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Application of Microfluidics in Life Sciences
	 Microfluidics can be defined as the study of fluid and air flows 
in microchannels and was initially introduced to facilitate liquid  
handling and sample preparations. Early work dates back to 1969 with 
Lew’s work on a theoretical solution for mimicking blood and air flow 
in a microcirculatory system of the lung [1]. In this precursor stage 
of microfluidics the aim was to create a biomimetic system, which  
facilitated the study of biological pathways in vitro. It was not until 
the 1990s that the field of microfluidics emerged from miniaturization  
efforts and Micro-Electro-Mechanical Systems (MEMS) as an  
enabling technology platform for dispensing systems, analytical  
separations, chemical reactions, and bioanalysis applications. Since 
then, microfluidics has evolved into an established technology  
ranging from medical solutions (e.g., microfluidic inhalers), in vitro  
diagnostics (e.g., point of care) and production applications  
(e.g., microreaction technologies) [2]. More recent research  
applications include microchips for genomics, proteomics and  
cell-based assays.

	 These microfluidic cell cultures are considered potential  
candidates to provide next generation cell analysis systems. Starting 
from single cell analysis using miniaturized flow cytometers [3] a  
variety of microfluidic devices have been developed for cell studies to 
investigate cell transport and cultivation in the absence and presence 
of concentration and temperature gradients or shear force conditions. 
The main benefit of microfluidic systems for cell culture analysis is that 
they can perform a number of crucial liquid handling steps including  
cell loading, nutrient supply and waste removal under  
physiologically relevant shear force conditions, all while offering real 
time microscopy [4]. Microfluidics also enables precise regulation  
of soluble factors including drug candidates, growth factors at  
specific solution concentrations and gradients, thus providing robust 
and reproducible measurement conditions. An alternative application 
of microfluidics for cell analysis is micropatterning to (a) optimize  
control of cellular behavior [5], (b) allow cell migration [6],  
(c) spatially resolve co-cultures systems [7] and (d) define cell  
repulsive and adhesive areas [8].

	 Despite recent achievements of microfluidic 2D cell culture  
systems [9], they still do not address the fact that in vivo cells coexist in 
3D communities that are influenced by spatial orientation of cells and 
cell-to-cell contact within the extracellular matrix [10]. It has been 
repeatedly demonstrated that the presence of a 3D matrix promotes 
many biologically relevant functions otherwise not observed in 2D 
monolayer cell cultures [11]. Consequently a transition from 2D to 
3D cell cultures has gained momentum as an increasing number of  
reports have confirmed significant differences in the morphology,  
protein expression, differentiation, migration, functionality and  
viability of cells between 3D and 2D cell cultures [12]; these  
non-microfluidic advances are further discussed elsewhere [13]. It has 
been shown that the chemical composition of the ECM is a crucial 
factor regarding cell shape, differentiation and interaction [14]. For 
example, 3D cell culture is particularly interesting for investigation of  
tissue cells normally situated within a dependent, functional  
Extracellular Matrix (ECM), such as chondrocytes [15]. While  
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Abstract
	 The application of hydrogels as a matrix for 3-dimensional cell 
cultures has become an indispensable tool in tissue engineering,  
biotechnology and biomedical research due to the improved  
functionality and viability of the in vitro biological system. The  
combination of 3-dimensional hydrogel cell cultures with microchip  
technology further allows (i) spatial and temporal control of 
cell growth, (ii) application of defined mechanical (e.g., shear, 
strain, stretch) and chemical (e.g., gradients) stimuli, as well as  
(iii) monitoring of dynamic cellular responses using integrated  
sensing strategies. The main advantage of hydrogels for  
microfluidic cell cultures, however, is their mimicry of extracellular  
matrix structures including adequate porosity for cellular  
organization, biocompatibility, and representative stiffness, all key 
parameters that promote native-like tissue function. This review  
focuses primarily on recent advances in biologically inspired  
microfluidic systems that are based on 3-dimensional hydrogel cell 
cultures and discusses advantages and current challenges, various  
applications of microfluidic hydrogel cell cultures and future  
perspectives.
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cartilage ECM can be mimicked with biocompatible hydrogel, such as 
hyaluronic acid [16], with variable porosity and mechanical stiffness, 
3D cultured chondrocytes also display a more native morphology and 
secrete ECM components. Moreover, when biodegradable scaffolds 
are used for 3D chondrocyte culture, native-like articular cartilage  
replaces the degraded hydrogel in a time dependent fashion [17].

	 In recent years, bioMEMS applications for hydrogels have been 
reviewed elsewhere [18] and a variety of microfluidic 3D cell culture 
platforms have been developed for recreating highly complex and 
well-controlled 3D microenvironments that mimic the biological 
niche [19]. In particular, culturing cells in hydrogels has shown to 
be useful in helping cells retain their native tissue-specific functions  
by mimicking the in vivo 3D tissue environment [20]. The  
combination of 3D-hydrogel cell cultures with microfluidics offers 
several advantages including (1) appropriate microscale dimensions 
that are comparable to in vivo microstructures; (2) establishment of 
chemical gradients to create dynamic 3D microenvironments; and  
(3) creation of reproducible medium-matrix biointerfaces,  
culminating in unprecedented temporal and spatial cellular control  
[21]. Fabrication of microfluidic devices [22] and microfluidics  
dedicated to cell culture have been reviewed previously [23].  
Consequently the present review introduces recent advances and  
future applications of microfluidic 3D hydrogel cell cultures in the  
following sections.

3D-Hydrogels for Microfluidic Cell Culture  
Applications
Advantages and disadvantages of hydrogels for cell culture 
applications
	 Hydrogels are three-dimensional networks composed of various 
natural and synthetic polymers that retain water by swelling up to a 
percentage of 90%, thus mimicking the naturally surrounding of the 
extracellular matrix [24]. Hydrogels can be classified in two basic  
categories based on the origin of their composing polymer such as 
natural and synthetic monomers [25]. Natural or biological hydrogels  

used for microfluidic cell culture applications include agarose [26], 
chitosan [27], alginate [28], Hyaluronic Acid (HA) [29], collagen [30], 
dextran [31], fibrin [32], Matrigel [33], laminin [33], and silk fibroin 
[27]. In turn, synthetic hydrogels have been used in combination with 
microfluidics and are based on Poly-Ethylene Glycol (PEG) [34], 
Poly (Ethylene Glycol) Diacrylate (PEG-DA) [35], 2-Hydroxyethyl 
Methacrylate (2-HEMA) [36], Poly-2-Hydroxyethyl Methacrylate 
(PHEMA) [37], Poly-L-Lactic Acid (PLLA) [38], Poly-Lactic-co-Gly-
colic Acid (PLGA) [39], Poly-Glycerol Sebacate (PGS) [40] and  
PuraMatrixTM [41], which is a fully synthetic peptide-based polymer.  
Among these, the most extensively employed hydrogel for  
microfluidic cell culture applications is PEG and compounds thereof.

	 Important functions of hydrogels in microfluidic devices are the 
establishment of cellular barriers, the encapsulation of cells and/or 
drugs and their distribution, as well as the production of scaffolds 
and wound healing matrices. Table 1 lists commonly used hydrogels 
for microfluidic 3D cell cultures based on the function of the matrix.  
This broad bandwidth of hydrogel functions is also reflected in their 
importance in current and future biomedical applications. The main 
advantage of hydrogels for microfluidic cell cultures, however, is 
their mimicry of extracellular matrix structures including adequate  
porosity for cellular organization, biocompatibility, representative 
stiffness and influence on cellular fate [42,43], all key parameters 
that promote native-like tissue function. As an example, due to their  
relative ease of use [44], matrix density can be readily adjusted by 
the degree of polymerization, which has been shown to significantly 
impact cell fate due to apparent diffusion restrictions and increased 
mechanical stiffness [45]. In another study, synthetic hydrogels were 
combined with biopolymers to mimic the different zones of in vivo 
cartilage using stem cells [46,47]. Moreover, the development of  
so-called “smart hydrogels” has allowed for time-dependent release of 
bioactive compounds to trigger cell responses [48,49]. Furthermore, 
hydrogel barriers have also been used to create chemical gradients 
[50]. A detailed review on fabrication of advanced hydrogels for ECM 
mimicry is covered elsewhere [51].

Function Hydrogel (Name / origin*) Composites (cells, drugs, proteins) References

Barrier

 Dextran N Breast carcinoma, endothelial cells Zervantonakis IK et al., [52]

 Collagen N Primary human kidney proximal tubular epithelial cells; cisplatin Jang KJ et al., [53]

Cell Delivery

 PEG-DA S Hepatocytes Li CY et al., [54]

 PEG S Leukemia suspension cells; cervical cancer cells Patel et al., [55]

 Dextran-chitosan N Fibroblasts Oh J et al., [31]

 PEG S Mouse myoblast cells; placenta-derived human mesenchymal stem cells; ESC Allazetta S et al., [51]

 PGS-PEG S Rabbit bone marrow derived mesenchymal stem cells Wu Y et al., [40]

Drug Delivery/ Screening

 HA N Bone metastatic prostatecancer cells; camptothecin; docetaxel; rapamicin Gurski LA et al., [56]

 Alginate N Vitamin B12 Bal D et al., [57]

 Collagen N Skeletal muscle cells Shimizu K et al., [30]

 PHEMA S Poly(l-histidine) Tarameshlou M et al., [58]

 PLLA S Paclitaxel He T et al., [38]

 PuraMatrix TM S Breast cancer; non-small cell lung cancer; microvascular endothelial cells Dereli-Korkut Z et al., [41]

 PEG-DA S Hepatocytes Li CY et al., [54]

 PLGA S Paclitaxel; BSA; cadmium sulfide nanoparticles Heslinga MJ et al., [39]

Agarose-chitosan N 5-fluorouracil Zamora-Mora V et al., [26]
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	 Despite their many advantages, a number of drawbacks using 
hydrogels for microfluidic cell culture applications still exist and are 
associated with biodegradability, limited reproducibility and lack of 
standardization. For instance, in order to inhibit rapid degradation 
the addition of supplements, such as Aprotinin, throughout culture 
life may be required to maintain biodegradable hydrogel structures  
as ECM [64]. Additional technical limitations include bubble  
formation and inherent difficulties with introducing cell laden  
hydrogels in microfluidic channels prior to polymerization. Lastly, the 
optimum length of culture time for 3D cell populations has yet to be 
established for microfluidic devices [65].

Relevance of Hydrogels for Microfluidic 3D Cell 
Culture Systems
	 Since the Extracellular Matrix (ECM) is part of the natural  
microenvironment that influences cell organization, behavior and 
fate, it plays a key role for the development of advanced in vitro 3D 
cell-based assays [51]. For instance, substrate mechanics can also  
impact elements of cytoskeletal signaling; by varying mechanic  
properties of the applied substrate, MSC can be directed toward  
tendon or bone differentiation [66]. Furthermore, the interactions  
between stem cells and the ECM is known to generate signals relevant 
for cell proliferation, stimulation, differentiation and apoptosis, thus  
ultimately influencing tissue formation, repair and healing  
processes. When these communications fail, degenerative and  

autoimmune diseases, cancer, and diabetes can develop [67] or  
progress pathologically in vivo. Similarly, cell-cell interactions  
including signaling between same cell type and co-cultures  
significantly influence tissue organization, remodeling and stem cell 
differentiation [68,69]. Consequently microfluidic 3D cell culture 
systems have been used to study cell-matrix interactions as well as 
paracrine signaling in co-cultures of stem cells [70]. A recent example  
using a microfluidic channel network containing several  
interconnected chambers investigated the interaction between  
different cell types and diverse tissues and organ structures such as 
blood vessels [71]. Additionally, micropatterned cells have been used 
in cancer research to assess cell migration and invasive capacity of 
co-cultures in different hydrogels including collagen type I, Matrigel  
and fibrin [72]. Results of a similar study (Figure 1) showed that 
tissue function was significantly enhanced when hepatocytes were 
mixed with non-parenchymal cells in varying hydrogel layers with 
differing stiffness [73]. Another example of micropatterning, figure 
2 displays neural cells in hydrogel for researching neuronal network  
formation [74]. Overall, hydrogels used in 3D cell culture settings  
mimic the extracellular matrix including chemo- and  
mechanotransduction events, thus allowing the investigation of  
cell-cell interaction as well as cell-matrix interactions. Although 
natural hydrogels are inherently biocompatible and usually  
biodegradable, synthetic hydrogels offer ease of use and decreased 
back ground noise when employing proteomic analyses and other  

Encapsulation

 PEG S Leukemia suspension cells; cervical cancer cells Patel et al., [55]

 Alginate S Hybridoma cells; mouse breast cancer cells Akbari S et al., [59]

 PLLA N Paclitaxel He T et al., [38]

 Dextran-chitosan N Fibroblasts Oh J et al., [31]

 HA N Mesenchymal stem cells Bian L et al., [29]

 Fibrin N Chondrocytes; mesenchymal stem cells Huipeng MA et al., [60]

 Collagen N Skeletal muscle cells Shimizu K et al., [30]

 PHEMA S Poly(l-histidine) Johnson RP et al., [37]

 Fibrin N Human umbilical vein endothelial cells; human lung fibroblasts Whisler JA et al., [61]

 PGS-PEG S Rabbit bone marrow derived mesenchymal stem cells Wu Y et al., [40]

 PLGA S Paclitaxel; BSA; cadmium sulfide nanoparticles Heslinga MJ et al., [39]

 Matrigel N Adult murine pancreatic cells Jina L et al., [33]

Entrapment

 HA N Mesenchymal stem cells Bian L et al., [29]

 Alginate N Breast cancer cells; doxorubicin Yu L et al., [62]

Implant

 2-HEMA S Silicon Schwerdt HN et al., [36]

 PVA S  Bian L et al., [29]

 PGS-PEG S Rabbit bone marrow derived mesenchymal stem cells Yu L et al., [62]

Scaffold

 Fibrin N Human umbilical vein endothelial cells Park YK et al., [32]

 PEG S Mouse embryo fibroblasts Guarnieri D et al., [34]

 Fibrin-Collagen N Human umbilical vein endothelial cells Park YK et al., [32]

 Collagen N Human umbilical vein endothelial cells Park YK et al., [32]

 HA N Glioma cells; chondrogenic MSC Lee KH et al., [63] and Toh et al., [16]

 Chitosan-Silk N Hepatocytes He et al., [27]

 Laminin N Adult murine pancreatic cells Jina L et al., [33]

Table 1: Overview of frequently used hydrogels for 3D-microfluidic cell cultures.
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biologic assays [75]. These simulated ECM techniques are expected to 
‘bridge the gap’ between monolayer cell culture and intensive animal 
trials [76].

	 Microfluidic system incorporating micronozzle array structures 
for producing patterned, complex hydrogel microfibers (Schematic  
&fluorescence micrographs) composed of a rigid and  
cell-encapsulating soft regions for guiding cell proliferation and 
forming intercellular networks. Inset (right) shows a bundle of  
hydrogel microfibers. Adapted from Kitagawa Y, Naganuma Y,  
Yajima Y, et al., [74]. Patterned hydrogel microfibers prepared using 
multilayered microfluidic devices for guiding network formation of 
neural cells. Biofabrication, 6: 035011. http://iopscience.iop.org/1758-
5090/6/3/035011) © IOP Publishing. Reproduced with permission. 
All rights reserved.

Manipulation and Sensing of Microfluidic 3D  
Hydrogel Cultures
3D Hydrogel cell culture treatment using shear forces, 
stretching and patterning 
	 One of the main benefits of applying hydrogel for microfluidic cell 
cultures is the ability to establish of chemical and biological gradients 
in the hydrogel. For instance, the combination of different hydrogel  
types composed of collagen and hyaluronic acid has shown an  
improvement in the adhesion, migration and proliferation of Human 
Umbilical Vein Endothelial Cells (HUVECs) in response to a Vascular  
Endothelial Growth Factor (VEGF) gradient controlled by  
microfluidic channels during in vitro mimicking of sprouting  
angiogenesis [77]. As illustrated in figure 3, microfluidics can be used 
to stimulate 3D hydrogel cultures thus simulating different cellular  
in vivo situations including shear stress, strain and stretch,  
compression, gravity and intracellular architecture [78]. In other 
words, pulsatile or constant shear force at different flow rates and  
biaxial or uniaxial stretching can be applied to mimic more complex 
biological niches. It is important to note that any changes of the ECM  

composition or stimulation will influence not only the interactions 
between cells and ECM, but also mediate cell to cell communication 
and signal transduction, thus guiding biological responses [79]. For  
instance, shear flow can provoke a direct tension force on the  
cellular cytoskeleton, provisioning the opening of stretch-sensitive 
ion channels and allowing ion flux inside the cell, thus counteracting 
mechanical deformations in the membrane. Laminar flow dynamic  
effects specific to vascular endothelial cells have been extensively  
reviewed elsewhere [80]. Studies in bone on a chip measured calcium  
dynamics at different flow rates showing that the Ca+2 response of  
osteoblasts was enhanced in high shear-stress conditions [81]. Also 
the application of shear forces (Figure 3d) have been shown to modify  
the morphology of endothelial cells into a more elongated shape [82], 
which in turn induced different cellular connections and changes 
in the cytoskeleton [78]. Other examples of shear force guided cell  
behavior involve flow directed axon guidance of neurons [82] and  

gene regulation [22,84]. Finally, a microfluidic device was developed 
to investigate how mechanical stress affects protein uptake by renal 
tubular epithelial cells [85].

	 Reproduced in part from: Kurth F et al., [78]. A new 
mechanobiological era: microfluidic pathways to apply  
and sense forces at the cellular level. Current opinion in chemical  
biology, 16: 400-408. Copyright (2012), with permission from Elsevier
A.	Shear stress induced cell stimulation and images showing the  

fabricated microfluidic channel having four branch channels with 
patterned substrate containing a flat surface, 400 nm pillars, 400 
nm perpendicular lines, and 400 nm parallel lines (SEM images). 
Reproduced in part from Ref 96 with permission of The Royal  
Society of Chemistry

B.	Micro-scaled cell stretching devices using multi-layer PDMS-based  
device in combination with pneumatic actuation of a flexible  
membrane. Reproduced in part from Ref 161 with permission of 
Springer; reproduced in part from Ref 190 with permission of The 
Royal Society of Chemistry

C.	Microfluidic device for compressive cell stimulation that mimics 
the mechanical strains in blood vessels. Reprinted in part from Kim  
 
 
 

Figure 1: Schematic showing the preparation procedure of the  
stripe-patterned heterogeneous hydrogel sheet (A) and formation of  
heterotypic micro-organoids in the soft/solid hydrogel sheet (B). Reproduced 
with permission of Elsevier [73].

Figure 2: Patterned hydrogel microfibers in microchannels.

Figure 3: Stimulation strategies of microfluidic 3D cell cultures.
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YC, et al., [86].Microfluidic biomechanical device for  
compressive cell stimulation and lysis. Sensors and Actuators  
B: Chemical, 128: 108-116. Copyright (2007), with permission from 
Elsevier

D.	Elastomeric microposts integrated into microfluidic for  
flow-mediated mechanotransduction analysis of single HUVECs  
plated on the PDMS micropost arrays coated with different  
adhesive patterns of fibronectin (left: uniform coating, right: an  
array of circles). The PDMS microposts were labeled with DiI 
(red), while HUVECs were stained for the nucleus (blue) and actin  
microfilaments (green). Scale bar, 50 µm. Reproduced in 
part from Lam RH, et al., [82] Elastomeric microposts  
integrated into microfluidics for flow-mediated endothelial  
mechanotransduction analysis. Lab Chip; 12: 1865-1873, with  
permission of The Royal Society of Chemistry

	 For some organs such as the heart, lungs or arteries, there is a  
repetition in stretching and straining movements that can also be 
mimicked in microfluidic devices by integrating flexible membranes  
[87] or by combining sold and fluid mechanical stress [88]. A  
prominent microfluidic device developed as a tool that can be used 
with any kind of cells under mechanical stimulation and optical  
imaging was developed by Huang [89]. A similar approach shown in 
figure 3b studied how fibroblasts change their orientation according  
to the direction of the stretching [90]. In addition to stretching,  
compression is also an important stimulation for simulating the  
environment for cells forming bones and cartilage [91-94]. Also, 
stem cells have been found to differentiate on a chip under straining  
stimulation simulating the vascular system [95], as illustrated in  
figure 3b. In order to study cellular response to compression  
(Figure 3c), a chip that produces cellular lysis was designed to  
facilitate on chip cell-based analysis [86]. Compression studies in a 
chip with individual leukemic cells showed that extracellular calcium  
uptake was upregulated in stimulated cells [96]. Furthermore,  
mechanical compression has been used to investigate axonal  
degeneration after compression trauma [97] and for some diseases  
such as osteoarthritis [98]. Moreover, it seems that compression  
forces provoke shear stress of interstitial fluid in bone, thus  
upregulating osteogenesis [99]. Fluid dynamics, both 2D and 3D, in 
skeletal tissue engineering are reviewed in depth elsewhere [100].

	 Another cell manipulation method employed in microfluidics 
is micropatterning to study cell-cell and cell-matrix interactions to  
provide a deeper understanding in regard to bottom up tissue  
engineering [101]. In particular, this technique has been used 
for cell sorting and enrichment on-a-chip by using a diversity of  
nanostructures (Figure 3a) which provoked adhesion alterations  
between different cells [102]. Moreover, micro scale cell patterning 
is considered a promising field in regenerative medicine because it  
addresses the limitations of macro scale tissue engineering [103]. 
These traditional, top down engineering approaches in which cells 
are seeded onto bioscaffolds lack functional histostructural tissue  
integrity, result in suboptimal in vitro and in vivo performance. In 
turn, micro scale cell patterning is advantageous due to its inherent 
high resolution, creating cell based and cell derived tissue that mimics  
the native organ. Microfluidic cell patterning has been most  
commonly described using dielectrophoretic sorting and 3D printing;  
protein gradients have also been reported using microfluidic  
patterning [104] Hydrogel based microtissues have been used to  
assemble functional organoid conglomerates [105,106] and  
microvascular networks [107]. Despite its potential, microfluidic  

bottom up techniques are still susceptible to microfluidic  
complications, particularly those affecting long term cell culture  
handling including shear stresses, medium evaporation, and limited 
capacity for cellular growth [108].

Cell-Based Biosensing Assays for Hydrogel Cultures
	 In recent years, a variety of biosensing techniques based on  
optical, mechanical, electrical and magnetic methods have been  
integrated into microfluidic devices for measuring and analyzing  
cellular behavior [109-114]. Despites these advances, the above  
mentioned sensing systems are predominantly applied for 2D cell  
cultures, while microfluidic 3D hydrogel systems are still limited to 
optical microscopy. Consequently optical methods such as standard  
microscopically supported monitoring are state of the art when  
working with three-dimensional structures. In figure 4b, Nguyen et 
al., used classical fluorescence microscopy to monitor the sprouting 
and neovascularization behavior of endothelial cells from an artificial  
vessel into a collagen matrix [115]. Son and co-workers used time lap
se fluorescence microscopy for detection of cell-secreted proteases,  

Figure 4: Sensing strategies in microfluidic 3D cell cultures.

A) Detection of MMP9protease release from Lymphoma cells bound within  
hydrogel rings using FRET. Protease molecules diffused into the gel 
and cleaved FRET peptide, resulting in fluorescence signal loss. 
Scale bar: 500 μm. Adapted with permission from Son KJ et al., [116]  
Micropatterned Sensing Hydrogels Integrated with Reconfigurable  
Microfluidcs for Detecting Protease Release from Cells. Anal Chem. 85, 
11893-11901. Copyright (2013) American Chemical Society

B) Microfluidic chip with integrated electrical cell-impedance sensors for 
monitoring single cancer cell migration. Cross-section of the device including 
schematic of the sensor chip consisting of microelectrode arrays, cell capture 
arrays, and microfluidic channel with inlet and outlet, a V-shaped structure  
for single cell trapping. Reprinted in part with permission from  
Nguyen TA et al., [118]. Microfluidic Chip with Integrated Electrical  
Cell-Impedance Sensing for Monitoring Single Cancer Cell Migration in 
Three-Dimensional Matrixes. Anal Chem; 85, 11068-11076. Copyright 2013 
American Chemical Society

C) Hydrogel-based diffusion chip containing impedance sensors for cell  
viability assay and drug toxicity screening. Schematic: diffusion from  
condition channel to control channel through the hydrogel chamber. 
Adapted from Tran TB [120] Hydrogel-based diffusion chip with Electrical  
Cell-substrate Impedance Sensing (ECIS) integration for cell viability assay 
and drug toxicity screening. Biosensors and Bioelectronics; 50: 453-459, 
Copyright (2013), with permission from Elsevier

D) Impedimetric biosensor array consisting of 16 gold electrodes to study  
neuronal differentiation and signaling processes. Reprinted from Valero 
T et al., [119] Studies on neuronal differntation and signalling processes 
with a novel impedimetric biosensor. Biosensors and Bioelectronics; 26,  
1407-1413., Copyright (2010), with permission from Elsevier
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responsible for the degradation of extra cellular matrix structures 
[116]. They designed a FRET (Fluorescence Resonance Energy 
Transfer) pair bound to a peptide, cleavable by the Metalloproteinase  
(MMP) 9, and incorporated them into a hydrogel-ring, as  
demonstrated in figure 4a. Lymphoma cells were then captured via  
antibodies inside of the ring and afterwards triggered for the  
production and release of MMP9. The released proteins diffused into 
the hydrogel where they activated the FRET pair and therefore gave 
rise to time resolved measurement using fluorescence microscopy. 
Alternatively, Xu et al., produced 50nl collagen droplets with a layer  
thickness of approximately 20-40μm containing encapsulated cells 
by using common printing techniques [117]. The resulting optical  
properties enabled the researchers to include a lens-less  
charge-coupled imaging system to investigate small disturbance in cell 
alignments caused by external stimuli.

	 One electroanalytical technique that has been used in  
3D-hydrogel microfluidic devices is called Electrical Cell-Substrate 
Impedance Systems (ECIS), which detects alterations in electric  
properties of the cell-loaded hydrogel. For instance, Nguyen et al., 
developed a microfluidic chip for the investigation of single cell  
migration through a 3D matrix, which could be linked to further  
investigation on the initial steps of the invasion-metastasis cascade 
of cancer [118]. The described device shown in figure 4b included 
eight double microelectrodes which were separated by a large counter  
electrode and placed into a microfluidic channel. The working  
electrodes were lined with a V-shaped capture structure for  
hydrodynamic single cell capture. The results of this study showed, 
after establishment of the chemoattractant gradient, for the  
MDA-MB-231 cells, a rapid variation of the impedance magnitude 
of about 10Ω/s, while within the controls no significant impedance  
value changes could be observed, for either the less-metastatic MCF-7 
cells or the electrodes without any captured cells. Other application 
for the use of electrical cell-impedance sensing were shown by Valero 
et al., which used this technique to investigate the differentiation and 
signaling processes of neuronal differentiation in three dimensional 
matrixes (see figure 4d and by Tran and co-workers, in which a cell 
based assay system was established for drug toxicity and anticancer 
drug studies [119,120], as seen in figure 4c.

	 An alternative sensing approach involves the wide variety of  
physical and mechanical properties of hydrogels, which offers  
researchers the ability to employ temperature, pH, and ionic 
strength responsive hydrogels as sensors. Furthermore, biochemical  
compounds such as peptides or proteins are often incorporated into 
hydrogels which lend even more possibilities for use as components of 
sensor structures. For example, in a previously published review Liu 
2011 explains the integration of DNA aptamers and the subsequent 
increasing opportunities to use such hydrogels for on-chip analysis: 
smart hydrogels incorporating DNA aptamers are further described 
by Xiong et al., [121,122].

Applications of Microfluidic 3D Cell Culture Systems

Regenerative medicine and tissue engineering applications

	 In the last decade regenerative medicine has become an  
important part in clinical and pharmaceutical drug screening  
applications [123]. Table 2 summarizes the work done in this area. It 
is envisioned that microfluidic 3D cell culture systems may provide  
a deeper understanding of the parameters that influence tissue  
regeneration, healing and repair. The creation of a functional organ 
structure requires cells in culture that are provided with supportive 
structures, binding sites, nutrients, physical gradients and molecules, 
similar to those available to the specific in vivo tissue [65]. To provide  
such an appropriate microenvironment, different parameters such as 
ECM composition, 3D geometry, stiffness of the scaffold, cell density, 
nutrient supply, biomolecular gradient, mechanical stimuli or shear 
forces need to be regulated [124]. It has been shown that gradients 
of growth factors and other molecules, such as chemokines and  
cytokines that are naturally found in tissues, can be established in  
hydrogels [125] to achieve a more accurate microenvironment, as 
shown in figure 5a. While under physiological conditions, these  
gradients are relevant for cell migration, proliferation, homeostasis 
and angiogenesis [124] in pathological states these gradients also  
control inflammation, wound healing and cancer growth [126]. 
Knowledge of these processes is of prime importance for the  
understanding of underlying mechanisms which could perpetuate  
tissue dysfunction versus healing [124].

Targeted Tissue Selected Cultures Hydrogel Technique Function Reference

Kidney Madin Darby canine kidney cells Geltrex/agarose On-demand microgel 
formation

3D kidney epithelialization Eydelnant et al., [127]

Liver Primary rat hepatocytes and 
Swiss 3T3 cells

Alginate Hydrogel microfiber formation Liver specific function Yamada  et al., [128]

Liver Human hepatoma and Swiss 
3T3 cells

Alginate Variable matrix stiffness Enhanced tissue function Kobayashi  et al., [73]

Liver HepG2 cells Agarose Quantum dot cytotoxicity Drug diffusion from vascula-
ture to liver

Wu et al., [129]

Pancreas Mouse insulinoma 6 Beta cells PEG Cadherin staining Cell aggregation Bernard  et al., [130]

Neurite Dissociated cortical neurons of 
embryonic rats

Alginate/agarose  Differential interference 
contrast microscopy

Neurite density Kunze  et al., [131]

Neurite Dissociated cortical neurons of 
embryonic rats

 Hyperphosphorylation Alzheimer-like neurodegen-
eration

Kunze  et al., [132]

Neurite Dissociated cortical neurons of 
embryonic rats

Alginate/agarose Multi-layer scaffolding Physiologic cell layering Kunze  et al., [133]

Neurite Neuron like PC12 cells Alginate microfibers Tissue scaffold synthesis Intercellular networking Kitigawa  et al., [74]

Neurite Neuro2a cells Collagen & collagen/
laminin

Eletrical impedance spec-
troscopy

Assess neural differentiation 
in 3D 

Valero et al., [119]

Neurite Embryonic rat hippocampal & 
DRG neurons

 Atomic force microscopy Compressive cell stimulation Magdesian et al., [97]
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	 A prominent example of microfluidic 3D cultures for tissue  
engineering applications involves on chip vascularization to study 
sprouting angiogenesis and progression of tube formation [140-142]. 
Different approaches using hydrogels have been developed to produce 
vascular formation on a chip. During one such study a lumen inside  
the microvessel was created to improve the 3D structure of the  
endothelial monolayer and medium supply using a mixture of collagen 
type I and Matrigel In this example, only collagen type I was used and 
channels were lithographically imprinted before seeding endothelial  
cells [135]. Another study used PDMS and prevascularized PEG  
hydrogel as part of the chip on which HUVEC were seeded,  
angiogenesis was quantified and mass transfer studied over a period  
of 48 and 96 h [137]. Gradients have also been applied to  
investigate sprouting angiogenesis in 3D hydrogels [141,143]. In 
a completely different approach, microgrooves were stamped in 
PDMS and Human Umbilical Vein Cells (HUVEC) and fibroblasts 
were co-cultured in order to study sprouting and capillary network  
formation [136]. More in-depth vascular specific microfluidic  
applications are covered elsewhere [144]. Another important  
vascular organ structure includes cerebral capillaries due to their 
special characteristics imposed by the brain. The Blood Brain Barrier  

(BBB), formed specifically by astrocytes and pericytes, is composed 
of strongly connected endothelial cells which protect the brain from  
excess permeability [71]. The state of the art for 3D cultures  
mimicking BBB involves seeding of endothelial cells that are separated  
via a membrane from astrocytes and pericytes to study barrier  
function, uptake and transfer of drugs [145], however as far as we 
know there is not work accomplished by using microfluidics systems.

	 Other important on chip hydrogel-based tissue models constitute 
the heart, intestine, liver and kidney to elucidate possible side effects 
of novel drug candidates and to study tissue failure and repair. One 
strategy used to study tissue repair after myocardial infarct involved 
the injection of cells directly into fibrin [146] and PEG modified with 
fibrinogen hydrogels [147]. A model of heart valves has also been 
studied using a multilayer chip with compartmentalized cell cultures 
(valvular interstitial cells and valvular endothelial cells) separated by 
a membrane that allows cell interaction [134], illustrated in figure 5c. 
Microscale and microfluidic 3D models of intestinal villi have been 
reported to investigate oral drug absorption kinetics [148,149]. The 
liver on a chip is also an interesting organ model, not only to study 
hepatic diseases, but also as it metabolizes the vast majority of all oral  

Neurite Mouse ESC Gelatin Spatiotemporally controlled 
neuronal commitment

Biomolecular dose & timing, 
stem cell fate

Cosson et al., [108]

Cardiovascular Porcine aortic valvularinterstital& 
endothelial cells

Gelatin-methacrylate Physiologic spatial arrange-
ment of co-culture

Shear stress regulated para-
crine interactions

Chen et al., [134]

Cardiovascular Human mesenchymal stem cells  Hydrodynamic actuation Cyclic circumferential strain Zhou et al., [95]

Vascular HUVECs Type I Collagen Physicochemical regulation Angiogenesis analysis Verbridge et al., [135]

Vascular HUVECs +/- stromal fibroblasts HA–dextran, agarose with 
collagen

Soft-lithographic and micro-
molding

Structural & biochemical 
patterning

Jiang et al., [136]

Vascular Endothelial cells Rat tail type I collagen 3D biomimesis Neovascularization Nguyen et al., [115]

Vascular HUVECs Degradable PEG Pre-vascularized PEG 
scaffolding

Mass transfer, angiogenic 
quantification

Cuchiara  et al., [137]

HL60 (leukemic cells); Jurkat 
lymphocytes

Deflectable membrane me-
chanical stimulation

Cell mechanosensation Xu  et al., [96]

Skin Epidermal and dermal cells Type I Collagen 3D cell layering Cellular function analysis Morimoto et al., [138]

Skin Normal human dermal fibroblast 
cells (NHDF)

Magneto-resistive real time 
monitoring

Label free detection of cellular 
phagocytosis

Shoshi et al., [112,113]

Primary rat bladder SMC Collagen Label free cell based bio-
sensing

Morphological cellular 
responses

Xu et al., [117]

 U-937 lymphoma cells PEG/PEG-DA FRET based signal trans-
duction

Protease detection Son et al., [116]

Cancer MDA-MB-231 & MCF-7 cancer 
cells

Matrigel Electric cell-substrate imped-
ance sensing

Cancer cell migration Nguyen et al., [118]

 HeLa carcinoma & human 
dermal fibroblasts

 High resolution oxygen 
imaging

Oxygen distribution Ungerböck et al., [114]

Stem cells Mesenchymal stem cells Polyacrylamide Traction force microscopy Cell migration Vincent et al., [139]

Bone marrow MC3T3-E1 osteoblasts, murine 
HSPCs

Collagen (variable 
densities)

Gradient hydrogel generation Hematopoesis Mahadik et al., [125]

Stem cells Human mesenchymal stem cells PEG 3D Co-culture Cell signaling studies Hamilton et al., [70]

Neurite Retinal ganglion axons  Optofluidic control Shear force cell stimulation Gu  et al., [83]

 Human fibroblasts  Anisotropic biaxial stretching Cell mechanobiology Tremblay et al., [90]

 Mammary gland epithelial cells  Deformable mechanical 
PDMS membrane

Compressive cell stimulation 
and lysis

Kim et al., [86]

Cancer Cervical cancer cells & mouse 
embryonic fibroblasts

Agarose Electric cell-substrate imped-
ance sensing

Cell viability assay, drug 
toxicity screening

Tran et al., [120]

Cancer HUVECs, NHDF, varied tumor 
cells, T cells

Optical light scattering and 
impedance sensing

Metastasis Charwat et al., [109]

Table 2: Regenerative medicine and tissue engineering applications recently reported using microfluidic techniques.
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drugs and filters toxins from circulating blood [150]. Consequently,  
liver tissues on a chip have been used as a drug screening model,  
precluding animal experimentation and human pre-clinical  
trials [71]. In depth, liver specific microfluidic reviews are available 
[150,151]. To study the process of diffusion from the vasculature to 
the liver, hepatocytes located in agarose at different distances from a 
channel mimicking a blood vessel were used to detect cytotoxic effects 
of quantum dots [129]. It was shown that microfluidic 3D culture of  
hepatocytes in a microdevice maintained functionally over a period 
of 4 weeks, while 3D structures in Matrigel, collagen type I, gelatin 
and alginate enhanced cell viability and slowed dedifferentiation 
[152]. Existing microchip devices for liver regeneration research are 
already commercially available from HepaChip [153], including a 
perfused multiwell plate [154,155]. Another attractive approach is the  
co-culture of hepatocytes with feeder cells which could be maintained  
for up to 3 months in alginate and showed enhanced hepatic  
functions such as albumin secretion and urea synthesis [128]. In a 
similar approach, a 5 day model for kidney epithelialization was used 
to test a new microdevice in which digital surface controlled the size, 
shape, and location of the hydrophilic sites for hydrogel adherence.  
Cell viability was measured during this assay designed to study  
medium exchange technique [127], as seen in figure 5b. In a separate 
study, fluid shear stress, hormone and osmotic gradients were used in 
a microfluidic device to study renal tubular cells [156].

	 Additional microfluidic hydrogel-based microsystems have been 
developed to study the pancreas, skin and neural activities; also,  
microfluidic artificial lung technology has recently been optimized to 
more closely resemble human gaseous exchange [157]. A technique 
of controlling the size of multiple wells in a microchip was designed 
and tested with pancreatic b-Cells. The viability of these cells when  
forming aggregates rose from 20% to 90%, when seeded in PEG-based  
hydrogels that promoted cell aggregation. Results of these  
experiments showed that in the aggregates, cells were connecting  
themselves via E-cadherin junctions and they maintained their  
natural function of insulin secretion [130]. Skin is probably the most 
developed engineered tissue clinically, as skin grafts are already used 
in severe burn patients and to enhance wound healing. However,  
engineered skin can also be used on a chip to study skin related  
diseases as well as to test drugs and cosmetics. One innovative  
approach uses collagen beads with microsized skin on a chip to  
perform high-throughput assays. Here, keratinocytes and fibroblasts 
are cultured and form a compartmentalized structure which has been 
validated as a useful skin model [138]. Neurons, in turn, are complex 
cells subject to degenerative diseases and paralytic conditions; hypoxic 
effects on microfluidic stem cell neuronal differentiation have been 
reported [158]. The propagation of diseases related to tau protein was 
studied on a chip by seeding healthy cortical neurons in two channels 
separated by a network of neurites. Subsequently, Alzheimer disease 
was induced in one of the neurons’ channels achieving both states, 
healthy and ill, in the same chip [132]. Since neurite density is critical  
for neuron viability, the number and length of neurites were  
investigated in 3D in a microdevice using 4 to 6 layers of hydrogel.  
Static and perfusion studies were also performed, showing that  
neurite density was significantly increased in the presence of  
microfluidic perfusion [131]. Finally, a microfluidic system (see  
figure 5d) was developed as a model in the study of neurons and  
neurite network formation [133].

	 A variety of stem cells have been used in 3D cultures inside  
hydrogels in microfluidic devices to study proliferation and  
differentiation capacities for tissue engineering applications. The most  

common cell type employed are Mesenchymal Cells (hMSCs) as they 
can be easily obtained from the patient and their migration potential 
and differentiation in the body is great. Migration studies of hMSCs 
in fibrin gels of different stiffness were studied mimicking different 
pathological states in the ECM showing that actin and microtubules 
are both responsible for migration [139]. Vascularization studies  
using hMSCs harvested from three different anatomic locations were 
performed in the presence of HUVEC. MSCs from the bone marrow  
were shown to migrate farther and to be the most supportive to  
HUVEC undergoing tubule formation. Moreover, cell  
characterization after 2 weeks of culture showed that cells were  
dedifferentiating into pericytes [159]. A less often used cell type is 
Embryonic Stem Cells (ESC), known to be extremely pluripotent. To 
date, human and murine ESC have been used in combination with 
microfluidics [160-164].

Tumor Research and Anticancer Drug Delivery 
Research
	 Cancer research is performed on many different levels, such as  
genomics, proteomics and therapeutic studies of candidate drugs, 
which are often tested in various animal models. Once more, the  
integration of microfluidics in this field of biological and medical  
research shows countless advantages, the most prominent being the 
replacement for animal studies and thereby lowering the immense  
costs, in both monetary and in animal lives [150]. In addition,  

Figure 5: Devices used for regenerative medicine.

A) Microfluidic hydrogel gradient generator capable of modulating  
hematopoietic stem cell culture environment using two-component  
opposing gradient hydrogel with overlapping patterns of matrix and 
cell content within discrete hydrogel regions. Reproduced in part with 
permission from Mahadik BP et al., [125]. Microfluidic generation of  
gradient hydrogels to modulate hematopoietic stem cell culture environment. 
Advanced healthcare materials; 3: 449-458. Copyright 2014 John Wiley and 
Sons

B) Schematic of device: a bottom plate with patterned electrodes and a 
top plate bearing patterned hydrophilic sites for formation of individual  
microgels for reagent delivery/analysis. Reprinted by permission from  
Macmillan Publishers Ltd: Nature Communications; 5: 3555, Copyright 2014 
(Eydelnant 2014) [127]

C) 3D microfluidic system of valvular endothelial cells separated from 3D 
hydrogel-laden interstitial cells via membrane. Perspective of a 3D confocal  
reconstruction demonstrating the compartmentalization and spatial  
arrangement of fluorescently-labelled cells in the bilayer membrane after 3 
days of co-culture. Reproduced in part from Ref 20 with permission of The 
Royal Society of Chemistry

D) Micropatterning neural cell cultures in 3D with a multi-layered scaffold  
using a PDMS microdevice. 3D schematic of system: top view image  
demonstrates cell growth via optical microscopy. Reprinted from Kunze A 
et al., [133]. Micropatterning neural cell cultures in 3D with a multi-layered 
scaffold. Biomaterials; 32: 2088-2098, Copyright (2011), with permission from 
Elsevier

http://dx.doi.org/10.24966/CBCM-1943/100005


Citation: Rosser JM, Olmos-Calvo I, Schlager M, Purtscher M, Jenner F, et al. (2015) Recent Advances of Biologically Inspired 3D Microfluidic Hydrogel Cell 
Culture Systems. J Cell Biol Cell Metab 2: 005.

• Page 9 of 14 •

J Cell Biol Cell Metab ISSN: 2381-1943, Open Access Journal
DOI: 10.24966/CBCM-1943/100005

Volume 2 • 100005

accuracy of animal trials in predicting efficacy or toxicity in humans  
is unreliable, making microfluidic applications all the more  
promising [165]. This research is still in its infancy but promising  
developments have evolved over the past years, including rapid  
prototyped multilevel microfluidics [166]. Automation has been  
reported for high throughput microfluidic cancer research, and  
validated using an established breast carcinoma co-culture [167]. 
Tumors are able to create a self-protective microenvironment, which 
hinders the chemotherapeutic regimen from effective toxicity. By  
integrating cancer research in the previously described 3D  
microfluidic cell culture setups, various strategies have been tested for 
drug development and encapsulation thereof, in order to circumvent 
this critical effect. Furthermore studying the parameters of successful 
drug delivery to the site of the tumor is crucial for the development 
of new therapeutics. By integration of 3D cell cultures, mimicking the 
tumor environment in a microfluidic setup, perfusion, uptake and  
distribution of diverse drugs in the tumorous tissue can be  
monitored [168] and evaluated simultaneously. Albanese et al., created 
a ‘tumor-on-a-chip’ system in order to investigate nanoparticle uptake 
of tumor spheroids under physiological conditions. Their setup allows 
real-time monitoring by confocal microscopy of drug accumulation 
at the tumor sites. Their findings propose that the tumor-on-a-chip 
system provides a powerful tool for the screening of nanoparticles to 
reach an optimal design prior to in vivo studies [169]. Another study 
proposed a micro-perfusion 3D cell culture for chemosensitivity  
assays, using Epirubicin against colorectal adenocarcinoma cells. This 
study displayed greater resistance to cytotoxicity in 3D cancer cells 
compared to those cultured and treated in monolayer [170] similar 
findings were reported with doxorubicin in another study [171].

	 Especially in the long-term therapy of cancer, controlled and  
continuous drug administration is essential for a successful  
therapeutic effect. In the case of drug carriers for protein-based  
formulations, certain stability has to be achieved in order to avoid  
early drug decomposition in the organism and lower decreased  
cytotoxic effects. Pessi et al., developed double emulsion droplets  
to incorporate protein in PVA, polycaprolactone and PEG via  
microfluidic technology. These polymeric microcapsules showed 
high encapsulation efficiency (up to 84%) of the protein and a drug 
release of 30% within the following 168hrs [172]. Also with regard to  
finding optimal drug concentrations, microfluidic setups have  
become a promising strategy. Jastrzebska et al., designed a  
microfluidic device in which a concentration gradient generator is  
incorporated to investigate the response of normal and cancer cells 
to the exposure of two different anti-cancer drugs [173]. Not only 
were they able to define the most effective drug concentration but also  
developed a system that generally allows the analysis of cell  
morphology and cytotoxicity of diverse cells and/or drugs  
simultaneously within very well defined parameters. A micro total 
bioassay system was employed to study pharmacodynamics of an 
oral chemotherapy agent against breast cancer, incorporating liver,  
duodenum, and stomach [174]. In a final chemotherapeutic example, 
nephrotoxicity of anticancer drugs was investigated in blood-renal 
barrier chip [175]. In turn, various research groups concentrate on 
the better understanding of cancer cell migration, metastasis and its  
prevention [176]. For instance, the Irimia group focuses on cell  
migration and developed a microfluidic device for cell migration 
assays, which have been successfully used for cancer cell migration  
studies [177]. Using advanced microfluidic systems, precise  
measurements of directionality and persistence during migration 
were studied, which are crucial parameters in the development of  
cancer metastasis.

Future Perspectives and Current Challenges

	 Despite recent advances in microfluidic 3D hydrogel cell cultures  
for biomedical research, some concerns remain and involve the  
availability of biocompatible materials and the question of whether 
or not microfluidic cell cultures can survive long enough to produce 
clinically relevant results [65]. Biochemical assays may be of limited 
value due to the inherent small number of cells in microdevices [178]. 
Another problem associated with microfluidic 3D hydrogel cultures 
constitutes reproducibility and device validation. Consequently, fully 
automated and integrated cell culture systems are needed to increase 
reproducibility, which is also a core request of regulatory agencies. In 
more sophisticated microfluidic devices, integrated microvalves and 
micropumps will allow the computer-controlled application of active 
compounds and the regulation of concentration gradients, presence  
of adequate shear forces and compression profiles [179]. Next  
generation microfluidic 3D-hydrogel cell cultures will further  
integrate available multilevel sensing strategies to provide high  
content analysis. Applicable analytics for 3D microfluidic cell cultures 
have yet to be exhausted and currently include both on chip and off 
chip analyses such as impedance biosensing [180], magnetic assays 
[112], immune assays, FACS, metabolomics [181,182] and proteomics  
via Mass Spectrometry, ELISA, fluorescence microscopy, detection 
of differentiation markers [183] and micro total analysis systems,  
previously reviewed in depth elsewhere [184]. Furthermore,  
pharmacologic studies of individual target tissues [185] using  
organ-on-a-chip technology [186] will be further supplemented 
by multiple organoid cell cultures [187]. In addition to toxicology  
screening efforts, microfluidic 3D-hydrogel models are expected to 
become an enabling tool for medicine to investigate various diseases  
such as axonal damage [179,188], alveolar epithelial injuries [189] 
and osteoarthritis. Finally, stem cell research is expected to benefit  
significantly from Lab-on-a-chip advances in automation and high 
throughput screening [190].

Conclusion

	 In an effort to recreate the in vivo microenvironment, a number  
of gel-supported 3D cell cultures in microfluidic devices have  
employed native extracellular matrix proteins as the basis of  
hydrogel scaffolding, such as collagen, fibrin, hyaluronic acid,  
Matrigel, fibronectin, agarose, poly-ethylene glycol diacrylate, and 
a mixture of both. Although 3D hydrogels have been shown to  
exhibit significant technological improvements compared to the 
monolayer culture, the broad practical application of such methods 
has not yet been achieved. Common limitations of all 3D-gel based 
microfluidic cell cultures include the creation of a reproducible  
medium-gel interface, direct medium perfusion and the inability 
to microstructure the 3D-hydrogel. An additional limitation of all  
existing microfluidic 3D cell culture systems is the lack of integrated  
monitoring functions to follow specific cell reactions in a  
non-invasive manner and over long periods of time.
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