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Introduction

A Multilevel Support Vector Machines (SVM) is a fast scalable

framework for SVM. This document is developed to provide a

guide to users for installation, parameters, and use cases. The

details of the framework are available at [T, 2]
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1 Installation

2 Overall procedure

3 Input File Formats

4 Tools

The required packages which needs to be installed are PETSc [3],
Metis [4]], LibSVM [;5]], FLANN [6], and pyFLANN.

Suppose you installed the framework successfully, you need to go
through below steps to prepare a training data set, train a model(s),
and predict the test data.

1. Save the data in PETSc binary format (Section 3).

2. For raw data, normalize the data using z-score function. In case the
data were normalized in advance, please ignore this step. (Section

4.3).

3. Calculate the k-Nearest Neighbors (Section [4.4).
4. Set the parameters and run the MLSVM classifier (Section s).

5. Use prediction tools to predict the test data (Section [8).

The default data for the MLSVM framework is saved in a PETSc binary
format. Using mlsvm_libsvm_petsc, you can convert the LibSVM data
file format to PETSc Binary format (Section [.1).

Using mlsvm_csv_petsc you can convert the CSV format. The label
should be in the first column in the left and the data is filled in columns
afterwards. The lines with “#” symbol in the beginning are considered
as comments (Section [4.2).

There are steps such as converting, normalizing and calculating the
k-Neareset Neighbors which are only used once for a data set. The
results are saved in files and use for training the models. The details
for each tool are explained in the following sections.

4.1 LibSVM file to PETSc Binary

The “mlsvm_libsvm_petsc" can be compiled using the make. The
parameters “—ds_p” and “~£” are used to set the path and input file
name respectively. The output includes two files. One for data and
one for labels. The files will be saved at the same path using “_data.dat”
extension for data file and “_label.dat” for the labels. An example is
provided in the docs/usecases folder.



4.2 CSV file to PETSc Binary

It has the same parameters and outputs as “mlsvm_libsvm_petsc". The
input is CSV file format and the first column is the labels. The labels
should be +1 or —1. The input name should not include the “.csv”
extension.

4.3 Normalize the data using z-score

It normalizes the data using z-score. The whole data with file name
such as X_data.dat will pass as “~f X”. The “mlsvm_zscore” stores the
output as a matrix in file X_zsc_data.dat.

4.4 Calculate the k-Nearest Neighbors

We use the FLANN library [6]. You need to install the pyFlann and
NumPy and SciPy packages as well. One convenient way is to use
Anaconda library and use the “pip install pyflann”. The PY_PATH
environment variable is required. For using Anaconda, just set the
PY_PATH to “anaconda/bin/”

4.5 View PETSc binary file

5 Parameters

6 Outputs

The “petsc_utility” folder includes both get_mat_info and get_vec_info
which can be used to see the contents of a matrix and vector in PETSc
binary format respectively.

First, go inside the petsc_utility folder. Then “make get_mat_info”
and “make get_vec_info”. The data file is saved as a matrix and the
label file is saved as a vector. The output of these tools will be as large
as the content of the file which probably clutter your terminal. Hence,
try to export the standard output to text files or using less or more
commands to handle the output. The parameter to specify the input
file is “-i” instead of “~f” and you need to pass the full path along with
the file name completely. You can find a use case in docs.

The parameters are explained in the params.xml file. The main param-
eters are explained in Table

There are two set Of outputs.

* One is the standard text results of the information regarding the
results of trainings, validations and predictions. The parameters
which are used, size of data at each level, The type and volume of
logs can be customized. The details are explained in section



--ds_p

-f,--ds_f

--tmp_p

--cs_pi

-t,--cs_t
-q,--Cs_q
-r,--cs_r
--cs_m

—-—CSs_we
-V

--rf_2nd

--pr_start

-—pr_max

--mv_id

Table 1: List of Parameters
Set the number of nearest neighbors

Set the distance type for nearest neighbors

Set the random seed. The random seed will increase at the
beginning of each experiment inside your run.

Set the number of experiment which includes the whole k-
fold cross validation

Set the number of folds in the k-fold cross validation. The
default is 5 or 10.

Set the path to data set files

Set the name of data set. Remember, this is the name before

_data.dat or _zsc_data.dat

Set the path to temporary folder which is used to store the
test data files

Set the maximum number of features in the training data.
The default is 300. Please set this value to the maximum
number of features you have in the training data, otherwise
the performance degrades.

Set the threshold for the coarsening to stop. This value is for
each class not both classes together.

Set the threshold for adding fine points as seed to increase the
number of seeds. The default value is 0.4

Set the number of fractions which are allows to participate in
each aggregates in the coarsening.

Set the maximum level of coarsening to stop it from infinite
loops. It will be deprecated in future versions.

Set the threshold for filtering the weak edges.

Set the fraction of training data to be used as the validation
data. The range is between [0,1] and the default is 0.1

The 1 adds the distant 2 neighbors during the refinement.
The default value is o.

Set a threshold for starting the partitioning when the number
of points reaches to this number in both classes during the
refinement

Set the maximum number of data points in each partition for
each class

Set the type of majority voting in case of partitioning (parti-
tioning produces multiple models).



7 Log Levels

8 Prediction

9 Use Cases

* The trained models and the summary of the models in files are saved
in the svm_models folder. The summary file includes the information
for the number of experiments and the number of k-folds in the
first line. The rest of the summary file maintain the information for
the best level at a specific fold of an experiment and the number of
models. The number of models are 1 normally unless the partitioning
has happened which has produced multiple models. These models
would be used for prediction of unseen data points in future.

All the steps of the framework can generate a spectrum of logs from
almost nothing to an extensive logs. There are macros in the “con-
fig_logs.h” which controls the volume of logs for the main parts of the
framework. The default values are suggested as comments in the file.
For some data set, more details in the log might be required which
can easy set in the file. A clean and complete compile of the code is
required after changing the log levels.

For large logs, exporting the standard output to a file would help to
reduce the difficulty to search and analyze the logs later. We cover
required commands in section@

The prediction happens in the end of each level on both validation and
test data. The results printed in the standard output. A stand-alone
program to predict just one model has not developed yet! Please email
me if you are interested to have a stand alone program for prediction.

In the docs folder inside the GitHub repository, you can find the
sample run commands for different parts.
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