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Identifying selected mutations (simple model, no reads)

We will model the selection coefficient Xr for replicate r = 1, 2, . . . , n of a particular transformant
as

Xr = µ+ δ + εr,

where µ is the true effect of the transposon-insertion mutation, δ is a defect potentially intro-
duced by transformation, and εr is the measurement error. We make the following assumptions
about these variables. µ is a parameter (not a random variable). εr are all i.i.d r.v.’s, normally
distributed with mean 0 and variance σ2err. δ is an r.v. with a mixture distribution, such that

δ =

{
0, with probability 1− ptr,
−∆, with probability ptr,

where ∆ are normally distributed with parameters µtr and σ2tr. In other words, with probability
ptr, transformation introduces an artifact, which is a normally distributed (typically deleterious)
effect; and with probability 1− ptr, no such such artifact is introduced. The conditional proba-
bility of observing the selection coefficient Xr in the vicinity of value xr in replicate experiment
r, given that the current transformant’s true selection coefficient Y in the given environment, is

PXr|Y (dxr) ≡ p (xr|Y ) dxr = N1

(
xr;Y, σ

2
err

)
dxr,

where Nd (x;m,Σ) is a d-dimensional multivariate gaussian probability density function with
respect to variable x, with mean m and variance-covariance matrix Σ. The joint conditional
probability density that the selection coefficientsX = (X1, . . . , Xn) in replicate measurements of
a particular transformant in a particular environment are in the vicinity of point x = (x1, . . . , xr),
given the transformant’s true fitness Y in that environment, is

p (x|Y ;σerr) =

n∏
r=1

N1 (xr;Y, σerr) =
exp

{
−(n− 1)Var x

2σ2
err

}
√
n (2πσ2err)

n−1
N1

(
Y ; x̄,

σerr√
n

)
, (1)

where x̄ = 1
n

∑n
r=1 xr and Var x = 1

n−1
∑n

r=1 (xr − x̄)2.
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Next, we will assume that a transformation artifact occurs with probability ptr. If it occurs,
its effect Y = (Y1, . . . , YK) in environments e1, e2, . . . , eK is drawn from a multivariate normal
distribution with mean vector µtr > 0 and variance-covariance matrix Σtr. Suppose that the
true selection coefficients of the current transformant in environments e1, e2, . . . , eK are given
by µ = (µ1, . . . , µK). Then,

PY (dy;µ,µtr,Σtr) = (1− ptr) δµ(dy) + ptr NK (y;µ− µtr,Σtr) dy,

where δµ(dy) is a point measure at µ.
Now consider all replicate measurements of the same transformant in all environments. We

have X1 = (X11, . . . , X1n1) measurements of the selection coefficient of the transformant in
environment 1, X2 = (X21, . . . , X2n2) measurements in environment 2, etc. up to environment
K. The joint probability density of such observation is given by

p (x1, . . . ,xK ;µ,µtr,Σtr,σerr)

=

∫
RK

p (x1, . . . ,xK |Y ;σerr) PY (dy;µ,µtr,Σtr)

=

∫
RK

K∏
k=1

p (xk|Yk;σerr,k) [(1− ptr) δµ(dy) + ptr NK (y;µ− µtr,Σtr) dy]

=

∫
RK

K∏
k=1

exp

{
−(nrep,k − 1)Var xk

2σ2
err,k

}
√
nrep,k

(
2πσ2err,k

)nrep,k−1
N1

(
yk; x̄k,

σerr√
nrep,k

)

× [(1− ptr) δµ(dy) + ptr NK (y;µ− µtr,Σtr) dy]

=

exp

{
−
∑K

k=1(nrep,k − 1)Var xk

2σ2
err,k

}
√∏K

k=1 nrep,k

(
2πσ2err,k

)nrep,k−1

∫
RK

NK (y;M ,Σerr)

× [(1− ptr) δµ(dy) + ptr NK (y;µ− µtr,Σtr) dy]

=

exp

{
−
∑K

k=1(nrep,k − 1)Var xk

2σ2
err,k

}
√∏K

k=1 nrep,k

(
2πσ2err,k

)nrep,k−1

[
(1− ptr)NK (µ;M ,Σerr)

+ ptr

∫
RK

NK (y;M ,Σerr) NK (y;µ− µtr,Σtr) dy

]
(2)

where to obtain the last equality we used relationship (1). In equation (2), M = (x̄1, . . . , x̄K)T

and Σerr is a diagonal matrix with
(
σerr/

√
nrep,1, . . . , σerr/

√
nrep,K

)
on the diagonal, with x̄k =

1
nrep,k

∑nrep,k

r=1 xkr and Var xk = 1
nrep,k−1

∑nrep,k

r=1 (xkr − x̄k)2. Using properties of the multivariate
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normal distribution, the integral in equation (2) can be taken analytically, which gives us

p (x1, . . . ,xK ;µ,µtr,Σtr,σerr)

=

exp

{
−
∑K

k=1(nrep,k − 1)Var xk

2σ2
err,k

}
√∏K

k=1 nrep,k

(
2πσ2err,k

)nrep,k−1

×

[
(1− ptr)NK (M ;µ,Σerr) + ptrNK (M ;µ− µtr,Σerr + Σtr)

]
(3)

Identifying fraction and mean effect of selected mutations

To identify the fraction of beneficial mutations pb, fraction of deleterious mutations pn, and
the fraction of deleterious mutations pd, as well as the mean effect of deleterious and beneficial
mutations, we will employ the following model. We will assume that, for each mutation m in
strain s and environment e, the effect comes from a mixture distribution:

µsem =


0, with probability pn,se,
−Xd,sem, with probability pd,se,
Xb,sem, with probability pb,se,

where Xb,sem and Xd,sem are exponentially distributed random variables with parameters θd,se
and θb,se, respectively. Thus, the probability of observing the selection coefficient Xse`br is given
by

P
(
Xse`br;pse,θse, ptr,s, µtr,se, σ

2
tr,se, σ

2
err,e

)
= pn,seP

(
Xse`br; 0, ptr,s, µtr,se, σ

2
tr,se, σ

2
err,e

)
+ pdse

∫ ∞
0

P
(
Xse`br;−x, ptr,s, µtr,se, σ2tr,se, σ2err,e

)
Pexp (x; θd,se) dx

+ pbse

∫ ∞
0

P
(
Xse`br;x, ptr,s, µtr,se, σ

2
tr,se, σ

2
err,e

)
Pexp (x; θb,se) dx (4)

Note on estimating the error distribution

Suppose we have measurements grouped into n groups X11, X12, ..., X1m1 , X21, . . . . . . , Xnmn .
Within group i, all measurements are i.i.d. with mean µi. Let us assume that the distributions
for each group are the same, except with a shifted mean. Thus, the variance is the same in all
groups, σ2. Think of each group as replicate measurements of the same barcode, and different
groups are measurements of the same mutation but different barcodes. The variance comes only
from measurement noise, which is the same for all barcodes.

We would like to obtain a non-parameteric estimate of the underlying error distribution.
Define X̄i as the group mean, as usual. Let Yij = Xij − X̄i. We want to pool all Yij together to
estimate the distribution.
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First, we note that EYij = 0. Next, we have

Var Yij = EY 2
ij − (EYij)2︸ ︷︷ ︸

=0

= EX2
ij − 2E

(
XijX̄i

)
+ EX̄2

i

=

 EX2
ij = σ2 + µ2i

EX̄2
i = σ2

mi
+ µ2i

E
(
XiX̄

)
= σ2

mi
+ µ2i


= σ2

mi − 1

mi
.

Thus, variables Ỹij =

√
mi

mi − 1
Yij will have the same variance, and hence will be i.i.d.
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