional numerical priority-based scheduling. First,
SFS does not remove the authority of priority weighting to de-
termine what jobs should go first. The priority weighting of this
system is designed to prioritize jobs with high CPU counts, and
that has been accomplished. In the final job configuration of both
time slices in the example here, the 800 of the 1000 nodes in the
example are occupied by jobs with the higher CPU count.

However, the Bob collaboration is still getting jobs through. It’s
accomplishing its work. This is why Simultaneous Fair-share is a
powerful tool. It provides a reasonable fair-share behavior but un-
like traditional history-based fair-share, it acts according to current
information and thus it provides immediate behavior changes.

6.1 How SFS Damps the effects of
Queue-stuffing

Earlier sections described the effects of queue-stuffing. Those effects
will always be present when a system has a mix of groups who
submit lots of jobs early, and those who need time do scale testing
and debugging and then submit in a slower stream of jobs. Unlike
linear priority scheduling, Simultaneous Fair-share gets both groups
what they need. The group with the big initial submissions get
served quickly. As soon as the slower group begin to submit jobs,
their jobs get scheduled in the first scheduling pass up to their
target throughput, so despite the rather full job queue, they see a
very responsive system.
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6.2 How SFS Addresses Under-served Job
Classes

In addition to dealing with queue stuffing well, SFS also automati-
cally addresses the problems of small linear job streams. As long
as a group can run their streams within their target throughput,
their jobs will be scheduled in the first scheduling pass, with good
scheduling turn-around. When one job finishes, that leaves a hole
in the system where jobs can be run, which in turn triggers a sched-
uling pass. Because of the simultaneous nature of SFS, that group’s
occupancy has at that point dropped by the size of the job that just
finished. The first pass scheduling will need to place a job in that
space, and that same group’s next job will naturally fit perfectly.
Sometimes there will be a job that will fit from another group, but
fairly often, jobs will follow on directly from the first one. This
is a natural mechanism that promotes linear job chains as a side
consequence of the way SFS works and is another example of why
SFS is a better algorithm than linear job scheduling.

7 WEAKNESSES OF SIMULTANEOUS
FAIR-SHARE

SFS doesn’t address all contingencies of absolutely all user submis-
sion strategies. The job scheduling algorithm can be exploited by
users who deliberately structure their jobs to take advantage of pass
one scheduling. For instance, users could schedule short-duration
high-occupancy jobs to force the scheduler to drain the system,
then their jobs would be eligible to run right after that. A traditional
history-based fair-share might be a reasonable tool to deploy here.
Any group that had too much total occupancy of jobs over the past
several allocation period would have their jobs lowered in priority
so that wasn’t possible any more.

8 COMPARISONS TO OTHER SCHEDULING
SCHEMES

Moab and other schedulers are obviously aware of the problems
of queue stuffing and under-served job classes. They have some
solutions to these imbalanced use cases (like history-based fair-
share) but they don’t solve the problems as fairly or as completely
as Simultaneous Fair-Share. Moab’s documentation, for instance,
mentions methods to contend with queue-stuffing that could be
harmful to throughput. The Moab documentation[3] suggests using
idle job limits for this purpose: "The primary purpose of idle job
limits is to ensure fairness among competing users by preventing
queue stuffing and other similar abuses. Queue stuffing occurs when
a single entity submits large numbers of jobs, perhaps thousands,
all at once so they begin accruing queue time based priority and
remain first to run despite subsequent submissions by other users.

Simultaneous Fair-Share shares some characteristics with LSF’s
"Dynamic User Priority"[4]; they’re both ways of dynamically plac-
ing jobs according to the current state of running jobs. However, SFS
is much simpler because it doesn’t require dynamic re-computation
of a user’s priority when each job is placed. Also, the Dynamic
User Priority concept is still embedded in the linear priority job
ordering overall philosophy. The power of SFS is that it breaks out
of that mold and allows a cleaner separation of job throughput from
priority scheduling.

9 TESTING THE SIMULTANEOUS
FAIR-SHARE ALGORITHM

Simultaneous Fair-share is a concept at the moment, not part of
an operational scheduler. We have created a very simple schedule
simulator using perl scripts to stand in for the components of a
scheduler system.We then added synthetic users that imitated some
of the production workflows that we have seen on the Blue Waters
system over its history. We ran identical experiments with the
same job inputs to test job throughput through the virtual system.
The experiments were run four times, twice with a traditional
linear priority scheduler with two different scheduling priority
maps, and then twice again with the same priority maps but with a
Simultaneous Fair-Share scheduler.

9.1 Scheduler Simulator
We created a scheduler simulation framework for the purpose of
testing this algorithm. It uses flat files on disk to store job state
information. The scheduler part doesn’t actually manage processor
resources, it just makes scheduling decisions, then other scripts
propagate jobs from the eligible state to running state to finished
state. The simulated machine runs in an accelerated clock, incre-
mented by 5 “minutes” every time the main loop updates. In this
way, several days of simulated system time can be simulated in tens
of minutes. All of the jobs start when scheduled, and then run for
for a random time between 70% and 95% of the requested system
time. Each scenario runs several [hundred] times, and the results
used to produce the analysis shown below.

This simulated scheduler has been configured to have the same
general decision process and calculations as the real Moab scheduler
on Blue Waters system. The jobs are not identical but similar to
several of the common types of jobs that allocations run on that
system system.

9.2 Machine and Job Simulation Setup
The relationship between the simulated jobs and the simulated ma-
chine are designed to mimic (with scaling factors) the relationship
between the actual Blue Waters machine and common jobs that
have been run on it. The simulated machine is 1400 nodes, which
is roughly 16 times smaller than the 22,600 schedule-able nodes in
the Blue Waters XE (CPU) section. The simulation runs over about
two and a half weeks. For the first 7 days of the simulation, three
different users feed jobs into the system. On day 1 through day 7,
Alice feeds 12 250-node jobs into the queue. On days 1 through 7,
Bob feeds 6 65-node jobs into the system. Finally, on day 7, Chris
feeds a 750-node job into the system. The tests start on day 1 with
an empty system, an empty job queue, and then immediately the
first batch of Alice’s and Bob’s jobs are fed into the queue. The
simulation propagates forward 5 minutes at a time.

9.3 Simulation Testing Results
These are the results for the four testing scenarioes.

9.3.1 Linear Scheduler, eligible time dominant. The first configura-
tion is with a linear job scheduler with priority settings similar to
Blue Waters. The eligible-in-queue weight is dominant over node
count. When the simulation starts, Alice’s jobs start right away
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because she has the largest jobs. Bob’s jobs start about 1 1/2 days
into the first week, and then the run on about a 1 1/2 or 2-day
cadence. Bob’s response isn’t great, but it’s not too bad. (However,
if Bob’s jobs were linear, they would half less than 50% duty factor
so that would be a bad.) Chris’s job gets submitted on day 7, but
despite its very large size, because of the emphasis on eligible-time,
Chris’s job doesn’t start for almost 7 days.

Figure 1: Scheduler simulation results. Linear priority sched-
uler, eligible-time dominant (close to Blue Waters stock
scheduler configuration). Alice’s jobs (blue blocks) start im-
mediately, Bob’s jobs (red blocks) start after about a day and
a half latency, Chris’s job (yellow block) starts with a 6-7 day
latency.

9.3.2 Linear scheduler, node-count dominant. Node count is now
dominant over eligible time. Alice’s jobs start quickly as before.
Bob’s jobs are now pushed offmore than 2 1/2 days, and his through-
put of jobs is even lower. Chris’s job does start fairly soon after its
submitted due to the boost in node-count in the priority scheme.
These last two sections are illustrative of the problem that linear
priority scheduling carries with it. Depending on the job mix, the
system administrators will always have to be adjusting the priority
weights to make sure that everyone gets a good chance at getting
resources on the system.

9.3.3 SFS scheduler, eligible time dominant. Original eligible-time
dominant weights but with a Simultaneous Fair-share scheduler.
Alice’s jobs start running immediately. Due to SFS scheduling, Bob
gets throughput immediately. This is great, especially if Bob’s job
topology is linear simulations that read each other’s outputs. The
SFS scheduler doesn’t help Chris, here, though. Chris’s job still waits
multiple days to run. But this is largely because eligible-queue-time
is really a solution for fair-share; it’s designed to make sure jobs
don’t get stale. It’s turned up too high. So for the last scenario, the
balance of node-count will be increased compensate.

9.3.4 SFS scheduler, node-count dominant. For the last of our sched-
uling testing scenarios, we run the Simultaneous Fair-share sched-
uler, adjusted to favor large jobs over old ones. Alice’s jobs, as
always, begin immediately. As with the other SFS scenario, Bob’s
jobs being immediately and he has a steady throughput. The in-
crease node-count priority, though, means that Chris’s job now

Figure 2: Scheduler simulation results. Linear priority sched-
uler, node-count dominant. Alice’s jobs (blue blocks) start
immediately, Bob’s jobs (red blocks) start after about a 3-day
latency, Chris’s job (yellow block) starts in less than a day.

Figure 3: Scheduler simulation results. Simultaneous Fair-
share scheduler, eligible-time dominant (close to Blue Wa-
ters stock scheduler configuration). Alice’s jobs (blue blocks)
start immediately, Bob’s jobs (red blocks) start immediately,
Chris’s job (yellow block) starts with a 6-7 day latency.

starts within a day of when it was submitted. So Simultaneous fair-
share schedule, with the priority scheme favoring high node-count
jobs now favors high-node-count jobs (Chris and Alice) but also
gives Bob’s jobs good throughput.

10 NEXT STEPS FOR SFS RESEARCH
The very simple scheduler simulator was enough to show that the
basic idea of Simultaneous Fair-share is viable and changed schedul-
ing calculations as expected, but broader testing is required before
deploying SFS on a real system. We are upgrading the simulation
to use a database back-end rather than disk files so it can handle
large job volumes. Once that’s done, we will use weeks and per-
haps months of (properly anonymized) job trace data from the Blue
Waters system to test the SFS algorithm against the stock Moab
scheduler handled the same job mix.

If SFS holds up to real scale and real job placement then we
plan to create an SFS scheduling plugin for Slurm. Slurm has a
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Figure 4: Scheduler simulation results. Simultaneous Fair-
share scheduler, node-count dominant priority weighting.
Alice’s jobs (blue blocks) start immediately, Bob’s jobs (red
blocks) start immediately, Chris’s job (yellow block) starts
almost immediately.

plug-in architectures, so we will be able to create an SFS-driven job
prioritization scheduler that will use the Slurm infrastructure. The
documentation of the Slurm Scheduling plugin API[10] and the
Slurm Resource Selection Plugin API[9], and statements elsewhere
in the documentation[8] such as "By default, Slurm assigns job
priority on a First In, First Out (FIFO) basis. FIFO scheduling should
be configured when Slurm is controlled by an external scheduler."
all suggest that a scheduler can be implemented as an external
module using the Simultaneous Fair-share algorithm but using the
Slurm infrastructure to handle the job launching. This would make
it very easy to deploy SFS to any sites that use the Slurm scheduler,
as the installation and infrastructure is already in place.

11 CONCLUSIONS
This paper has explained why linear priority scheduling has inher-
ent weaknesses that made it very vulnerable to changes in HPC
system job mixes. The new proposed Simultaneous Fair-Share al-
gorithm would, if implemented, vastly improve the efficiency of
scheduling HPCworkloads and decrease the need for direct involve-
ment of system administrators. While it’s not a complete defense
against deliberate manipulation of the scheduling algorithm by
users, it would eliminate several classes of under-served jobs with-
out having to specifically tune linear scheduling parameters for
that task.
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A ARTIFACT DESCRIPTION APPENDIX: A
BETTERWAY OF SCHEDULING JOBS ON
HPC SYSTEMS:
SIMULTANEOUS FAIR-SHARE

A.1 Abstract
One of the options for including an artifact in a submission is a detailed
description of a method or an algorithm. As such, since this paper
is a detailed description of a scheduling algorithm, the paper itself
could serve as the artifact. However, in case an additional functional
code algorithm is required, I have included the source code tarball
as well of the simulation as run. The version provided is an early
proof-of-concept version that demonstrates the scheduling principles
involved and is what generated the graphs shown in this paper. To
run the simulation, follow the instructions in the README file in the
top directory of the tarball.

A.2 Description
• Program: scheduler simulation with driver scripts
• Execution: see the README file in the tarball

A.2.1 How software can be obtained . This simulation is not re-
leased. Development tarball used for generation of the graphs in
this paper provided with submission.

A.2.2 Hardware dependencies. No hardware dependencies.

A.2.3 Software dependencies. Only requires generic bash and perl,
and python for the graphing.

A.2.4 Data-sets. This artifact consists entirely of a self-contained
simulation made up of a collection of scripts. I doesn’t have any
internal data sets; all uncertainty is randomly generated using
language random functions.

A.3 Installation
Untar the tarball. Follow the instructions in the README file.

A.4 Experiment workflow
Follow installation and run instructions in the README.

A.5 Evaluation and expected result
Use the sfs_histo_results.pl file on the output directory generated
by the simulation to visualize the results. This won’t quite produce
the same display as the graphs in the figures but it will produce
graphs with the same information that can be used to evaluate the
simulation results.

A.6 Experiment customization
The README lists how to modify the simulation. You can modify
the scheduling library file to set the scheduling priority weights,
and modify
sfs_do_new_time_iteration.pl

to select which scheduling algorithm to use.
2019-09-28 11:58. Page 8 of 1–9.
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