Generates a website with HTML summaries for predictive models

modelDown(..., modules = c("auditor", "drifter", "model_performance",
  "variable_importance", "variable_response"), output_folder = "output",
  repository_name = "repository", should_open_website = TRUE)

Arguments

...

one or more explainers created with DALEX::explain() function. Pair of explainer could be provided to check drift of models

modules

modules that should be included in the website

output_folder

folder where the website will be saved

repository_name

name of local archivist repository that will be created

should_open_website

should generated website be automatically opened in default browser

Details

Additional arguments that could by passed by name:

  • remote_repository_path Path to remote repository that stores folder with archivist repository. If not provided, links to local repository will be shown.

  • device Device to use. Tested for "png" and "svg", but values from ggplot2::ggsave function should be working fine. Defaults to "png".

  • vr.vars variables which will be examined in Variable Response module. Defaults to all variables. Example vr.vars = c("var1", "var2")

  • vr.type types of examinations which will be conducteed in Variable Response module. Defaults to "pdp". Example vr.type = c("ale", "pdp")

Examples

# NOT RUN {
require("ranger")
require("breakDown")
require("DALEX")

# ranger
HR_ranger_model <- ranger(as.factor(left) ~ .,
                      data = HR_data, num.trees = 500, classification = TRUE, probability = TRUE)
explainer_ranger <- explain(HR_ranger_model,
                      data = HR_data, y = HR_data$left, function(model, data) {
 return(predict(model, data)$prediction[,2])
}, na.rm=TRUE)

# glm
HR_data1 <- HR_data[1:4000,]
HR_data2 <- HR_data[4000:nrow(HR_data),]
HR_glm_model1 <- glm(left~., HR_data1, family = "binomial")
HR_glm_model2 <- glm(left~., HR_data2, family = "binomial")
explainer_glm1 <- explain(HR_glm_model1, data=HR_data1, y = HR_data1$left)
explainer_glm2 <- explain(HR_glm_model2, data=HR_data2, y = HR_data2$left)

modelDown::modelDown(explainer_ranger, list(explainer_glm1, explainer_glm2)) #all defaults

modelDown::modelDown(list(explainer_glm1, explainer_glm2)
  modules = c("auditor", "drifter", "model_performance", "variable_importance",
              "variable_response"),
  output_folder = "modelDown_output",
  repository_name = "HR",
  remote_repository_path = "some_user/remote_repo_name",
  device = "png",
  vr.vars= c("average_montly_hours", "time_spend_company"),
  vr.type = "ale")
# }