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We consider an optical probe that interacts with an ensemble of rare earth ions doping a material
in the shape of a cantilever. By optical spectral hole burning, the inhomogeneously broadened
transition in the ions is prepared to transmit the probe field within a narrow window, but bending
of the cantilever causes strain in the material which shifts the ion resonances. The motion of the
cantilever may thus be registered by the phase shift of the probe. By continuously measuring
the optical field we induce a rapid reduction of the position and momentum uncertainty of the
cantilever. Doing so, the probing extracts entropy and thus effectively cools the thermal state of
motion towards a known, conditional oscillatory motion with strongly reduced thermal fluctuations.
Moreover, as the optical probe provides a force on the resonator proportional to its intensity, it is
possible to exploit the phase shift measurements in order to create an active feedback loop, which
eliminates the thermal fluctuations of the resonator. We describe this system theoretically, and
provide numerical simulations which demonstrate the rapid reduction in resonator position and
momentum uncertainty, as well as the implementation of the active cooling protocol.

I. INTRODUCTION

Mechanical resonators have multiple applications in
science and technology and their operation in the quan-
tum regime enable effective coupling to weak pertur-
bations and to a variety of other quantum systems for
precision sensing and quantum information processing
purposes. The preparation of mechanical oscillators in
well-defined quantum states have thus been the target of
many efforts, and both thermalization with a low temper-
ature environment [1], sideband microwave cooling [2],
and more elaborate heralding schemes [3, 4] have been
employed or theoretically proposed [5]. In this article,
we propose and analyze a novel scheme for cooling of a
cantilever, which makes use of a rare earth ion ensem-
ble, doped into the cantilever material. In ref. [6] we
suggested to prepare such an ensemble by optical hole
burning techniques such that light strongly detuned from
all the ions can be transmitted through a spectral hole,
while bending of the material causes strain and shifts
the optical transition frequencies of the ions modifying
their dispersive interaction with the light probe. This
opto-mechanical strain coupling has been demonstrated
in systems based on quantum dots [7] and nitrogen vacan-
cies [8, 9], but the hole-burning techniques in the system
discussed here, allow an efficient cooling protocol as we
will discuss in this article. Using realistic parameters, we
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argued in ref. [6] that it would be possible to resolve the
thermal bending motion of the cantilever in much shorter
time than the life time of the spectral hole. Here, we take
the analysis further and derive the conditional state of
the system subject to continuous homodyne monitoring
of the transmitted field.

In Sec. II, we introduce our system and motivate a
Gaussian ansatz for the state of motion of a vibrational
mode of the cantilever and of the quantized probe field.
In Sec. III, we derive and solve the equations of motion
for the first and second moments of the Gaussian phase
space distribution of the cantilever motion subject to op-
tical probing. We obtain numerical and approximate
analytical expressions for the position and momentum
variances and we show sample trajectories for the mean
displacement of the cantilever motion, conditioned on re-
alistic measurement records. We argue that the reduced
position and momentum uncertainty is equivalent to a
cooling of the mechanical motion, and permits definition
of an effective temperature of the cantilever far below
the surrounding environment. By adding an active feed
back mechanism, we show that this low effective temper-
ature can also be translated into an effective “freezing”
of the resonator where its mean position and momentum
are not only precisely known but also constant. Finally,
Sec. V provides a brief conclusion and outlook.
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Figure 1. A schematics of the set-up allowing to detect the
vibrations of a cantilever using homodyne detection. The
dimensions of the cantilever are 100 × 10 × 10 µm3, for more
details, see Sec. IV.

II. THE PHYSICAL SYSTEM

We consider the physical system depicted in fig.1, con-
sisting of a transparent cantilever which is probed by a
coherent laser beam. The interferometric set-up allows
measurement of the quadrature of the transmitted beam
which contains information about the bending motion
of the cantilever in the following way (for more details,
see ref. [6]): the resonator is doped with rare-earth ions
whose frequencies are sensitive to the strain of the sur-
rounding host material. We use the technique of spectral
hole burning to prepare a transmission window with no
optical absorption within the broad, inhomogeneous ab-
sorption profile. During bending of the resonator, there
will be a strain gradient across the cantilever, ranging
from tensile to compressive strain, and ions with identi-
cal frequencies in the unbent crystal experience different
frequency shifts in a bent cantilever due to the varia-
tion in the strain. For example, if the oscillator is bent
upwards, emitters on the top face experience a compres-
sion, whereas emitters on the bottom face are subject
to a tensile strain. As a result, when the cantilever vi-
brates, the collective line shape broadens and narrows. A
narrow linewidth laser beam with a frequency inside the
transparent spectral hole experiences a dispersive cou-
pling with the ions close to the edge of the hole. When
the resonator vibrates, this coupling gives rises to a mod-
ulation of the phase of the transmitted laser, which can
be detected by a homodyne setup, and can be made lin-
ear with the bending of the resonator with appropriate
system preparation [6]. Moreover, the coupling provides
a force which shifts the equilibrium position of the res-
onator, and thus allows to actively cool the resonator
motion.

The coherent beam of light with flux Φ can be thought
of as a product state of segments of duration τ , each
containing a coherent state with average photon num-

ber n = Φτ . We assume that, prior to interaction with
the cantilever, the coherent states have null phase and
real argument α =

√
n =

√
Φτ . By interacting with

a bent cantilever with appropriately prepared spectral
hole structure, the light beam experiences a phase shift
proportional to the dimensionless resonator displacement
Xm = xm/x0 (with x0 =

√
~/mω), namely ∆φ = βXm,

with a proportionality constant β, that depends on the
strain sensitivity, the resonator geometry, as well as the
protocol employed for the spectral hole burning [6]. The
phase shift ∆φ of the coherent field amplitude is equiva-
lent to a phase shift per photon, such that each Fock state
component |n〉 of the quantized field experiences a quan-
tum phase shift, |n〉 → e−in∆φ|n〉. We write â = α+ δâ,
such that the number operator n̂ can be written

n̂ = â†â = (α+ δâ†)(α+ δâ)

' α2 + α(â− α) + α(â† − α) = α(â+ â†)− α2

=
√

2αX̂ph − α2. (1)

Utilizing our assumption that the input coherent state
|α〉 have null phase, the effect of the Fock state phase
factor e−in∆φ is hence approximated by the operator
e−i
√

2αX̂phβX̂m = e−iκτ X̂phX̂m , where κ2
τ ≡ κ2τ ≡ 2β2Φτ .

The exponential operator form reflects the unitary evo-
lution of the joint state of the field and mechanical os-
cillators, which is governed by a coupling Hamiltonian
Ĥ = ~κτ X̂phX̂m/τ .

III. GAUSSIAN STATE FORMALISM

We consider the joint quantum state of the mechanical
oscillator bending mode and a single incident segment of
the probe photon beam. The oscillator Hamiltonian and
the interaction between the two systems are second order
in their respective position and momentum quadrature
operators (X̂m, P̂m, X̂ph, P̂ph), and their time evolution
for a short time interval τ is given by a linear mapping,

X̂m

P̂m
X̂ph

P̂ph

→
 1 ωτ 0 0
−ωτ 1 κτ 0

0 0 1 0
κτ 0 0 1



X̂m

P̂m
X̂ph

P̂ph

 . (2)

The operators are expressed in dimensionless units,
such that the variables defining the mechanical resonator
are given by Xm = xm/x0 and Pm = pm/p0 with
p0 =

√
~mω.

If we assume an initial thermal state of the cantilever,
both systems occupy Gaussian states and while they
become correlated, the combined system maintains its
Gaussian character due to the interaction. Gaussian
states are fully characterized by their first and second
order moments, and we shall hence identify the changes
in these quantities for the cantilever observables due to
the continuous interaction with the field and its subse-
quent homodyne detection.
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For this purpose, we introduce the covariance matrix
Γ with elements Γij = 2Re(〈(q̂i − qi)(q̂j − qj)〉), where
q̂i denotes the four quadrature observables and qi their
expectation values. Reserving the first two components
for the mechanical degrees of freedom and the last two
for the field, the covariance matrix separates in blocks,

Γ =

(
A C
CT B

)
(3)

where

A =

(
a11 a12

a21 a22

)
, (4)

represents the oscillator position and momentum vari-
ances and covariances, while the matrix B describes the
similar quantities for the field and C represents correla-
tions between the two systems. Prior to the application
of each novel segment of the optical field, which is inci-
dent on the mechanical system in a coherent state, B and
C take the initial values

B0 =

(
1 0
0 1

)
,C0 =

(
0 0
0 0

)
. (5)

After the interaction of the two systems, the oscilla-
tor and the light segment are correlated as described by
Eq. 2, which transforms the covariance matrix as

Γ→ SΓST , (6)

where S denotes the 4x4 matrix in Eq. 2. For more details
on this approach, see for instance ref. [10].

If the transmitted light segment is discarded after the
interaction, we merely retain the upper left block of Γ as
our new mechanical covariance matrix A, while replacing
B and C by B0 and C0 in Γ in Eq. 3 to accommodate for
the interaction with the subsequent coherent segment of
the beam. However, rather than discarding the transmit-
ted field, we perform a measurement of the phase rota-
tion of the optical field segment, right after its interaction
with the cantilever. This is done by homodyne measure-
ment of the quadrature Pph. This measurement yields
information about Xm, and for Gaussian states, the gain
in information is represented by the following transfor-
mation [11–13] of the cantilever part of the covariance
matrix

A→ A− ηC
(

0 0
0 1

)
CT , (7)

where C, CT are extracted from Γ after the update rule
Eq. 6 and η is the detector efficiency.

The field measurement outcome is governed by a Gaus-
sian distribution with mean value 〈P̂ph〉 = κτ 〈X̂m〉 and
a variance of 0.5. In this way, denoting the outcome as
〈P̂ph〉 + χ (where χ represents Gaussian fluctuation of
the field quadrature around its mean value with a vari-
ance of 0.5 - this quantity is uncorrelated in subsequent

detection intervals reflecting the white noise character of
the electromagnetic vacuum field) the mean value of the
Gaussian distribution of cantilever observables is, indeed,
shifted conditioned on the field measurement,(

〈X̂m〉
〈P̂m〉

)
→
(
〈X̂m〉
〈P̂m〉

)
+
√
ηC

(
0
χ

)
. (8)

In addition to the deterministic and stochastic evolu-
tion of the oscillator covariance matrix and mean val-
ues due the field probing and free evolution, we in-
clude the equilibration of the oscillator with its ther-
mal environment at rate γ. This is done by adding
the following terms to the rate equations in the contin-
uous limit, daii/dt|γ = −γaii + γ(2n + 1) for i = 1, 2,
daij/dt|γ = −γaij for i 6= j, and d〈X̂m〉/dt|γ = −γ2 〈X̂m〉,
and d〈P̂m〉/dt|γ = −γ2 〈P̂m〉. In the absence of any other
terms, these rate equations would lead to a steady state
with a11 = a22 = 2Var(Xm) = 2Var(Pm) = 2n + 1, repre-
senting the familiar mean energy 1

2 〈X̂2
m + P̂ 2

m〉 = (n+ 1
2 )

of the thermalized oscillator.
To summarize, the mechanical resonator is described

by the 2×2 covariance matrix A (Eq. 4) that evolves in a
deterministic manner, and by mean values (〈X̂m〉, 〈P̂m〉)
that follow from the combination of free evolution and
the accumulated stochastic measurement record. This
evolution is equivalent to the general quantum trajectory
treatment of continuously monitored quantum systems
by a stochastic master equation, but it is considerably
simplified by the restriction to Gaussian states.

A. Continuous limit

Our division of the probe beam into segments of du-
ration τ allows us to take the continuum limit, assuming
the derivative to be given by dx/dt = (x(t+ τ)−x(t))/τ .
It is a special property of the Gaussian states, that the
covariance matrix of the mechanical system evolves in a
deterministic manner, independent of the measurement
outcome. Putting all terms together, we thus get for the
components of the oscillator part of the covariance ma-
trix the following explicit equations:

da11

dt
= −ηκ2a2

11 + ω(a21 + a12)− γ(a11 − (2n+ 1))

da12

dt
= −ηκ2a11a12 − ω(a11 − a22)− γa12

da21

dt
= −ηκ2a11a21 − ω(a11 − a22)− γa21

da22

dt
= κ2 − ηκ2a12a21 − ω(a21 + a12)

−γ(a22 − (2n+ 1)). (9)

The first, non-linear term in the equation for a11 shows
that the variance of Xm is reduced, and the proportion-
ality with the measurement efficiency η emphasizes that
this squeezing of the oscillator position is conditional on
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the probing. The first term in the equation for a22 shows
that the unobserved Pm undergoes an increasing variance
due to the interaction with the probe field - a diffusive
heating due to the spread in Xph of the incident state.
Setting η = 0 corresponds to no detection, and hence ab-
sence of the cooling/squeezing effect on Xm, while Pm al-
ways heats up due to the interaction with the probe field.
The effective anti-squeezing of Pm ensures the Heisenberg
uncertainty relation remains fulfilled even if there were no
free rotation (at ω), no heating and if Xm were probed
at unit efficiency. Due to the rotation, however, a mixing
of the degrees of freedom subject to squeezing and anti-
squeezing and heating leads, ideally, to reduction of both
variances.

Together with the deterministic change of the covari-
ance matrix and mean values of the mechanical position
and momentum, the mean values of X̂m and P̂m experi-
ence stochastic changes (Eq. 8) associated with the mea-
surement outcomes [14]. In the limit of infinitesimal time
steps dt, the difference dW between the measured value
and the expected mean value is stochastic with variance
dW 2 = dt, corresponding to detector shot noise, and its
explicit variation leads to the update equation for the
mean values:

〈X̂m〉 → 〈X̂m〉+
√
ηa11κdW

〈P̂m〉 → 〈P̂m〉+
√
ηa21κdW. (10)

B. Steady-state solutions

The nonlinear Eqs. 9 can be solved analytically in the
steady state limit. For γ � ω (which is readily ful-
filled for realistic parameters, see IV), the rapidly os-
cillating system is effectively subject to equal strength
probing of Xm and Pm, and the equations for a11 and
a22 can be replaced by the average of the correspond-
ing equations in Eq. 9. The steady state variances,
Var(Xm) = Var(Pm) = a11/2 are then determined from
the roots of a single quadratic equation, and we obtain

a11 =
−γ + {γ2 + ηκ2

[
κ2 + 2γ(2n̄+ 1)

]
}1/2

ηκ2
. (11)

For the realistic system explored in IV, we furthermore
have γ � κ, and Eq. 11 further reduces to

a11 =
1√
η

√
1 +

2γ

κ2
(2n̄+ 1). (12)

This result explicitly reflects the competition between
the cooling induced by the measurements with efficiency
η and probe interaction strength κ2 and the heating with
rate γ. For the physical parameter range of interest, we
obtain a significant reduction and favorable square root
scaling of the position and momentum variances com-
pared to their values in thermal equilibrium with the en-
vironment. We recall, however, that the reduction of

these variances does not represent extraction of energy
from the oscillator, as the mean position and momentum
have finite random values. But since these values are
known from the measurement record through Eq. 6, we
can either reduce them deterministically by application
of a force to the system as demonstrated in Sec. IV, or we
can merely retain our knowledge about their values and
subtract them “in software” in applications of the system,
e.g., for sensing purposes.

We observe that the Eqs. (9,10) have the same for-
mal structure as the Kalman filter equations [15] for the
estimated state and the variance of the estimate of a lin-
ear dynamical system. This is no coincidence: For a
quadratic Hamiltonian with linear evolution of the posi-
tion and momentum observables, quantum measurement
theory assigns a conditional Gaussian quantum state,
which fully characterizes the probability distribution for
the observables by mean values and a covariance matrix.
The evolution of these objects is equivalent to the clas-
sical Kalman filter, while the derivation based on quan-
tum theory ensures, e.g., fulfillment of Heisenberg’s un-
certainty relation. In particular, driving a heuristic par-
ralel with the classic framework of Kalman filter-based
Bayesian inference, Eq. 2 and Eq. 6 are the equivalent
to the so-called “prediction step”, in which the expected
state of the system (mean values and variances) is derived
solely from it prior state and the perfectly deterministic
equation of motion (including thermalization). Follow-
ing this, Eq. 7 and Eq. 8 correspond to the so-called
“update step”, where the result of the “prediction step”
is combined with the outcome of a noisy measurement
to reflect our improved knowledge about the state of the
system.

IV. NUMERICAL INVESTIGATION AND
ACTIVE FEEDBACK

In order to investigate numerically the outcome of the
model in a realistic experimental example, we refer to
ref. [6], and we will rely on experimental techniques sim-
ilar to those employed in ref. [16]. We consider the ex-
ample of a 100 × 10 × 10µm3 cantilever with a bending
mode frequency of ω = 2π × 1MHz mode and an ef-
fective mass m = 1.1 · 10−11 kg, corresponding to the
cantilever depicted in fig. 1. The cantilever material con-
sists of Y2SiO5 containing a 0.1 % doping of Eu3+ ions,
with a 7F0 → 5D0 transition centered at 580 nm and a
single ion natural linewidth of 2π × 122Hz and a mea-
sured linewidth of typically 2π× 1 kHz at a temperature
of 3K or lower. When using the strain sensitivity of
the Eu3+ ions of -211.4 Hz/Pa [17], and a spectral hole
width of 6MHz, we previously determined the phase shift
∆φ = βXm to be 0.65µrad for a bending of the tip of
the resonator equal to x0 =

√
~/mω = 1.3 fm, corre-

sponding to the width of the quantum ground state of
the cantilever. Thus, as Xm is measured in units of x0,
β = 0.65µrad [27]. To allow a more straightforward com-
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parison with other systems, that do not rely on our spe-
cific coupling scheme, the corresponding frequency shift
of the linewidth of a single ion on the edge of the res-
onator, subject to a bending of the resonator tip of x0

would amount to 37 Hz. This is a small shift, but should
be compared to their record-low linewidth.

Moreover, assuming a laser intensity of 1mW (i.e. a
photon flux of Φ = 2.92× 10−15), we have κ2 = 2β2Φ =
2π × 197Hz. Furthermore, we assume η = 1, the initial
temperature T=400mK (corresponding to a bath excita-
tion n = 9360), and the bath coupling γ = 2π × 10Hz.

A first consequence of the application of the probe laser
is the shifting of the classical rest position of the res-
onator. This comes from the action on the mechanical
oscillator of the same unitary time evolution operator
e−iβX̂mn̂ that yields the phase shift of the field, and it
occurs independently of the measurement back-action.
When the probe laser is turned on abruptly from a situa-
tion at thermal equilibrium where the resonator position
and momentum are centered at zero (〈Xm〉 = 〈Pm〉 = 0),
this leads to a large swing, and the resonator mean val-
ues will oscillate for a long time (of the order of 2π/γ)
before thermalization brings it to the new rest position.
It is, however, possible to suppress this swing by apply-
ing the laser in a feed-forward procedure as the swing
is governed by perfectly deterministic classical equations
of motions. In our case, this simply consists in first ap-
plying the laser at half power for half a period π/ω of
the resonator oscillation, before applying the laser at full
power. Indeed, after the first half period of oscillation,
the classical motion arrives at its apex with zero aver-
age momentum, and this is the equilibrium phase space
position for the oscillator subject to the full laser power.

Second, when the probe laser is on and its phase is
detected, the continuous monitoring leads to a rapid de-
crease in the uncertainty in position and momentum of
the oscillator. This translates into a rapid decrease in
the corresponding variances, and a concomitant localiza-
tion of the Gaussian state which exhibits oscillations at
angular frequency ω with a random phase and a random
amplitude, determined stochastically from the measure-
ment record. Note that because of the constant coupling
with the thermal bath, the phase and amplitude will vary
in time, but with a very slow rate governed by the cou-
pling coefficient γ.

Third, from the outcome of the continuous measure-
ment, and the corresponding knowledge of 〈X̂m〉 and
〈P̂m〉, if the intended application of the system requires
so, one can apply a feed-back mechanism which will main-
tain the resonator position as close as possible to the rest
position in phase-space. Owing to the continuous mea-
surement process, the resonator will then rapidly acquire
a fixed position with an uncertainty substantially smaller
than the one governed by the thermal bath. Because the
coupling to the thermal bath is relatively weak, the ran-
dom fluctuations of the phase and amplitude of the res-
onator oscillation are relatively slow, and the feed-back
mechanism is therefore robust against experimentally un-

avoidable time delay in the feed-back loop. As a demon-
stration, we have included time delays up to 1 µs in this
process, without impacting the stability of the servo loop.

Figure 2 represents the application of this sequence
of operation for a resonator with an initial temperature
of 400mK. Initially, no probe laser is applied and the
uncertainty in resonator position is given by its temper-
ature imposed by the thermal bath. When switching on
the laser (without detecting its phase), using the feed-
forward process described above, we displace the equilib-
rium position without modifying the effective tempera-
ture of the resonator. When the probe laser is applied
and its phase is detected after the interaction with the
cantilever, the oscillator motion becomes localized in a
sine-wave oscillation. After 10 µs, we apply an active
feedback modulation of the probe power to keep the res-
onator as close as possible to the rest place, and the am-
plitude of the oscillations rapidly decrease to zero. The
feed-back mechanism used here in the numerical simula-
tion is based on the continuous evaluation of the ampli-
tude and phase of the oscillation at angular frequency ω
and the application of a small modulation of the probe
laser intensity at frequency ω, with an amplitude and
phase continuously adapted to counter-balance the res-
onator oscillation, see bottom panel in Fig. 2.

Note that the successive application of the above stages
is only chosen for clarity. In practice, it is certainly possi-
ble to apply the feed-forward ramping of the laser power
and implement the phase detection and the feed-back
mechanism all together and immediately, so as to accel-
erate the progress towards the final steady state, should
it be desirable for practical applications. The details on
the numerical integration procedure is outlined in the ap-
pendix.

The steady state given in Eq. 12 leads to an uncertainty
in the position of the resonator that corresponds to an
effective temperature < 0.7 mK (or, equivalently < 15
quanta). This more than 600 fold reduction in effective
temperature is a striking demonstration of how effectively
the continuous monitoring extracts knowledge of the res-
onator state. Moreover, a large part of the decrease in
a11 and a22 occurs at the beginning of the process (see
fig. 2): only 4µs after application of the continuous mea-
surement, the effective temperature is already decreased
to ' 100 quanta i.e. ' 4mK, a 100-fold reduction of the
effective temperature. After 50µs, the effective temper-
ature is already within less than 1% of that of the steady
state.

V. CONCLUSION

We have in this article presented a Gaussian state for-
malism that accounts for the evolution of a mechanical
oscillator subject to continuous homodyne probing. The
measurement outcome is stochastic, and the measure-
ment back action entails a displacement of the oscillator,
which one must know to benefit from the significantly
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Figure 2. Mechanical resonator subject to optical prob-
ing. The physical properties are described in the text (ω =
2π×1MHz, γ = 2π×10Hz, laser full power 1mW, initial tem-
perature 400mK). The sequence used here is the following: 1)
we start at thermal equilibrium with no probing laser; 2) after
1µs, we apply the probe laser at half power (feed-forward); 3)
at 1.5µs we apply the probe laser at full power; 4) at 2.5µs we
detect the probe laser phase continuously, which progressively
localizes the resonator on a sine-wave oscillation with random
amplitude and phase; 5) after 10 µs, we apply an active feed-
back process (which includes a 1µs delay time) that keeps the
resonator near its rest position by acting on the probe laser
power. Top panel: mean position of the resonator (the gray-
shaded area of the curve indicates the uncertainty); middle
panel: two times the standard deviation (root-mean-square)
of the position and momentum variables; bottom panel: vari-
ation in the probe laser flux normalized to its final constant
value, showing the excitation at half power and the oscilla-
tory feedback modulation, conditioned on the measurement
outcome.

reduced variance of the inferred position and momentum
of the cantilever. The increased purity of the quantum
state accompanies a reduced entropy, and we refer to
the process as measurement induced cooling (a term also
used in ref. [3]), as the residual energy of the system is
mainly due to a precisely known oscillatory motion in
phase space. We also show that this motion that can be
arrested by application of a force. In particular, we can
use a force which arises from interaction with the probe
itself and perform a feedback according to the measure-
ment of the resonator position by varying the intensity of
the probe. Future work may incorporate separate studies
of the so-called retrodicted state [18–21] of the system,
in particular, what do we know at time T about the os-
cillator’s position at the earlier time t, due to the mea-
surements performed both until t and after t, and how
this can benefit application of the probed cantilever for
force and motional sensing [22]. Our protocol differs from
other optomechanical schemes by relying exclusively on
the dispersive interaction between the light field and the
oscillator motion rather than dissipative cooling forces.
Our scheme does not apply a cavity, but we note that
in the bad cavity limit, optomechanical schemes relying
on dispersive effects are generally superior to dissipative
schemes [24]. The most crucial aspect of our proposal,
however, is its conditional character. The sensing of the
cantilever motion in just a single oscillation period per-
mits a drastic reduction of the position and momentum
uncertainty unmatched by attempts to apply uncondi-
tional dissipative forces to arrest the motion (the dura-
tion being, e.g., too short to merit the notion of side-
band cooling [2]). Recent theoretical and experimental
studies [25, 26], have shown that combining dissipative
optomechanical interactions and state estimation by de-
tection of the scattered field supersedes the results of the
unconditional dissipative cooling. A more complete pic-
ture of the advantages of combining conditional disper-
sive interactions and unconditional dissipative dynamics
to control mechanical motion may rely on separate de-
tailed studies of different systems.

VI. APPENDIX

We simulate our realistic feedback scheme as described
in the following. At each integration step n, we evaluate
the estimated oscillator displacement coordinates Xm[n],
Pm[n] from their previous values Xm[n − 1], Pm[n − 1]
using the procedure described in Sec. III of the article.
First, we incorporate the free rotation in phase space de-
scribed by the coefficients (1,2) and (2,1), and the mean
shift in momentum due to the interaction with the probe
light field described by the term (2,3) in the matrix of
Eq. 2 (in (line,column) notation). Then we incorporate
the average reduction in the oscillator amplitude with
rate γ/2 due to the dissipative coupling to the thermal
bath. Finally, Eq. 10 represents the stochastic evolu-
tion driven by the quantum-limited noisy measurement
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of the probe beam. In order to implement feed-back and
drive the resonator towards a fixed mean displacement
(Xrest

m , P rest
m ), we first express the coordinates (Xm[n],

Pm[n]) by their polar coordinates Arm[n] and φrm[n] in
the phase-space frame centered at (Xrest

m , P rest
m ) and ro-

tating at angular frequency ω. As the laser probe field
exerts a force on the cantilever, our feed-back mecha-
nism consists merely in modifying dynamically the op-
tical probe flux Φ[n] based on our estimate of the can-
tilever mean position. To model propagation and other
time delays in the feedback loop, we assume only avail-
ability of the prior value Arm[n − l] and φrm[n − l] as
we apply the photon flux at the nth time step: Φ[n] =
Φ0(1+G/

√
2n̄+ 1 ·Arm[n−l] ·sin(ωt− φrm[n− l])), where

G is the gain of the loop. In our numerical example, we
have limited the gain G to keep the relative modulation
of the probe laser power less than 10 %, which implies a
negligible impact on the measurement back-action pro-
cess. We commence application of the feed-back mecha-

nism only after completion of the initial pulses, i.e., when
the cantilever oscillates around the constant values Xrest

m

and P rest
m = 0. We considered a 100 % photodetector

quantum efficiency (η = 1), and neglected further noise
sources associated with imperfections in the feed-back
loop mechanism [23].
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