pyFTS.models.incremental package¶
Module contents¶
FTS methods with incremental/online learning
Submodules¶
pyFTS.models.incremental.TimeVariant module¶
Meta model that wraps another FTS method and continously retrain it using a data window with the most recent data
-
class
pyFTS.models.incremental.TimeVariant.Retrainer(**kwargs)[source]¶ Bases:
pyFTS.common.fts.FTSMeta model for incremental/online learning
-
auto_update= None¶ If true the model is updated at each time and not recreated
-
batch_size= None¶ The batch interval between each retraining
-
forecast(data, **kwargs)[source]¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
fts_method= None¶ The FTS method to be called when a new model is build
-
fts_params= None¶ The FTS method specific parameters
-
model= None¶ The most recent trained model
-
partitioner= None¶ The most recent trained partitioner
-
partitioner_method= None¶ The partitioner method to be called when a new model is build
-
partitioner_params= None¶ The partitioner method parameters
-
train(data, **kwargs)[source]¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
window_length= None¶ The memory window length
-
pyFTS.models.incremental.IncrementalEnsemble module¶
Time Variant/Incremental Ensemble of FTS methods
-
class
pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS(**kwargs)[source]¶ Bases:
pyFTS.models.ensemble.ensemble.EnsembleFTSTime Variant/Incremental Ensemble of FTS methods
-
batch_size= None¶ The batch interval between each retraining
-
forecast(data, **kwargs)[source]¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
fts_method= None¶ The FTS method to be called when a new model is build
-
fts_params= None¶ The FTS method specific parameters
-
num_models= None¶ The number of models to hold in the ensemble
-
partitioner_method= None¶ The partitioner method to be called when a new model is build
-
partitioner_params= None¶ The partitioner method parameters
-
train(data, **kwargs)[source]¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
window_length= None¶ The memory window length
-