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Uplink-Downlink Duality for Integer-Forcing
Wenbo He, Bobak Nazer , Member, IEEE, and Shlomo Shamai (Shitz), Fellow, IEEE

Abstract— Consider a Gaussian multiple-input multiple-
output (MIMO) multiple-access channel (MAC) with channel
matrix H and a Gaussian MIMO broadcast channel (BC) with
channel matrix HT. For the MIMO MAC, the integer-forcing
architecture consists of first decoding integer-linear combinations
of the transmitted codewords, which are then solved for the origi-
nal messages. For the MIMO BC, the integer-forcing architecture
consists of pre-inverting the integer-linear combinations at the
transmitter, so that each receiver can obtain its desired codeword
by decoding an integer-linear combination. In both the cases,
integer-forcing offers higher achievable rates than zero-forcing
while maintaining a similar implementation complexity. This
paper establishes an uplink-downlink duality relationship for
integer-forcing, i.e., any sum rate that is achievable via integer-
forcing on the MIMO MAC can be achieved via integer-forcing
on the MIMO BC with the same sum power and vice versa.
Using this duality relationship, it is shown that integer-forcing
can operate within a constant gap of the MIMO BC sum capacity.
Finally, the paper proposes a duality-based iterative algorithm
for the non-convex problem of selecting optimal beamforming
and equalization vectors, and establishes that it converges to a
local optimum.

Index Terms— MIMO, multiple access, broadcast, lattices,
optimization.

I. INTRODUCTION

THE capacity region of the Gaussian MIMO MAC is well-
known [1, Sec. 10.1] and can be attained via joint maxi-

mum likelihood (ML) decoding. While joint ML decoding is
optimal, its implementation complexity grows exponentially
with the number of users. This has lead to considerable
interest in linear receiver architectures [2]–[4], which rely
only on single-user decoding algorithms. A conventional lin-
ear receiver consists of a linear equalizer that generates an
estimate of each user’s codeword followed by parallel single-
user decoders. However, even with optimal minimum mean-

Manuscript received August 10, 2016; revised September 20, 2017; accepted
December 25, 2017. Date of publication January 10, 2018; date of current
version February 15, 2018. The work of W. He and B. Nazer was supported
by NSF under Grant CCF-1253918 and Grant CCF-1302600. The work of
S. Shamai (Shitz) was supported in part by the by the S. and N. Grand
Research Fund and in part by the European Union’s Horizon 2020 Research
and Innovation Programme under Grant 694630. This work was presented
in part at the 2014 Communication Theory Workshop, the 2014 IEEE
International Symposium on Information Theory, and the 2014 15th IEEE
International Symposium on Signal Processing Advances in Wireless Com-
munications.

W. He was with the Department of Electrical and Computer Engineering,
Boston University, Boston, MA 02215-2421 USA. He is now with The
Mathworks, Inc., Natick, MA 01760-2098 USA (e-mail: whe02@bu.edu).

B. Nazer is with the Department of Electrical and Computer Engineering,
Boston University, Boston, MA 02215-2421 USA (e-mail: bobak@bu.edu).

S. Shamai (Shitz) is with the EE Department, Technion, Haifa 32000, Israel
(e-mail: sshlomo@ee.technion.ac.il).

Communicated by O. Simeone, Associate Editor for Communications.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2018.2791589

squared error (MMSE) estimation, linear receivers fall short
of the MIMO MAC sum capacity. This gap can be closed via
successive interference cancellation (SIC), provided that the
transmitters operate at one of the corner points of the capacity
region. The full capacity region can be attained via SIC
combined with either time sharing [5], [6] or rate splitting [7].

Although the Gaussian MIMO BC is non-degraded, its
capacity region can be established via its uplink-downlink
duality with the Gaussian MIMO MAC [8]–[12]. Specifically,
uplink-downlink duality refers to the fact that any rate tuple
that is attainable on the Gaussian MIMO MAC with channel
matrix H is also attainable on the “dual” Gaussian MIMO
BC with channel matrix HT using the same sum power and
vice versa. The capacity region is attained via dirty-paper
coding [13], which requires high implementation complexity
at the transmitter. As with the MIMO MAC, significant effort
has gone towards characterizing the performance of linear
transmitter architectures for the MIMO BC (see, for instance,
[14], [15]), which are suboptimal in general. As demonstrated
by [10], linear transceiver architectures also satisfy uplink-
downlink duality. That is, given equalization and beamforming
matrices for a MIMO MAC, we can achieve the same rate
tuple on the dual MIMO BC with the same sum power by
exchanging the roles of the equalization and beamforming
matrices.

Integer-forcing is a variation on conventional linear trans-
ceiver architectures that can attain significantly higher sum
rates. Rather than using the equalization and beamforming
matrices to separate users’ codewords, an integer-forcing trans-
ceiver employs them to create an integer-valued effective chan-
nel matrix. The single-user decoders are then used to recover
integer-linear combinations of the codewords. By selecting an
integer-valued effective matrix that closely approximates the
channel matrix, this transceiver can reduce the effective noise
variances seen by the decoders, leading to higher rates. In the
MIMO MAC, these integer-linear combinations are solved for
the original codewords [16]. In the MIMO BC, the transmitter
applies the inverse linear transform to its messages prior to
encoding, so that each integer-linear combination corresponds
to the desired message of that user [17], [18]. Here, we demon-
strate that integer-forcing transceivers satisfy uplink-downlink
duality for the sum rate in the sense of [10]. At a high level,
this means that the sum rate achievable for decoding the
integer-linear combinations with integer coefficient matrix A
over a MIMO MAC with channel matrix H is also achievable
for decoding the integer-linear combinations with integer coef-
ficient matrix AT over a MIMO BC with channel matrix HT

by exchanging the roles of the equalization and beamforming
matrices. One technical obstacle is that the effective noise
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variances may be associated with different users in the dual
channel, which in turn means we can only guarantee duality
in terms of the sum rate.

We also present two applications of uplink-downlink dual-
ity: a constant-gap optimality result for downlink integer-
forcing and an iterative algorithm for optimizing beamforming
and equalization matrices. To motivate the first application,
prior work [19], [20] established that integer-forcing can
operate within a constant gap of the MIMO MAC sum capacity
using only “digital” successive cancellation, assuming that
channel state information (CSI) is available at the transmitters.
Using duality, we demonstrate that integer-forcing can also
operate within a constant gap of the MIMO BC capacity
using only “digital” dirty-paper coding, again assuming CSI
is available at the transmitter. For the second application, it is
well-known that simultaneously optimizing beamforming and
equalization matrices corresponds to a non-convex problem.
However, for both the MIMO MAC and BC, finding the
optimal equalization matrix for a fixed beamforming matrix
has a closed-form solution. Therefore, a natural algorithm is
to iterate between a problem and its dual, updating the equal-
ization matrix at every iteration. For example, the maxSINR
algorithm [21] relies on a variation of this idea to identify good
interference alignment solutions. Here, we propose an iterative
algorithm for optimizing the beamforming and equalization
matrices used in integer-forcing and show that it converges to
a local optimum. Recent follow-up work has used a variation
of our algorithm to identify good integer-forcing interference
alignment solutions [22].

A. Related Work

Prior work on integer-forcing [16]–[18], [23] has focused
on the important special case where all codewords have the
same effective power. This constraint is implicitly imposed by
the original compute-and-forward framework [24]. In order
to establish uplink-downlink duality, we need the flexibil-
ity to allocate power unequally across codewords. We will
thus employ the expanded compute-and-forward frame-
work [20], which can handle unequal powers. Our achiev-
ability results draw upon capacity-achieving nested lattice
codes, whose existence has been shown in a series of recent
works [25]–[30]. We refer interested readers to the textbook
of Zamir for a detailed history as well as a comprehensive
treatment of lattice codes [31].

For the sake of notational simplicity, we will state all
of our results for real-valued channels. Analogous results
can be obtained for complex-valued channels via real-valued
decompositions. Recent efforts have shown that compute-and-
forward can also be realized for more general algebraic struc-
tures [32]. For instance, building lattices from the Eisenstein
integers yields better approximations for complex numbers
on average, and can increase the average performance of
compute-and-forward [33].

Here, we will assume that full channel state informa-
tion (CSI) is available to the transmitter and receiver, in order
to optimize the beamforming matrices and power alloca-
tions. However, CSI may not always be available, especially
at the transmitter. The original integer-forcing paper [16]

numerically demonstrated the performance gains over con-
ventional linear receivers in terms of outage rates. It also
established that, if each antenna encodes an independent
data stream, then integer-forcing attains the optimal diversity-
multiplexing tradeoff [34]. Subsequently, it was shown that
if the transmitter mixes the data streams using a space-time
code with a non-vanishing determinant, then integer-forcing
operates within a constant gap of the capacity [35]. Recent
work has also studied the advantages of a random precoding
matrix on the outage probability for integer-forcing [36].

Integer-forcing can also serve as a framework for distributed
source coding, and can be viewed as the “dual” of integer-
forcing channel coding in a certain sense. See [37], [38] for
further details. Very recent work has also established uplink-
downlink duality for compression-based strategies for cloud
radio access networks [39].

Finally, we note that there is a rich body of work on
lattice-aided reduction [40]–[46] for MIMO channels. For
instance, in the uplink version of this strategy, each transmitter
employs a lattice-based constellation (such as QAM). The
decoder steers the channel to a full-rank integer matrix using
equalization, makes hard estimates of the resulting integer-
linear combinations of lattice symbols, and then applies the
inverse integer matrix to obtain estimates of the emitted
symbols. Roughly speaking, integer-forcing can be viewed as
lattice-aided reduction that operates on the codeword, rather
than symbol, level. This in turn allows us to write explicit
achievable rate expressions for integer-forcing, whereas rates
for lattice-aided reduction must be evaluated numerically.

B. Paper Organization

The remainder of this paper is organized as follows.
In Section II, we give problem statements for the uplink and
downlink. Next, in Section III, we give a high-level overview
of our duality results. Section IV provides background results
from nested lattice coding that will be needed for our achiev-
ability scheme. We present detailed achievability strategies for
the uplink and downlink in Sections V and VI, respectively.
Section VII formally establishes an uplink-downlink duality
relationship for integer-forcing, and handles the technical issue
associated with different effective noise variance associations
across the MIMO MAC and BC. In Section VIII, we propose
an iterative algorithm that uses uplink-downlink duality for
optimizing the integer-forcing beamforming, equalization, and
integer matrices. We provide simulations in Section IX and
Section X concludes the paper.

C. Notation

We will make use of the following notation. Column vectors
will be denoted by boldface, lowercase font (e.g., a ∈ Z

L ) and
matrices with boldface, uppercase font (e.g., A ∈ Z

L×L ). Let
a[i ] denote the i th coordinate of the vector a. We will use ‖a‖
to represent �2-norm of a, Tr(A) to represent the trace of A,
and eig(A) to denote the set of eigenvalues (i.e., spectrum)
of A. We will also use diag(a) to denote the diagonal matrix
formed by using the placing the elements of a along the
diagonal. All logarithms are taken to base 2 and we define
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Fig. 1. Block diagram of the uplink and downlink channel models. We say that the channels are duals of each other if their channel matrices satisfy
Hd,� = HT

u,�.

log+(x) � max(0, log x). We denote the identity matrix by I,
the all-ones column vector of length k by 1k and the all-zeros
column vector of length k by 0k .

We will work with both the real field R and prime-sized
finite fields Zp = {0, 1, . . . , p − 1} where p is prime.1 We
will denote addition and summation over the reals by + and∑

, respectively. For a prime-sized finite field, we will use ⊕
and

⊕
to denote addition and summation, respectively. Define

[a] mod p to be the modulo-p reduction of a. For vectors and
matrices, the modulo-p operation is taken elementwise and
denoted by [a] mod p and [A] mod p, respectively. Taking a
linear combination over a prime-sized finite field can be linked
to taking a linear combination over the reals as follows,

q1w1 ⊕ q2w2 = [q1w1 + q2w2] mod p.

Note that, on the left-hand side, q1, q2, w1, w2 are elements
of the finite field whereas, on the right-hand side, they are
elements of the integers under the natural mapping. Finally,
subscripts “u” and “d” will be used to denote variables
associated with the uplink and downlink, respectively.

II. PROBLEM STATEMENT

We now give problem statements for the uplink and down-
link. See Figure 1 for a block diagram. We focus on real-valued
channels, and note that our results are directly applicable to
complex-valued channels by using a real-valued decomposi-
tion as in [16]. Throughout the paper, we assume that full CSI
is available at the transmitters and receivers.2

A. Uplink Channel

The uplink channel (i.e., MIMO MAC) consists of L trans-
mitters and a single N-antenna receiver. The �th transmitter is
equipped with M� transmit antennas. It has a message wu,� that
is drawn independently and uniformly from {1, 2, . . . , 2nRu,� }
and an encoder Eu,� : {1, 2, . . . , 2nRu,� } → R

M�×n that maps
this message into a channel input Xu,� = Eu,�(wu,�) of
blocklength n. It will often be convenient to work

1We note that some mathematicians prefer to use the notation
Z/pZ or Z/(p) to avoid confusion with the p-adic integers, which are often
denoted by Zp . However, since we do not invoke the p-adic integers and will
often use superscripts to denote vector spaces, we prefer to use the notation
Zp for the finite field.

2For the case of CSI at the receivers only, our expressions can be suitably
modified to obtain outage rate expressions, along the lines of [16].

with the concatenation of the channel inputs

Xu �

⎡

⎢
⎣

Xu,1
...

Xu,L

⎤

⎥
⎦ ,

which is of dimension M × n where M = ∑
� M� denotes

the total number of transmit antennas. The transmitters must
satisfy a total power constraint E

[
Tr(XuXT

u )
] ≤ n Ptotal.

The receiver observes a noisy linear combination of the
emitted signals,

Yu =
L∑

�=1

Hu,�Xu,� + Zu

where Hu,� ∈ R
N×M� is the channel matrix from the �th

transmitter to the receiver and the additive noise Zu ∈ R
N×n

is elementwise i.i.d. Gaussian with mean zero and variance
one. We denote the concatenated channel matrices by

Hu �
[
Hu,1 · · · Hu,L

]
,

which lets us concisely write the channel output as

Yu = HuXu + Zu.

This channel output is sent through a decoder Du : R
N×n →

{1, 2, . . . , 2nR1} × · · · × {1, 2, . . . , 2nRL } that produces esti-
mates of the messages, (ŵu,1, . . . , ŵu,L) = Du(Yu).

Overall, we say that the uplink rates Ru,1, . . . , Ru,L are
achievable if, for any ε > 0 and n large enough, there exist
encoders and decoder such that P

(⋃L
�=1{ŵu,� �= wu,�}

)
< ε.

The uplink capacity region is the closure of the set of all
achievable rates.

B. Downlink Channel

The downlink channel model mirrors the uplink chan-
nel model. There is a single N-antenna transmitter and L
receivers. Let M� represent the number of antennas at the
�th receiver and let M = ∑

� M� be the total number of
receive antennas. The transmitter has L messages: the �th

message wd,� is drawn independently and uniformly from
{1, 2, . . . , 2nRd,�} and is intended for the �th receiver. The
transmitter uses an encoder Ed : {1, 2, . . . , 2nRd,1 } × · · · ×
{1, 2, . . . , 2nRd,L } → R

N×n to map these messages into a
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channel input Xd = Ed(wd,1, . . . , wd,L) where n represents
the blocklength. This channel input must satisfy a total power
constraint E

[
Tr(XdXT

d )
] ≤ n Ptotal.

For m = 1, . . . , L, the channel output observed by the mth

receiver is

Yd,m = Hd,mXd + Zd,m

where Hd,m ∈ R
Mm×N is the channel matrix from the

transmitter to the mth receiver and the noise Zd,m ∈ R
Mm×n

is elementwise i.i.d. Gaussian with mean zero and variance
one. The receiver passes its channel output through a decoder
Dd,m : R

Mm×n → {1, 2, . . . , 2nRd,m } in order to get an estimate
ŵd,m = Dd,m(Yd,m) of its desired message.

Overall, we say that the downlink rates Rd,1, . . . , Rd,L are
achievable if, for any ε > 0 and n large enough, there exist an
encoder and decoders such that P

(⋃L
�=1{ŵd,� �= wd,�}

)
< ε.

The downlink capacity region is the closure of the set of all
achievable rates.

Finally, it will often be useful to work with the following
concatenated matrices,

Yd �

⎡

⎢
⎣

Yd,1
...

Yd,L

⎤

⎥
⎦ Hd �

⎡

⎢
⎣

Hd,1
...

Hd,L

⎤

⎥
⎦ Zd �

⎡

⎢
⎣

Zd,1
...

Zd,L

⎤

⎥
⎦ ,

which enable us to compactly write the downlink channel
output as

Yd = HdXd + Zd.

Remark 1: Conventional MAC models impose a power
constraint on each user individually. However, it is well-known
that uplink-downlink duality can be established only if we
are free to reallocate the power across transmitters [9]–[11].
Note also that we use an expected power constraint rather
than a hard power constraint of the form Tr(XuXT

u ) ≤ n Ptotal.
In order to impose a hard power constraint, we would first need
to show that the nested lattice ensemble from [30], is also good
for covering in the sense of [29]. This is currently an open
question and beyond the scope of this paper. Alternatively,
we could keep only a constant fraction of each codebook,
throwing out the codewords with the highest powers. This
would result in codebooks that meet hard power constraints
and achieve the same rates, at the cost of disrupting the
symmetry of the encoding scheme.

III. OVERVIEW OF MAIN RESULTS

We now give a high-level overview of our main results.
To put our results in context, we begin by stating the capac-
ity regions for the uplink and downlink. We then give a
quick summary of the rates achievable via conventional linear
architectures and their uplink-downlink duality relationships.
Finally, we overview our integer-forcing architectures for the
uplink and downlink and state our uplink-downlink duality,
capacity approximation, and algorithmic results.

A. Capacity Regions

1) Uplink Channel: The uplink (i.e., MIMO MAC) capacity
region Cu is the set of rate tuples (Ru,1, . . . , Ru,L) satisfying

∑

�∈S
R� ≤ 1

2
log det

(

I +
∑

�∈S
Hu,�K�HT

u,�

)

(1)

for all subsets S ⊆ {1, 2, . . . , L} and for some positive
semi-definite matrices K1, . . . , KL satisfying the sum power
constraint

∑L
�=1 Tr(K�) ≤ Ptotal. It can be attained with

i.i.d. Gaussian encoding and simultaneous joint typicality
decoding. Alternatively, it can be attained with i.i.d. Gaussian
encoding, successive interference cancellation decoding, and
time sharing [5], [6] or rate splitting [7]. See [47, §9.2.1] for
more details.

2) Downlink Channel: As shown by [12], the downlink
(i.e., MIMO BC) capacity region Cd is the convex hull of the
set of rate tuples (Rd,1, . . . , Rd,L) satisfying

Rθ(�) ≤ 1

2
log

⎛

⎜
⎜
⎜
⎝

det
(

I +
∑

m≥�

Hd,θ(m)Kθ(m)HT
d,θ(m)

)

det
(

I +
∑

m>�

Hd,θ(m)Kθ(m)HT
d,θ(m)

)

⎞

⎟
⎟
⎟
⎠

(2)

for some permutation θ of {1, 2, . . . , K } and positive
semi-definite matrices K1, . . . , KL satisfying the sum power
constraint

∑L
�=1 Tr(K�) ≤ Ptotal. It can be attained using dirty-

paper coding at the transmitter, joint typicality decoding at the
receivers, and time sharing. See [12] or [47, §9.6.4] for more
details.

3) Uplink-Downlink Duality: It can be argued that the
uplink and downlink capacity regions described above are
equal to one another, Cu = Cd. This was first shown for
the sum-capacity [9]–[11] and then for the full capacity
region [12].

B. Conventional Linear Architectures

We begin with a summary of classical linear uplink and
downlink architectures and their duality relationships.

1) Uplink Channel: The �th transmitter has a codeword
su,� ∈ R

n with expected power 1
n E‖su,�‖2 = Pu,�. It uses

a beamforming vector c� ∈ R
M� to generate its channel input

Xu,� = cu,�sT
u,�.

Collecting the beamforming vectors into the matrix

Cu �

⎡

⎢
⎢
⎢
⎣

cu,1 0M1 . . . 0M1

0M2 cu,2 . . . 0M2
...

...
. . .

...
0ML 0ML . . . cu,L

⎤

⎥
⎥
⎥
⎦

and the codewords into the matrix

Su �

⎡

⎢
⎣

sT
u,1
...

sT
u,L

⎤

⎥
⎦ ,

we can write the beamforming operation as

Xu = CuSu.
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To recover the mth codeword, the receiver uses an equaliza-
tion vector bu,m ∈ R

N to obtain the effective channel output

ỹT
u,m

= bT
u,mYu

= bT
u,mHu,mcu,msT

u,m
︸ ︷︷ ︸

signal

+
∑

� �=m

bT
u,mHu,�cu,�sT

u,�

︸ ︷︷ ︸
interference

+ bT
u,mZu

︸ ︷︷ ︸
noise

,

which is fed into a single-user decoder. By employing
i.i.d. Gaussian codewords, the transmitters can achieve the
following rates

Ru,m = 1

2
log

(

1 + Pu,m
∣
∣bT

u,mHu,mcu,m
∣
∣2

∑
� �=m Pu,�

∣
∣bT

u,mHu,�cu,�

∣
∣2

)

(3)

for m = 1, . . . , L.
2) Downlink Channel: The transmitter has a codeword

sd,� ∈ R
n intended for the �th receiver with expected power

1
n E‖sd,�‖2 = Pd,�. It collects these codewords into a matrix

Sd �

⎡

⎢
⎣

sT
d,1
...

sT
d,L

⎤

⎥
⎦

and applies a beamforming matrix Bd ∈ R
N×L to create its

channel input

Xd = BdSd.

The mth receiver uses an equalization vector cd,m ∈ R
Mm

to form an effective channel output

ỹT
d,m

= cT
d,mYd

= cT
d,mHd,mbd,msT

d,m
︸ ︷︷ ︸

signal

+
∑

� �=m

cT
d,mHd,�bd,�sT

d,�

︸ ︷︷ ︸
interference

+ cT
d,mZd,m
︸ ︷︷ ︸

noise

.

Using i.i.d. Gaussian codewords, we can achieve the following
rates for m = 1, . . . , L:

Rd,m = 1

2
log

(

1 + Pd,m
∣
∣cT

d,mHd,mbd,m
∣
∣2

∑
� �=m Pd,�

∣
∣cT

d,mHd,�bd,�

∣
∣2

)

. (4)

3) Uplink-Downlink Duality: We can now state the uplink-
downlink duality relationship for conventional linear architec-
tures. Define the uplink and downlink equalization matrices

Bu �

⎡

⎢
⎣

bT
u,1
...

bT
u,L

⎤

⎥
⎦ Cd �

⎡

⎢
⎢
⎢
⎢
⎣

cT
d,1 0T

M2
. . . 0T

ML

0T
M1

cT
d,2 . . . 0T

ML
...

...
. . .

...

0T
M1

0T
M2

. . . cT
d,L

⎤

⎥
⎥
⎥
⎥
⎦

,

respectively. Also, define the uplink and downlink power
matrices,

Pu = diag(Pu,1, . . . , Pu,L) Pd = diag(Pd,1, . . . , Pd,L),

respectively. The following theorem encapsulates the uplink-
downlink result of [10] in our notation.

Theorem 1 ( [10]): For a given uplink channel matrix Hu
and (diagonal) power matrix Pu that meets the total power
constraint Tr(CT

u CuPu) = Ptotal, let Ru,1, . . . , Ru,L be a
rate tuple that is achievable with equalization matrix Bu and
precoding matrix Cu. Then, for the downlink channel matrix
Hd = HT

u , there exists a unique (diagonal) power matrix Pd
with total power usage Tr(BT

d BdPd) = Ptotal, such that the
rate tuple Rd,� = Ru,� for � = 1, . . . , L is achievable using
equalization matrix Cd = CT

u and precoding matrix Bd = BT
u .

The same relationship can be established starting from an
achievable rate tuple for the downlink and going to the uplink.

In other words, any rates that are achievable on an uplink
channel can be achieved on a downlink channel with a trans-
posed channel matrix by exchanging the roles of the equal-
ization and beamforming matrices (and transposing them) as
well as reallocating the powers.

Remark 2: In some cases, it may be desirable to employ
rate splitting [7] at the transmitter(s). This can be viewed as
creating virtual transmitters (in the uplink) or virtual receivers
(in the downlink). In this setting, uplink-downlink duality
continues to hold so long as the uplink and downlink users
are split into virtual users in the same fashion.

C. Integer-Forcing Linear Architectures
The linear architectures discussed above fall short of achiev-

ing the MIMO MAC or BC capacity, due to noise amplification
from the equalization step (which worsens as the condition
number of the channel matrix increases). Integer-forcing linear
architectures can substantially reduce this rate loss by allowing
the single-user decoders to target integer-linear combinations,
rather than individual codewords. These linear combinations
can then be solved for the desired codewords. By carefully
selecting the integer coefficients to match the interference pre-
sented by the channel, we can reduce the noise amplification
caused by the equalization step.

To streamline the overview, we will focus on the effective
noise variances attained by the integer-forcing architecture
as well as the resulting achievable rates. Due to the fact
that the effective noise for a linear combination impacts all
participating codewords, care is needed to ensure that this
effective noise variance is only associated with the achiev-
able rate of a single user. The technical details will be
given in Sections V and VI for the uplink and downlink,
respectively.

1) Uplink Channel: The operations at the transmitters
mimic those of a conventional linear architecture, except that
we use a nested lattice codebook to ensure that integer-linear
combinations of codewords are themselves codewords. The
goal is to recover L integer-linear combinations of the form
aT

u,1Su, . . . , aT
u,LSu where the aT

u,m are the rows of a full-rank
integer matrix Au ∈ Z

L×L , i.e.,

Au =
⎡

⎢
⎣

aT
u,1
...

aT
u,L

⎤

⎥
⎦ .

To recover the mth linear combination aT
u,mSu, the receiver

applies an equalization vector bu,m ∈ R
Mm to form the
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Fig. 2. Block diagram of the integer-forcing uplink architecture. Each message vector wu,� is encoded into a dithered lattice codeword su,� and mapped to
a channel input Xu,� = cu,�sT

u,�. For m = 1, . . . , L , the receiver uses an equalized channel output ỹu,m = bT
u,mYu to make an estimate ûu,m of the linear

combination uu,m . At the mth decoder, algebraic successive cancellation is used to (digitally) cancel out m − 1 codewords prior to applying a SISO decoder.
These codewords are then restored to obtain an estimate of the mth linear combination. Finally, the linear combinations are inverted to recover estimates ŵu,�
of the message vectors.

Fig. 3. Block diagram of the effective channel induced by the integer-forcing uplink architecture. The mth decoder observes an integer-linear combination
of the codewords plus effective noise,

∑
� au,m,�su,� + zu,eff,m from which it makes an estimate of the linear combination uu,m with coefficients qu,m,� =

[au,m,�] mod p. Finally, it applies the inverse of the matrix Qu = {qu,m,�} over Zp to estimate the message.

effective channel output

ỹT
u,m = bT

u,mYu

= aT
u,mSu + zT

u,eff,m

zT
u,eff,m � bT

u,mZu + (
bT

u,mHuCu − aT
u,m

)
Su.

We define the effective noise variance as

σ 2
u,m � 1

n
E‖zu,eff,m‖2

= ‖bu,m‖2 +
∥
∥
∥
(
bT

u,mHuCu − aT
u,m

)
P1/2

u

∥
∥
∥

2
. (5)

Assuming the receiver can successfully recover all L linear
combinations, it can now apply the inverse of the integer
matrix to obtain the transmitted messages. A block diagram
illustrating these operations and the resulting effective chan-
nels can be found in Figures 2 and 3, respectively.

In Section V, we will provide a detailed description of
the uplink achievability scheme proposed in [20]. Overall,
it establishes that the following rates are achievable

Ru,m = 1

2
log+

(
Pu,m

σ 2
u,π(m)

)

m = 1, . . . , L .

for at least one permutation πu.
Remark 3: Although it is not immediately obvious, any rate

tuple that is achievable via a conventional linear architecture
is also achievable via an integer-forcing linear architecture
by using the same beamforming matrix, setting the integer
matrix to be the identity matrix, and scaling the equalization
vectors by the appropriate MMSE coefficient [16, Lemma 3].

While [16] only establishes this for the uplink, this follows
naturally for the downlink as well.

2) Downlink Channel: We use the same encoding opera-
tions at the transmitter as in a conventional linear architecture.
We employ a nested lattice codebook to ensure that the
codebook is closed under integer-linear combinations so that
the users can decode linear combinations of the transmit-
ted codewords. Additionally, as first proposed by Hong and
Caire [17], [18], we apply a precoding step over the finite
field in order to “pre-invert” the linear combinations before
mapping the messages to codewords. This step guarantees
that the integer-linear combinations recovered by the users
correspond to their desired messages. These operations and the
resulting effective channel are illustrated in Figures 4 and 5,
respectively.

The mth receiver attempts to recover the linear combination
aT

d,mSd where aT
d,m is the mth row of the full-rank, integer

matrix Ad ∈ Z
L×L , i.e.,

Ad =
⎡

⎢
⎣

aT
d,1
...

aT
d,L

⎤

⎥
⎦ .

To do so, it uses an equalization vector cd,m ∈ R
Mm to form

the effective channel output

ỹT
d,m = cT

d,mYd,m

= aT
d,mSd + zT

d,eff,m (6)

zT
d,eff,m �

(
cT

d,mHd,mBd − aT
d,m

)
Sd + cT

d,mZd,m . (7)
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Fig. 4. Block diagram of the integer-forcing downlink architecture. The encoder applies the inverse of Qd = [Ad] mod p over Zp to the message vectors
wd,1, . . . , wd,L and then maps the results to dithered lattice codewords sd,1, . . . , sd,L . (The arrows between the encoders indicate that, as each codeword is
formed, an additional linear precoding step is needed to eliminate potential interference from codewords with smaller powers.) The channel input is formed
by beamforming these codewords, Xd = ∑

� bd,�sT
d,�. The mth decoder uses an equalized channel output ỹd,m = c̃T

d,m Yd,m to make an estimate of an
integer-linear combination of the lattice codewords, which, due to the inverse operation corresponds to an estimate of its desired message.

Fig. 5. Block diagram of the effective channel induced by the integer-forcing downlink architecture. The mth decoder observes an integer-linear combination
of the codewords plus effective noise,

∑
� ad,m,�sd,� + zd,eff,m . Since the encoder applied the inverse of Qd = [Ad] mod p over Zp to the message vectors

prior to mapping them to lattice codewords, then the mth integer-linear combination corresponds to the mth message.

We define the effective noise variance as

σ 2
d,m � 1

n
E‖zd,eff,m‖2

= ‖cd,m‖2 +
∥
∥
∥
(
cT

d,mHd,mBd − aT
d,m

)
P1/2

d

∥
∥
∥

2
. (8)

3) Uplink-Downlink Duality: The following theorem estab-
lishes uplink-downlink duality for integer-forcing in terms of
the sum rate.

Theorem 2: For a given uplink channel matrix Hu, integer
matrix Au, and power matrix Pu that meets the total power
constraint Tr(CT

u CuPu) = Ptotal, let Ru,1, . . . , Ru,L be a rate
tuple that is achievable via integer-forcing with equalization
matrix Bu and precoding matrix Cu. Then, for the downlink
channel matrix Hd = HT

u , integer matrix Ad = AT
u , there

exists a unique power matrix Pd with total power usage
Tr(BT

d BdPd) = Ptotal, such that the sum rate
∑

� Rd,� ≥∑
� Ru,� is achievable via integer-forcing using equalization

matrix Cd = CT
u and precoding matrix Bd = BT

u . The same
relationship can be established starting from an achievable rate
tuple for the downlink and going to the uplink.
A full proof of this duality theorem will be given in
Section VII.

Remark 4: Note that Theorem 2 only establishes duality for
the sum rate whereas, for conventional linear architectures,
Theorem 1 establishes duality for the individual rates. This
stems from the fact that, for a conventional linear architecture,
the mth effective noise variance and mth effective power are
always linked to the rates Ru,m and Rd,m . However, for
uplink integer-forcing, the effective noise variance for the mth

linear combination may not correspond to Ru,m . Similarly,
for downlink integer-forcing, the mth effective power may not
correspond to Rd,m . While we can always find permutations
that connect effective noise variances and power to rates, these
permutations may differ between the uplink and downlink,
which in turn limits the our approach in Section VII to sum-
rate duality.

Remark 5: As noted in Remark 2, uplink-downlink duality
continues to hold for conventional linear architectures under
rate splitting. The same is true for integer-forcing architectures,
but in terms of the sum rate.

4) Approximate Sum Capacity: For the uplink channel, it is
known that integer-forcing can operate with a constant gap
of the sum capacity [19, Th. 3], [20, Th. 4]. Using uplink-
downlink duality, we can establish a matching result for the
downlink channel.

Theorem 3: For any channel matrix Hd ∈ R
M×N and

total power constraint Ptotal, there is a choice of the power
allocation Pd, integer matrix Ad, beamforming matrix Bd,
and equalization vectors cd,m such that the integer-forcing
beamforming architecture can operate within a constant gap
of the downlink sum-capacity,

L∑

m=1

Rd,m ≥ max
K
0

Tr(K)≤Ptotal

1

2
log det

(
I + HT

d KHd

)
− L

2
log L

where K 
 0 means that the matrix K must be positive
semidefinite.
The proof is deferred to Appendix.
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5) Iterative Optimization: In Section VIII, we present an
application of our uplink-downlink duality result for iteratively
optimizing the beamforming and equalization matrices used
in either an uplink or downlink integer-forcing architecture.
This problem is non-convex in general as is the corresponding
problem for conventional linear architectures. Our algorithm
provably converges to a local optimum and performs well in
simulations.

IV. NESTED LATTICE CODES

Below, we review some basic lattice definitions as well as
nested lattice code constructions that we will need for our
achievability results. See [31] for a thorough introduction to
lattice codes.

A. Lattice Definitions

A lattice � is a discrete additive subgroup of R
n such that,

if λ1,λ2 ∈ �, then λ1 + λ2 ∈ � and −λ1,−λ2 ∈ �. The
nearest neighbor quantizer associated to � is defined as

Q�(x) � arg min
λ∈�

‖x − λ‖

(with ties broken in a systematic fashion). The fundamental
Voronoi region V of � is the set of all points in R

n that
quantize to 0. We define the second moment � as

σ 2(�) � 1

n

∫

V
‖x‖2 1

Vol(V)
dx

where Vol(V) denotes the volume of V .
We also define the modulo operation with respect to � as

[x] mod � � x − Q�(x)

and note that it satisfies a distributive law, [a[x] mod � +
b[y] mod �] mod � = [ax + by] mod � for all a, b ∈ Z

and x, y ∈ R
n .

Lemma 1 (Crypto Lemma): Let x be a random vector over
R

n and d be an independent random vector drawn uniformly
over the Voronoi region V of the lattice �. The modulo sum
[x + d] mod � is independent of x and uniform over V .
See [31, Ch. 4.1] for a full proof.

The lattice �C is said to be nested in the lattice �F if
�C ⊂ �F. In this case, �C is called the coarse lattice and
�F the fine lattice. A nested lattice codebook L = �F ∩ VC
consists of all fine lattice points that fall in the fundamental
Voronoi region VC of the coarse lattice. Note that nested
lattices satisfy the following quantization property:

[
Q�F (x)

]
mod �C = [

Q�F ([x] mod �C)
]

mod �C. (9)

B. Nested Lattice Codes and Properties

Our encoding strategies rely on the existence of good nested
lattice codebooks. Below, we describe the nested lattice ensem-
ble as well as properties that are central to our achievability
proofs. Our notation closely follows that from [20, §IV], which
contains a more detailed exposition.

Recall that n denotes the blocklength of our coding scheme.
Let p represent a prime number and Zp the finite field of size

p. We will also need integer-valued parameters 0 ≤ kC,� ≤
kF,�, � = 1, . . . , L. Define kC � min� kC,�, kF � max� kF,�,
and k � kF − kC.

The construction begins with the generator matrix of a linear
code G ∈ Z

kF×n
p . For � = 1, . . . , L, define GC,� and GF,� to

be the submatrices consisting of the first kC,� and kF,� rows
of G, respectively. Let

CC,� =
{

GT
C,�w : w ∈ Z

kC,�
p

}

CF,� =
{

GT
F,�w : w ∈ Z

kF,�
p

}

denote the resulting linear codebooks. For γ > 0 to be speci-
fied later, define the mapping φ(w) � γ p−1w from Zp to R.
We also define the inverse mapping φ̄(κ) � [γ −1 pκ] mod p,
which is only defined on the domain γ p−1

Z. Both of these
mappings are taken elementwise when applied to vectors and
will be used to go back and forth between linear codebooks
and lattices.

We now generate L coarse lattices and L fine lattices as
follows:

�C,� =
{
λ ∈ γ p−1

Z
n : φ̄(λ) ∈ CC,�

}

�F,� =
{
λ ∈ γ p−1

Z
n : φ̄(λ) ∈ CF,�

}
.

By construction, these lattices are nested according to the
order for which the parameters kC,� and kF,� are increasing.
Define �C and �F to be the coarsest and finest lattices in the
ensemble, respectively. Let VC,� and VF,� denote the Voronoi
regions of �C,� and �F,�, respectively. Finally, we take the
elements of the fine lattice �F,� that fall in the Voronoi region
of the coarse lattice �C,� to be the nested lattice codebook

L� � �F,� ∩ VC,�

= [�F,�] mod �C,�

for the �th user.
The theorem below summarizes results from [30] that

demonstrate that this nested lattice construction exhibits good
shaping and noise tolerance properties.

Theorem 4 ( [30, Th. 2]): For � = 1, . . . , L, select para-
meters P� > 0 and 0 < σ 2

eff,� < P�. Then, for any ε > 0 and
n and p large enough, there are parameters γ , kC,�, and kF,�

and a generator matrix G ∈ Z
kF×n
p such that, for � = 1, . . . , L

(a) the submatrices GC,� and GF,� are full rank.
(b) the coarse lattices �C,� have second moments close to

their power constraints

P� − ε < σ 2(�C,�) < P�.

(c) the lattices can tolerate the desired level of effective
noise. Let z0, z1, . . . , zL be independent noise vectors
where z0 ∼ N (0, I) and z� ∼ Unif(VC,�). For any
β0, β1, . . . , βL ∈ R, let zeff = ∑L

�=0 z�. If β2
0 +

∑L
�=1 β2

� P� ≤ σ 2
eff,m , any fine lattice point λ ∈ �F,m

can recover from zeff with high probability,

P

(
Q�F,m (λ + zeff ) �= λ

)
< ε.
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Fig. 6. Illustration of the linear labeling of the �th nested lattice codebook.
The first kC,�−kC elements of the linear label are “don’t care” entries (denoted
by the ∗ symbol) and correspond to the mod �C,� operation. The next
kF,� − kC,� elements are free to carry information symbols (denoted by solid
circles). The last kF − kF,� elements are zero (denoted by dashed lines).

Similarly, if β2
0 + ∑L

�=1 β2
� P� ≤ Pm , any coarse lattice

point λ ∈ �C,m can recover from zeff with high proba-
bility,

P

(
Q�C,m (λ + zeff) �= λ

)
< ε.

(d) the rates of the nested lattice codes satisfy

1

n
log |L�| = kF,� − kC,�

n
log2 p >

1

2
log

(
P�

σ 2
eff,�

)

− ε.

Finally, it can be argued that we can label lattice codewords
so that integer-linear combinations of codewords correspond
to linear combinations of the messages over Zp . We recall the
definition of a linear labeling from [32].

Definition 1: We say that a mapping ϕ : �F → Z
k
p is a

linear labeling if

(a) λ ∈ �F,� if and only if the last kF − kF,� components of
its label ϕ(λ) are zero. Similarly, λ ∈ �C,� if and only if
the last kF − kC,� components of its label ϕ(λ) are zero.

(b) For all a� ∈ Z and λ� ∈ �F, we have that

ϕ

( L∑

�=1

a�λ�

)

=
L⊕

�=1

q�ϕ(λ�)

where q� = [a�] mod p.
Consider the mapping that sets ϕ(λ) to be the last k com-

ponents of the unique vector v ∈ Z
kF
p satisfying φ̄(λ) = GTv.

From [20, Th. 10], ϕ is a linear labeling. We also define the
inverse map

ϕ̄ � φ

(

GT
[

0kC

w

])

,

which satisfies ϕ
(
ϕ̄(w)

) = w.

C. Intuition via Signal Levels

We now develop some intuition by describing the linear
labeling of our nested lattice construction in terms of “signal
levels” over Z

k
p . See Figure 6 for an illustration. Each code-

word from the �th nested lattice codebook can be expressed as
an element from the �th fine lattice, λF,� ∈ �F,� modulo the

�th coarse lattice, [λF,�] mod �C,� ∈ L�. We can thus write
the linear label of any codeword in L� as

ϕ
([λF,�] mod �C,�

) = ϕ
(
λF,� − Q�C,�

(
λF,�

))

= ϕ(λF,�) � ϕ
(
Q�C,�

(
λF,�

))

where � denotes the subtraction operation over Zp . From
Definition 1(a), we know that ϕ

(
Q�C,�

(
λF,�

))
only occupies

the top kC,� − kC elements of the vector corresponding to the
linear label. Similarly, we know that ϕ(λF,�) only occupies the
top kF −kF,� elements of the vector. Therefore, the first kC,� −
kC elements are determined by the shaping operation modL�

and can be interpreted as enforcing the power constraint P�.
The next kF,� − kC,� elements are occupied by information
symbols and the final kF − kF,� elements are zero, which can
be interpreted as enforcing the noise tolerance threshold σ 2

eff,�.
Overall, we arrive at the following high-level intuitions:
• Only the encoder with the largest power (i.e., the coarsest

lattice) can control the very top signal levels. For an
encoder � whose power is less than the maximum power,
the top kC,� − kC signal levels are outside of its direct
control. (In our strategy, these signal levels will be set
during the decoding process.)

• The lowest kF − kF,� are set to zero by the �th encoder
so that all of its information symbols lie above the noise
level (i.e, the corresponding fine lattice can tolerate the
desired effective noise variance).

V. UPLINK INTEGER-FORCING ARCHITECTURE

Our uplink coding scheme is taken from [20, Sec. VI].
Below, we summarize the encoding and decoding operations
in order to highlight the similarities between the uplink and
downlink integer-forcing schemes.

We begin by selecting a power allocation Pu =
diag(Pu,1, . . . , Pu,L) for the codewords and a beamforming
matrix Cu. Note that, in order to meet the total power
constraint with equality, we require that Tr(CT

u CuPu) = Ptotal.
We also select a full-rank integer matrix A ∈ Z

L×L and an
equalization matrix Bu = [bu,1 · · · bu,L]T ∈ R

L×N . These
choices specify the effective noise variances σ 2

u,m from (5).
The structure of the integer matrix Au determines which

codewords can be cancelled out in each decoding step. In order
to keep our notation manageable, we assume that Au is
selected so that the mth user can be associated with the mth

effective noise variance. The following definition describes
when this is possible.

Definition 2: We say that the identity permutation is admis-
sible for the uplink if
(a) the effective noise variances are in increasing order,

σ 2
u,1 ≤ · · · ≤ σ 2

u,L and
(b) the leading principal submatrices of Au are full rank,

rank(A[1:m]
u ) = m for m = 1, . . . , L.

These conditions can always be met by permuting the rows
and columns of the selected matrices. See the remark below
for details.

Remark 6: Assume that we have chosen uplink parame-
ters Au, Bu, Cu, Hu, and Pu, and now we wish to satisfy
Definition 2 by permuting row and column indices. First,
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select a permutation π that places the effective noise variances
in increasing order, σ 2

u,π(1) ≤ · · · ≤ σ 2
u,π(L). Next, let θ

be a permutation such that, after row permutation of Au
by π and column permutation by θ , we obtain a matrix
Ã = {au,π(m),θ(�)}m,� whose leading principal submatrices
are full rank, rank(Ã[1:m]

u ) = m for m = 1, . . . , L. Now,
permute the rows of the equalization matrix Bu by π to obtain
B̃u,m . Finally, reindex the users by θ by setting C̃u to be the
beamforming matrix consisting of vectors c̃u,m = cu,θ(�), H̃u

to be the channel matrix consisting of submatrices H̃u,� =
Hu,θ(�), and P̃u to be the power matrix with diagonal entries
P̃u,� = Pu,θ(�). It can be verified that the effective noise
variances σ̃ 2

u,m, m = 1, . . . , L that result from these permuted
parameters satisfies σ̃ 2

u,m = σ 2
u,π(m). Overall, we find that the

rates Ru,π(m) = 1
2 log+ (

Pu,π(m)/σ
2
u,θ(m)

)
, m = 1, . . . , L are

achievable.
For notational convenience, we assume going forward that

the identity permutation is admissible.
In our decoding procedure, we will need to triangularize Au

over Zp in the following sense. We need a lower unitriangular
matrix L̄ ∈ Z

L×L
p such that Ā = [L̄Au] mod p is upper

triangular. First, note that the condition in Definition 2(b) is
equivalent to the condition that there exists a lower unitriangu-
lar matrix L ∈ R

L×L such that LA is upper triangular. Given
the existence of such an L, it follows from [19, Appendix A]
that, for p large enough, we can always find an appropriate L̄.
It also follows that L̄ has a lower unitriangular inverse L̄(inv)

over Zp . After our overview of the encoding and decoding
steps, we provide an explicit example of such matrices in
Example 1.

Using the linear labeling ϕ, we can show that each
nested lattice codebook L� is isomorphic to the vector space
Z

kF,�−kC,�
p . Each user will take the p-ary expansion of its mes-

sage index wu,� to obtain a message vector wu,� ∈ Z
kF,�−kC,�
p .

The intermediate goal of the receiver is to recover L linear
combinations of the form

uu,m =
L⊕

�=1

qu,m,�w̃u,� (10)

where qu,m,� = [au,m,�] mod p, au,m,� is the (m, �)th entry of
Au, and w̃u,� ∈ �wu,�� with

�wu,���

⎧
⎨

⎩
w ∈ Z

k
p : w =

⎡

⎣
e

wu,�

0kF−kF,�

⎤

⎦ for some e ∈ Z
kC,�−kC

⎫
⎬

⎭
.

(11)

That is, the receiver attempts to recover L linear combinations
of cosets of the messages. The top elements kC,� − kC of w̃u,�

(denoted by e in (11)) can be thought of as “don’t care” entries.
That is, they can take any values, but are not directly set by
the �th transmitter, since this would require it to exceed its
power constraint. In our scheme, these entries are determined
during the decoding process and can be recovered by the
receiver, although this is not required to recover the original
messages wu,�.

We now state the encoding and decoding steps used in
the uplink integer-forcing architecture. We select an ensem-

ble of good nested lattices �C,1, . . . ,�C,L ,�F,1, . . . ,�F,L

with parameters Pu,1, . . . , Pu,L and σ 2
u,1, . . . , σ

2
u,L using The-

orem 4.
Encoding: The �th transmitter starts by taking the p-ary

expansion of its message index wu,� to obtain the message
vector wu,� ∈ Z

kF,�−kC,�
p . It then uses the inverse linear labeling

to map this to a lattice point

λu,� =
⎡

⎣ϕ̄

⎛

⎝

⎡

⎣
0kC,�−kC

wu,�

0kF−kF,�

⎤

⎦

⎞

⎠

⎤

⎦ mod �C,�

and dithers it to produce the codeword

su,� = [λu,� + du,�] mod �C,�

where the dither vector du,� is drawn independently and
uniformly over VC,�. Thus, by the Crypto Lemma and Theo-
rem 4(b), su,� is independent of λu,� and has expected power
close to Pu,�. Finally, the �th transmitter uses its beamforming
vector cu,� to produce its channel input

Xu,� = cu,�sT
u,�.

Decoding: The receiver attempts to recover linear combina-
tions of the form (10) and then solve them to obtain estimates
of the message vectors. As an intermediate step, the receiver
will attempt to decode certain integer-linear combinations of
the lattice codewords, i.e.,

μu,m =
[ L∑

�=1

au,m,� λ̃u,�

]

mod �C

where λ̃u,� � λu,� − Q�C,� (λu,� + du,�). The linear labels
of these integer-linear combinations correspond to the desired
linear combinations, ϕ(μu,m) = uu,m . (This decoding step sets
the top kC,� − kC “don’t care” entries of w̃u,� to the values
specified by the linear label ϕ

( − Q�C,� (λu,� + du,�)
)
.)

The main obstacle is that, in order to decode the mth

integer-linear combination, the receiver must first cancel out
the first m − 1 codewords using the prior m − 1 linear
combinations. This is accomplished via the algebraic SIC
technique from [19], which takes advantage of the fact that
the nested lattice codebook is isomorphic to a vector space
over Zp . Specifically, by adding an integer-linear combination
of μu,1, . . . ,μu,m−1 it can “digitally” null out the lattice
codewords λ̃u,1, . . . , λ̃u,m−1 without impacting effective noise.
Define

νu,m =
[

μu,m +
m−1∑

i=1

l̄m,iμu,i

]

mod �C

=
[ L∑

�=1

ām,� λ̃u,�

]

mod �C (12)

where l̄m,i is the (m, i)th entry of L̄ and ām,� is the (m, �)th

entry of the upper triangular matrix Ā defined above. Note that
νu,m ∈ �F,m and, given ν1, . . . , νm , we can recover μu,m:

μu,m =
[ m∑

i=1

l̄(inv)
m,i ν i

]

mod �C

where l̄(inv)
m,i is the (m, i)th entry of L̄(inv).
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For the mth decoding step, we assume that the receiver has
already successfully recovered the previous m−1 integer-linear
combinations, i.e., μ̂u,1 = μu,1, . . . , μ̂u,m−1 = μu,m−1. The
receiver begins by equalizing its observation,

ỹT
u,m = bT

u,mYu.

The receiver then removes the dithers,3 nulls out the lattice
codewords corresponding to the first m−1 users, and quantizes
onto the mth fine lattice,

νu,m =
[

Q�F,m

(
ỹu,m +

m−1∑

i=1

l̄m,i μ̂u,i

−
L∑

�=1

au,m,� du,�

)]

mod �C

=
[

Q�F,m

( L∑

�=1

au,m,�(su,� − du,�)

+
m−1∑

i=1

l̄m,i μ̂u,i + zu,eff,m

)]

mod �C

=
[

Q�F,m

(

μu,m +
m−1∑

i=1

l̄m,i μ̂u,i + zu,eff,m

)]

mod �C

=
[

Q�F,m (νu,m + zu,eff,m)
]

mod �C

where the last step follows from (12) and the distributive law.
It then forms an estimate of its desired linear combination

μ̂u,m =
[ m∑

i=1

l̄(inv)
m,i ν̂ i

]

mod �C

ûu,m = ϕ(μ̂m).

Finally, if all L linear combinations have been recovered
correctly, we can solve the linear combinations to recover
the original messages. This strategy leads to the following
achievable rates.

Theorem 5 ( [20, Lemma 13]): Choose a power allocation
Pu = diag(Pu,1, . . . , Pu,L), beamforming matrix Cu ∈ R

M×L ,
channel matrix Hu ∈ R

N×M , full-rank integer matrix Au =
[au,1 · · · au,L]T ∈ Z

L×L , and equalization vectors bu,m ∈ R
N .

Assume, without loss of generality, that the identity permuta-
tion is admissible for the uplink according to Definition 2.
Then, the following rates are achievable

Ru,m = 1

2
log+

(
Pu,m

σ 2
u,m

)

, m = 1, . . . , L,

σ 2
u,m = ‖bu,m‖2 +

∥
∥
∥
(
bT

u,mHuCu − aT
u,m

)
P1/2

u

∥
∥
∥

2
.

For a full proof, see [20, §VI].
Example 1: To illustrate the algebraic SIC technique, con-

sider the integer matrix

A =
[

2 1
0 1

]

3For lattice coding proofs, it is usually assumed that the dithers are available
at the transmitters and receivers. Note that it can be shown that fixed dither
vectors exist that attain the same performance [20, Appendix H]. In other
words, the randomness dithers should not be viewed as common randomness,
but rather as part of the usual probabilistic method used in random coding
proofs.

and assume that the underlying finite field is Z3 and σ 2
u,1 <

σ 2
u,2. Define the following lower unitriangular matrices

L̄1 =
[

1 0
0 1

]

L̄2 =
[

1 0
2 1

]

.

Each matrix can be used to cancel out one of the codewords,
i.e.,

Ā1 = [L̄1A] mod 3 =
[

2 1
0 1

]

Ā2 = [L̄2A] mod 3 =
[

2 1
1 0

]

.

Since Ā1 is upper triangular, the first lattice codeword λ̃u,1
only needs to tolerate effective noise variance σ 2

u,1, and
the second lattice codeword λ̃u,2 must tolerate the larger noise
variance σ 2

u,2. In other words, the identity permutation is
admissible according to Definition 2. Alternatively, using L̄2,
we obtain a matrix Ā2 that is upper triangular after permuting
the two columns. In other words, the first lattice codeword
must tolerate the larger noise variance σ 2

u,2 whereas the second
lattice codeword only needs to tolerate the smaller one σ 2

u,1.
In general, not all orderings are possible, as demonstrated by
the following integer matrix, which admits only the identity
permutation:

A =
[

1 0
1 1

]

.

VI. DOWNLINK INTEGER-FORCING ARCHITECTURE

The key idea underlying downlink integer-forcing is the
fact that the transmitter can pre-invert the linear combinations
prior to encoding. This technique, which was first proposed
by Hong and Caire [17], [18], allows each receiver to decode
any integer-linear combination of the codewords in order to
reduce the effective noise but still recover its desired message.
These papers focused on the important special case where
all users employ the same fine and coarse lattices, and thus
have equal powers and must tolerate the worst effective noise
across receivers. Specifically, as illustrated in Figure 4, in the

equal power case, the transmitter should apply the inverse Q−1
d

to the p-ary expansions of the messages, prior to generating
the lattice codewords. As a result, each receiver’s integer-
linear combination of codewords corresponds to its desired
message.

This basic strategy can be generalized to allow for unequal
powers and a unique effective noise variance associated to
each receiver. However, if each lattice codeword is generated
using a different coarse lattice, it does not suffice to apply the
inverse Q−1

d to the messages. As discussed in Section IV-C,
the issue is that the top kC,� − kC elements (i.e., the “don’t
care” entries) cannot be set directly by the �th encoder. Rather,
in our coding scheme, their values will be set as a function
of the message and dither vectors, and will act as interference
for encoders whose higher power levels allows them access
to these entries. Thus, we will encode the messages in stages,
starting with the signal levels accessible to all encoders and
applying the inverse Q−1

d . For the next set of signal levels,
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the encoder with the lower power will not participate, other
than to add interference via its “don’t care” entries. The
remaining encoder will pre-cancel this interference as well as
apply the inverse of the submatrix of Qd with row and column
indices corresponding to the active encoders. This process will
continue, removing an additional encoder at each stage, until
all signal levels have been filled.

A. Integer-Forcing Beamforming

We begin by choosing a power allocation Pd =
diag(Pd,1, . . . , Pd,L) for the codewords and a full-rank integer
matrix Ad ∈ Z

L×L . We also select a beamforming matrix Bd ∈
R

N×L and equalization vectors cd,m ∈ R
Mm , m = 1, . . . , L.

To meet the total power constraint with equality, we need that
Tr(BT

d BdPd) = Ptotal. Taken together, these choices specify
the effective noise variances σ 2

d,m from (8).
As in the uplink case, the structure of the integer matrix Ad

will determine the order in which interference cancellation
is possible via a digital variation on dirty-paper precoding
that occurs at the message level. To simplify our notation,
we will assume that Ad is selected so that the mth user can be
associated with the mth power Pd,m . We specify when this is
possible below.

Definition 3: We say that the identity permutation is admis-
sible for the downlink if
(a) the powers are in decreasing order, Pd,1 ≥ · · · ≥ Pd,L

and
(b) the leading principal submatrices of Ad are full rank,

rank(A[1:m]
d ) = m for m = 1, . . . , L.

These conditions can be satisfied via reindexing the rows
and columns of the chosen matrices, as demonstrated in the
following remark.

Remark 7: Assume that we have selected downlink para-
meters Ad, Bd, Cd, Hd, and Pd, and now wish to satisfy
Definition 3 by permuting row and column indices. We first
choose a permutation π that puts the powers in decreasing
order Pd,π(1) ≥ · · · ≥ Pd,π(L). Next, we take a permutation
θ such that, for Ãd = {ad,θ(m),π(�)}m,�, the leading principal
submatrices are all full rank, rank(Ã[1:m]

d ) = m for m =
1, . . . , L. Then, we permute the columns of the beamforming
matrix Bd to get B̃d as well as the powers P̃d,� = Pd,π(�) to
get a permuted power matrix P̃d. Finally, we reindex the users
by θ , which in turns yields a permuted equalization matrix
C̃d consisting of equalization vectors c̃d,m = c̃d,θ(m) as well
as permuted channel submatrices H̃d,m = Hd,θ(m) to form
overall channel matrix H̃d. It can be verified that the effective
noise variances σ̃ 2

d,m , m = 1, . . . , L, that result from these
permuted parameters satisfy σ̃ 2

d,m = σ 2
d,θ(m). Thus, the rates

Rd,θ(m) = 1
2 log+ (

Pd,π(m)/σ
2
d,θ(m)

)
are achievable.

To keep our notation manageable, we assume below that
the identity permutation is admissible.

We now describe the encoding and decoding steps used in
the integer-forcing beamforming architecture. Using the para-
meters Pd,1 ≥ · · · ≥ Pd,L and σ 2

d,1, . . . , σ
2
d,L , we pick a good

ensemble of nested lattices �C,1, . . . ,�C,L ,�F,1, . . . ,�F,L

via Theorem 4. We will assume that the prime p used in
the lattice construction is large enough so that Q[1:m]

d =

[A[1:m]
d ] mod p is full rank over Zp for m = 1, . . . , L.

It is always possible to choose such a prime, as argued
in [20, Lemmas 3, 4].

Encoding: Take the p-ary expansion of each message wd,�

to obtain the message vector w� ∈ Z
kF,�−kC,�
p for � = 1, . . . , L.

These vectors are then zero-padded to obtain

w̄d,� =
⎡

⎣
0kC,�−kC

wd,�

0kF−kF,�

⎤

⎦ . (13)

Recall from Section IV-C that the parameter kC,� −kC denotes
how many of the top signal levels cannot be directly set by
the �th encoder, due to its power constraint. Since the powers
are assumed to be in decreasing order, it follows that these
parameters are in increasing order, kC,1−kC ≤ · · · ≤ kC,L−kC.

We now proceed to pre-invert the linear combinations in L
stages. Recall that the notation w[i ] refers to the i th entry of
the vector w.

Initialization Step, kC,L − kC + 1 ≤ i ≤ k: These signal
levels are accessible by every encoder, meaning that we can
simply apply the inverse,

⎡

⎢
⎣

vd,1[i ]
...

vd,L[i ]

⎤

⎥
⎦ = Q−1

d

⎡

⎢
⎣

w̄d,1[i ]
...

w̄d,L[i ]

⎤

⎥
⎦ .

Note that this fully specifies all of the signal levels controlled
by the L th encoder. Therefore, we set the remaining entries
to zeros, vd,L[1], . . . , vd,L [kC,L − kC] = 0, apply the inverse
linear labeling to obtain a fine lattice point

λd,L = ϕ̄(vd,L),

and then generate our dithered codeword

sd,L = [λd,L + dd,L] mod �C,L

where the dither vector dd,L is drawn independently and
uniformly over VC,L . This process fixes the “don’t care” entries
of the L th encoder (i.e., the top kC,L − kC signal levels) to

ed,L = ϕ
(
Q�C,L (λd,L + dd,L)

)
,

which will act as interference towards the remaining L − 1
encoders that send information in these levels.

For the rest of the signal levels, we proceed by induction
for m = 1, . . . , L − 1, assuming that vd,�,λd,�, sd,�, ed,� have
been set for � = m + 1, . . . , L.

Induction Step, kC,m − kC + 1 ≤ i ≤ kC,m+1: The first m
encoders can directly set these signal levels and the remaining
L − m encoders contribute interference via their “don’t care
entries.” Thus, the encoding task is to first cancel out the
interference from these “don’t care” entries and then apply
the the inverse of the mth leading principal submatrix,
⎡

⎢
⎣

vd,1[i ]
...

vd,m[i ]

⎤

⎥
⎦=

(
Q[1:m]

d

)−1

⎡

⎢
⎣

w̄d,1[i ] ⊕ ⊕L
�=m+1 qd,1,� ed,�[i ]

...

w̄d,m[i ] ⊕ ⊕L
�=m+1 qd,m,� ed,�[i ]

⎤

⎥
⎦.

(14)

Note that this fully specifies all of the signal levels controlled
by the mth encoder. Therefore, we set vd,m[1], . . . , vd,m[kC,m−
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kC] = 0, apply the inverse linear labeling to obtain a fine lattice
point

λd,m = ϕ̄(vd,m),

and then generate our dithered codeword

sd,m = [λd,m + dd,m ] mod �C,m .

where the dither vector dd,m is drawn independently and
uniformly over VC,m . This sets the “don’t care” entries of the
mth encoder (i.e., the top kC,m − kC signal levels) to

ed,m = ϕ
(
Q�C,m (λd,m + dd,m)

)
,

which will act as interference towards the remaining m − 1
encoders that send information in these levels.

After all signal levels have been set, we stack the dithered
codewords

Sd =
⎡

⎢
⎣

sT
d,1
...

sT
d,L

⎤

⎥
⎦

and apply the beamforming matrix to create the channel input

Xd = BdSd.

Decoding: The goal of each receiver is to decode its mes-
sage vector wd,�. As a first step, it will make an estimate of the
following integer-linear combination of the lattice codewords,

μd,m =
[ L∑

�=1

ad,m,� λ̃d,�

]

mod �C

where ad,m,� is the (m, �)th entry of Ad and λ̃d,� = λd,� −
Q�C,� (λd,� + dd,�). It forms its estimate by equalizing its
observation

ỹT
d,m = cT

d,mYd,m,

removing the dither vectors, quantizing onto the mth fine
lattice, and taking the modulus with respect to the coarsest
lattice,

μ̂d,m =
[

Q�F,m

(

ỹd,m −
L∑

�=1

ad,m,� dd,�

)]

mod �C.

The linear label of this estimate can be viewed as an estimate
of the desired message along with zero-padding,

ϕ(μ̂d,m) =
⎡

⎣
ẽd,m

ŵd,m

0kF−kF,m

⎤

⎦ .

for some ẽd,m ∈ Z
kC,m −kC
p . As we will argue below, if μ̂d,m =

μd,m , then ŵd,m = wd,m .
Theorem 6: Choose a power allocation Pd =

diag(Pd,1, . . . , Pd,L), beamforming matrix Bd ∈ R
N×L ,

channel matrices Hd,m ∈ R
Mm×N , full-rank integer matrix

Ad ∈ Z
L×L , and equalization vectors cd,m ∈ R

Mm . Assume,
without loss of generality, that the identity permutation is

admissible for the downlink according to Definition 3. Then,
the following rates are achievable

Rd,m = 1

2
log+

(
Pd,m

σ 2
d,m

)

, m = 1, . . . , L,

σ 2
d,m = ‖cd,m‖2 +

∥
∥
∥
(
cT

d,mHd,mBd − aT
d,m

)
P1/2

d

∥
∥
∥

2
.

Proof: By the Crypto Lemma, each dithered codeword sd,�

is uniformly distributed over VC,� and independent of the other
dithered codewords. Thus, by Theorem 4(b), we have that
1
n E‖sd,�‖2 ≤ Pd,�, which guarantees that the power constraint
is met

1

n
E
[

Tr(XT
d Xd)

] = 1

n
E
[

Tr(ST
d BT

d BdSd)
]

= 1

n
E
[

Tr(BT
d BdST

d Sd)
]

= 1

n
Tr

(
BT

d BdE[ST
d Sd]

)

≤ 1

n
Tr

(
BT

d BdPd
) = Ptotal.

At the receiver side, we need to argue that μ̂d,m = μd,m
with high probability and, if so, ŵd,m = wd,m . We begin by
examining the linear label of μd,m ,

ud,m = ϕ(μd,m)

=
L⊕

�=1

qd,m,�

(
ϕ(λd,�) � ϕ

(
Q�C,� (λd,� + dd,�)

))

=
L⊕

�=1

qd,m,�

(
ϕ(λd,�) � ed,�

)
.

Now, we examine the i th symbol of this linear label for kC,m −
kC + 1 ≤ i ≤ k,

ud,m[i ]

=
L⊕

�=1

qd,m,� (vd,�[i ] � ed,�[i ])

(a)=
m⊕

�=1

qd,m,� vd,�[i ] �
L⊕

�=m+1

qd,m,� ed,�[i ]

(b)= w̄d,m[i ] ⊕
L⊕

�=m+1

qd,m,� ed,�[i ] �
L⊕

�=m+1

qd,m,� ed,�[i ]

= w̄d,m[i ]

where (a) uses the fact that vd,�[i ] = 0 for � = m + 1, . . . , L
by construction and ed,�[i ] = 0 for � = 1, . . . , m via
Definition 1(a) since ed,� is the linear label of a lattice point
from �C,� and (b) follows from plugging in (14). From (13)
it follows that, if μ̂d,m = μd,m , then ŵd,m = wd,m . Note that,
since the last kF − kF,m entries of w̄d,m are zero, we know
from Definition 1(a) that μd,m ∈ �F,m .

We need to argue that μ̂d,m = μd,m with probability at least
1 − ε. Recall from (6) and (7) that ỹT

d,m = aT
d,mSd + zT

d,eff,m .
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Thus,

ỹd,m =
L∑

�=1

ad,m,�

(
λd + dd,m − Q�C,� (λd,� + dd,�)

) + zd,eff,m

=
L∑

�=1

ad,m,�(λ̃d,� + dd,�) + zd,eff,m,

and, using (9),

μ̂d,m = [
Q�F,m (μd,m + zd,eff,m)

]
mod �C.

From Theorem 4(c), we know that, since μd,m ∈ �F,m ,
the quantization step can tolerate noise with effective vari-
ance σ 2

d,m , which implies that P(μ̂m �= μm) < ε.
From Theorem 4(d), we know that the rate satisfies
Rd,m > 1

2 log+(Pd,m/σ 2
d,m) − ε. Finally, following the steps

in [20, Appendix H], we can show that good fixed dither
vectors exist.

Example 2: The choice of the integer matrix places con-
straints on the power levels that can be associated with each
user. Consider the following integer matrices:

A1 =
[

2 1
0 1

]

A2 =
[

0 1
2 1

]

A3 =
[

2 1
1 1

]

and assume that P1 > P2. Note that rank
(
A[1:m]

1

) = m for
m = 1, 2, and thus the identity permutation is admissible,
meaning that power P1 can be associated with user 1 and
power P2 with user 2. Within our coding scheme, the key
step is that we can invert Q[1:1]

1 = [A[1:1
1 ] mod p over Zp

since it is non-zero. In contrast, note that A2 corresponds
to exchanging the rows of A1. If we also exchange the
beamforming vectors, then, according to Remark 7, this should
correspond to associating power P1 with user 2 and power
P2 with user 1. However, since A[1:1]

2 = 0, we will not be
able to invert Q[1:1]

1 = [A[1:1
1 ] mod p, and this permutation is

inadmissible. Finally, note that for A3, both permutations will
be admissible.

VII. UPLINK-DOWNLINK DUALITY

As discussed in Section III-A, the uplink and downlink
capacity regions are duals of one another [9]–[12]. Further-
more, for conventional linear architectures, we can achieve
the same rate tuple on dual uplink and downlink channels
by exchanging the roles of the beamforming and equalization
matrices (and transposing them) [10]. (See Theorem 1 for a
precise statement in our notation.) For integer-forcing archi-
tectures, we can establish a similar form of uplink-downlink
duality, but only for the sum rate.

Let

βu,� � Pu,�

σ 2
u,�

denote the �th effective SINR for the uplink and let

βd,� � Pd,�

σ 2
d,�

denote the �th effective SINR for the downlink. Our uplink-
downlink duality results stem from showing that if the effective

SINRs βu,� can be established on the uplink, then the effective
SINRs βd,� = βu,� can be established on the downlink,
and vice versa. Unfortunately, this does not immediately
translate to duality of the achievable rate tuples, since the
rates Ru,� = 1

2 log+(βu,�) and Rd,� = 1
2 log+(βd,�) are only

achievable within our integer-forcing framework if the identity
permutation is admissible for both the uplink and downlink.

In general, as discussed in Remark 4, the identity per-
mutation may not be admissible on both the uplink and
downlink, even with the freedom to reindex the transmitters
and receivers. However, we can always find permutations πu
and πd such that the rates Ru,� = 1/2 log+(Pu,�/σ

2
u,πu(�)

)

and Rd,� = 1/2 log+(Pd,πd(�)/σ
2
d,�) are achievable via integer-

forcing. Therefore, the duality of the effective SINRs allows
us to establish sum-rate duality, as shown below.

Lemma 2: Assume that the rates Ru,� =
1
2 log+ (

Pu,�/σ
2
u,πu(�)

)
> 0, � = 1, . . . , L, are achievable

on the uplink for some permutation πu. Also, assume that
the rates Rd,� = 1/2 log+(Pd,πd(�)/σ

2
d,�)), � = 1, . . . , L, are

achievable on the uplink for some permutation πd and that
the effective SINRs are equal, βu,� = βd,�, � = 1, . . . , L.
Then, the downlink sum rate is at least as large as the uplink
sum rate,

L∑

�=1

Rd,� ≥
L∑

�=1

Ru,�.

Proof: We have that

L∑

�=1

Ru,� =
L∑

�=1

1

2
log+

(
Pu,�

σ 2
u,πu(�)

)

(a)=
L∑

�=1

1

2
log

(
Pu,�

σ 2
u,πu(�)

)

= 1

2
log

( L∏

�=1

Pu,�

σ 2
u,πu(�)

)

= 1

2
log

( L∏

�=1

Pu,�

σ 2
u,�

)

(b)= 1

2
log

( L∏

�=1

Pd,�

σ 2
d,�

)

= 1

2
log

( L∏

�=1

Pd,πd(�)

σ 2
d,�

)

=
L∑

�=1

1

2
log

(
Pd,πd(�)

σ 2
d,�

)

(c)≤
L∑

�=1

1

2
log+

(
Pd,πd(�)

σ 2
d,�

)

=
L∑

�=1

Rd,�

where (a) follows from the fact that all uplink rates are
assumed to be positive, (b) from the assumption that βu,� =
βd,�, and (c) from the fact that log(x) ≤ log+(x).

We now recall the following basic results for non-negative
matrices. A vector or a matrix is non-negative (i.e., F ≥ 0)
if all its entries are non-negative. A vector or a matrix is
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positive (i.e., F > 0) if all its entries are positive. A square
matrix F is a Z-matrix if all its off-diagonal elements are non-
positive. An M-matrix is a Z-matrix with eigenvalues whose
real parts are positive. The following lemma is a special case
of [48, Th. 1].

Lemma 3 ( [48, Th. 1]): Let F be a square Z-matrix. The
following statements are equivalent:

(a) F is a non-singular M-matrix.
(b) F has a non-negative inverse. That is, F−1 exists and

F−1 ≥ 0.
(c) There exists x ≥ 0 satisfying Fx > 0.
(d) Every real eigenvalue of F is positive.

The lemma below establishes uplink-downlink duality for
the effective SINRs.

Lemma 4: Select a power matrix Pu and beamforming
matrix Cu, and let Ptotal = Tr(CT

u CuPu) denote the total
power consumption. Furthermore, select a channel matrix Hu,
full-rank integer matrix Au, and equalization matrix Bu. Let
βu,�, � = 1, . . . , L denote the effective uplink SINRs and
assume that βu,� > 0, � = 1, . . . , L. Then, for beamforming
matrix Bd = BT

u , channel matrix Hd = HT
u , integer matrix

Ad = AT
u , and equalization matrix Cd = CT

u , there exists a
unique power matrix Pd with total power usage Tr(BT

d BdPd) =
Ptotal, that yields effective downlink SINRs βd,� = βu,�, � =
1, . . . , L. The same relationship can be established starting
from effective SINRs for the downlink and going to the
uplink.

Proof: Our proof is inspired by the approach of [10].
We begin by defining vector notation for the powers and
effective SINRs,

ρu �

⎡

⎢
⎣

Pu,1
...

Pu,L

⎤

⎥
⎦ ρd �

⎡

⎢
⎣

Pd,1
...

Pd,L

⎤

⎥
⎦ βu �

⎡

⎢
⎣

βu,1
...

βu,L

⎤

⎥
⎦ βd �

⎡

⎢
⎣

βd,1
...

βd,L

⎤

⎥
⎦ .

Let c̄u,� denote the �th column of Cu (with zero-padding
included) and au,m,� denote the (m, �)th entry of Au.
Define the L × L non-negative matrix Mu whose (m, �)th

entry is [Mu]m,� = (bT
u,mHuc̄u,� − au,m,�)

2. Let Ju =
diag

([‖bu,1‖2 · · · ‖bu,L‖2]). It can be verified that the
relations

σ 2
u,m = ‖bu,m‖2 +

∥
∥
∥
(
bT

u,mHuCu − aT
u,m

)
P1/2

u

∥
∥
∥

2

for m = 1, . . . , L can be equivalently expressed as

(I − diag(βu)Mu)ρu = Juβu. (15)

We now repeat this process for the downlink. Let b̄d,�

denote the �th column of Bd and ad,m,� denote the (m, �)th

entry of Ad. Define the L × L non-negative matrix Md whose
(m, �)th entry is [Md]m,� = (cT

d,mHd,m b̄d,� − ad,m,�)
2. Let

Gd = diag
([‖cd,1‖2 · · · ‖cd,L‖2]). It can be verified that

the relations

σ 2
d,m = ‖cd,m‖2 +

∥
∥
∥
(
cT

d,mHd,mBd − aT
d,m

)
P1/2

d

∥
∥
∥

2

for m = 1, . . . , L can be equivalently expressed as

(I − diag(βd)Md)ρd = Gdβd.

By assumption, we have that Ad = AT
u , Bd = BT

u , Cd =
CT

u , and Hd = HT
u . It follows that MT

d = Mu as well.
Furthermore, since Mu and Md are non-negative, we have
that (I − diag(βu)Mu) and (I − diag(βd)Md) are Z-matrices.
Since, by assumption, βu > 0, we have that Juβu > 0 and
thus (I − diag(βu)Mu) satisfies condition (c) of Lemma 3.
This implies that every real eigenvalue of (I − diag(βu)Mu)
is positive. Setting βd = βu, we have that

eig(diag(βu)Mu) = eig(diag(βu)M
T
d )

= eig(Md diag(βu))

= eig(Md diag(βd))

= eig(diag(βd)Md),

which implies that all real eigenvalues of (I − diag(βd)Md)
are also positive, satisfying condition (d) of Lemma 3. This
implies that the inverse (I − diag(βd)Md)

−1 exists and is
non-negative. Combining this with the fact that Gdβd ≥ 0,
we know that there exists a non-negative power vector

ρd = (I − diag(βd)Md)
−1Gdβd (16)

that attains the desired effective downlink SINRs.
It remains to show that the total downlink power consump-

tion is equal to the total uplink power consumption. Define
Gu = diag

([‖cd,1‖2 · · · ‖cd,L‖2]) and Jd as the L × L
matrix with (m, �)th entry [Jd]m,� = b2

d,m,� where bd,m,� is
the (m, �)th entry of Bd. The total uplink power consumption
can be written as

Ptotal = Tr(CT
u CuPu)

= 1TGuρu = 1TGu(I − diag(βu)Mu)
−1Juβu

The total downlink power consumption can be written as

Tr(BT
d BdPd) = 1TJdρd = 1TJd(I − diag(βd)Md)

−1Gdβd.

We now demonstrate these quantities are equal:

1TJd
(
IL − diag(βd)Md

)−1Gdβd

= 1TJd

(
G−1

d diag(βd)
−1 − G−1

d Md

)−1
1

= 1T
(

diag(βd)
−1G−1

d − MT
d G−1

d

)−1
JT

d 1

= 1T
(

diag(βd)
−1G−1

d − MT
d G−1

d

)−1
Ju1

= 1T
(

J−1
u diag(βu)

−1G−1
d − J−1

u MuG−1
d

)−1
1

(a)= 1T
(

J−1
u diag(βu)

−1G−1
u − J−1

u MuG−1
u

)−1
1

= 1TGu
(
IL − diag(βu)Mu

)−1Juβu = Ptotal.

where (a) uses the fact that Gd = Gu since CT
d = Cu.

Proof of Theorem 2: Without loss of generality, we assume
that the identity permutation is admissible for the uplink and
that all achievable rates are positive Ru,� = 1

2 log+(βu,�) > 0,
� = 1, . . . , L. From Lemma 4, we know that we can establish
effective downlink SINRs βd,� = βu,� with the same total
power consumption. Finally, it follows from Lemma 2 that
a sum rate satisfying

∑
� Rd,� ≥ ∑

� Ru,� is achievable on
the downlink. The proof for starting from the downlink is
identical. �
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VIII. ITERATIVE OPTIMIZATION VIA DUALITY

In this section, we present an iterative optimization algo-
rithm for the non-convex problem of optimizing the beam-
forming and equalization matrices in order to maximize the
sum rate. Our algorithm exploits uplink-downlink duality to
converge to a local optimum. We also explore algorithms for
optimizing the integer matrix. We first present our algorithm
for the uplink channel, and afterwards state the modifications
needed to use it on a downlink channel.

A. Uplink Optimization

For a given uplink channel matrix Hu and total power
constraint Ptotal, our task is to maximize the sum rate by
selecting a full-rank integer matrix Au, equalization matrix Bu,
beamforming matrix Cu, and power allocation matrix Pu.
Assuming, without loss of generality, that the identity per-
mutation is admissible, this corresponds to the following
optimization problem:

max
Au,Bu,Cu,Pu

L∑

�=1

1

2
log+

(
Pu,�

σ 2
u,�

)

subject to Tr(CT
u CuPu) ≤ Ptotal.

Note that, even for a fixed integer matrix, simultaneously
optimizing the remaining parameters is a non-convex problem.
We now develop a suboptimal iterative algorithm based on
uplink-downlink duality. Assume, for now, that the integer
matrix Au, beamforming matrix Cu, and power allocation
matrix Pu are fixed. Consider the Cholesky decomposition

FFT = (
P−1

u + CT
u HT

u HuCu
)−1 (17)

where F is a lower triangular matrix with strictly positive
diagonal entries. It follows from [20, Lemma 2] that the
optimal equalization matrix is

Bu = AuPuCT
u HT

u

(
I + HuCuPuCT

u HT
u

)−1
, (18)

and, for this choice, the effective noises can be written as
σ 2

u,m = ‖aT
u,mF‖2 where aT

m is the mth row of Au.
We are now prepared to create the dual downlink channel.

Set Ad = AT
u , Bd = BT

u , Cd = CT
u , and Hd = HT

u . Use (16) to
solve for the downlink power vector ρd and set Pd = diag(ρd).
By Theorem 2, the downlink sum rate is at least as large as
the uplink sum rate.

The mth downlink effective noise variance is

σ 2
d,m = ‖cd,m‖2 +

∥
∥
∥
(
cT

d,mHd,mBd − aT
d,m

)
P1/2

d

∥
∥
∥

2
,

which corresponds to a quadratic optimization problem in cd,m

(holding all other parameters fixed). The optimal equalization
vector is

cT
d,m = aT

d,mPdBT
d HT

d,m(I + HT
d,mBdPdBT

d HT
d,m)−1. (19)

If we use these equalization vectors in place of the original
ones, we can only improve the effective noise variances, and
hence the effective SINRs and sum rate.

Finally, we are ready to return to the uplink channel.
We update the beamforming matrix Cu = CT

d using the

optimal equalization vectors found above and use (15) to
solve for the uplink power vector ρu and set Pu = diag(ρu).
We begin a new iteration on the uplink and continue until we
converge to a local optimum. (Note that, since each step has a
unique minimizer, this two-block coordinate descent algorithm
will always converge. See, for instance, [49, Corollary 2] for
a convergence proof.)

The overall process is succinctly summarized in
Algorithm 1.

Algorithm 1 Iterative Uplink Optimization via Duality
Given Hu and Ptotal.
Set initial parameters Au, Bu, Cu, and Pu.
Calculate initial uplink SINRs βu.
while βu not converged do

Set Bu using (18).
Create virtual dual downlink channel with Ad = AT

u ,
Bd = BT

u , and Cd = CT
u .

Solve for ρd using (16) and set Pd = diag(ρd).
Optimize Cd using (19).
Update Cu = CT

d .
Solve for ρu using (15) and set Pu = diag(ρu).
Update βu.

end while
Output Au, Bu, Cu, Pu, and βu.

The choice of a good integer matrix Au is critical for the
performance of integer-forcing. Consider the lattice GT

Z
L .

Assuming Bu is chosen according to (18), respectively,
the optimal integer matrix corresponds to finding the shortest
set of L linearly independent basis vectors (i.e., the successive
minima) for the lattice GT

Z
L . This problem, which is known

as the Shortest Independent Vector Problem in the theoretical
computer science literature, is conjectured to be NP-hard [50].
However, it is possible to find approximately optimal solutions
in polynomial time via the LLL algorithm [51]. See [52], [53]
for more details.

Remark 8: While it is possible to iteratively update the
integer matrix Au as part of the algorithm, we have observed
(numerically) that good performance is available by choosing
a good basis at the beginning, and then refining the remaining
matrices.

B. Downlink Optimization

For a given downlink channel matrix Hd and total power
constraint Ptotal, our task is to maximize the sum rate by
selecting the power allocation matrix Pd, beamforming matrix
Bd, full-rank integer matrix Ad, and equalization matrix Cd.
Assuming, without loss of generality, that the identity per-
mutation is admissible, we have the following optimization
problem:

max
Ad,Bd,Cd,Pd

L∑

�=1

1

2
log+

(
Pd,�

σ 2
d,�

)

subject to Tr(BT
d BdPd) ≤ Ptotal.
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As in the uplink case, this is a non-convex optimization
problem, even if Ad is fixed. We will use iterative uplink-
downlink optimization to converge to a local optimum. (As in
the uplink, convergence follows from [49, Corollary 2].)

The overall process is summarized in Algorithm 2.

Algorithm 2 Iterative Downlink Optimization via Duality
Given Hd and Ptotal.
Set initial parameters Ad, Bd, Cd, and Pd.
Calculate initial downlink SINRs βd.
while βd not converged do

Optimize Cd using (19).
Create virtual uplink channel with Au = AT

d , Bu = BT
d ,

and Cu = CT
d .

Solve for ρu using (15) and set Pu = diag(ρu).
Optimize Bu using (18).
Update Bd = BT

u .
Solve for ρd using (16) and set Pd = diag(ρd).
Update βd.

end while
Output Ad, Bd, Cd, Pd, and βd.

IX. NUMERICAL RESULTS

We now provide simulation results for our integer-forcing
architecture and compare its performance to that of zero-
forcing as well as capacity bounds.4 Owing to uplink-downlink
duality, we can simultaneously plot the sum rate for the
uplink and downlink channel. For simplicity, we will state our
notation in terms of the uplink channel. We draw the channel
matrix Hd elementwise i.i.d. N (0, 1).

In our plots, the “Capacity” curves correspond to the
MIMO MAC sum capacity (under a total power constraint)
from (1) or to the MIMO BC sum capacity (2). These
expressions are evaluated following the dual decomposition
approach from [54].

The “Integer-Forcing” curves correspond to the sum rate for
uplink integer-forcing from Theorem 5 or downlink integer-
forcing from Theorem 6. The integer matrix Au is chosen using
the LLL algorithm to approximate the successive minima of
the lattice FT

Z
L where F is defined in (17) with the initial

choice of Cu = I. Afterwards, we iteratively optimize Bu, Cu,
and Pu using Algorithm 1.

The “Zero-Forcing” curves correspond to the sum rate
of uplink zero-forcing from (3) or downlink zero-forcing
from (4). The matrices Bu, Cu, and Pu are iteratively optimized
using Algorithm 1 while holding Au = I.

In Figure 7, we have plotted the average sum rate with
respect to Ptotal for L = 4 single-antenna users and a
basestation with N = 2 antennas. In this scenario, there are not
enough basestation antennas to invert the channel matrix, and
thus the performance of zero-forcing saturates, whereas both
the sum capacity and integer-forcing sum rate scale with Ptotal.
In Figure 8, we increase the number of basestation antennas

4MATLAB code to generate these figures is available on the second author’s
website.

Fig. 7. Average sum rate under i.i.d. Gaussian fading for integer-forcing
and zero-forcing architectures with L = 4 single-antennas users and N = 2
basestation antennas.

Fig. 8. Average sum rate under i.i.d. Gaussian fading for integer-forcing
and zero-forcing architectures with L = 4 single-antennas users and N = 4
basestation antennas.

to N = 4 while holding the number of users fixed at L = 4.
The zero-forcing sum rate now scales with Ptotal, but there is
still a significant gap to the sum capacity and integer-forcing
performance. This gap can be nearly closed by reducing the
number of users to L = 2 and keeping N = 4 basestation
antennas as shown in Figure 9.

Overall, we observe that the integer-forcing sum nearly
matches the sum capacity. In contrast, zero-forcing operates
near the sum capacity only when the number of basestation
antennas N is at least as large as the number of (single-
antenna) users L. This is demonstrated in Figure 10 by varying
N from 1 to 12 for L = 12 and Ptotal = 20dB.
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Fig. 9. Average sum rate under i.i.d. Gaussian fading for integer-forcing
and zero-forcing architectures with L = 2 single-antennas users and N = 4
basestation antennas.

Fig. 10. Average sum rate under i.i.d. Gaussian fading for integer-forcing and
zero-forcing architectures with L = 6 single-antennas users and N basestation
antennas at Ptotal = 20dB.

X. CONCLUSION

In this paper, we established an uplink-downlink duality
relationship for integer-forcing. In the process, we extended
prior work on downlink integer-forcing to allow for unequal
powers and unequal rates. Using the duality relationship,
we developed an iterative algorithm for the non-convex prob-
lem of optimizing the beamforming and equalization matrices.
We also demonstrated that downlink integer-forcing can oper-
ate within a constant gap of the MIMO BC sum capacity.

An interesting direction for future work is utilizing uplink-
downlink duality to optimize integer-forcing architectures for
more complicated Gaussian networks. For instance, recent
work [22] has utilized uplink-downlink duality as a building

block for optimizing the beamforming and equalization matri-
ces used in integer-forcing interference alignment [55].

Another direction is to establish uplink-downlink duality
between uplink integer-forcing enhanced by successive inter-
ference cancelation and downlink integer-forcing enhanced
by dirty-paper coding. We investigated this relationship in
an earlier conference paper [56]. Unfortunately, this result
requires the identity permutation to be admissible on both
the uplink and downlink without reindexing, which cannot
be assumed without loss of generality. The key technical
issue is that the SIC and DPC matrices must be lower and
upper triangular, respectively, and this is not maintained under
reindexing.

APPENDIX

PROOF OF THEOREM 3

It is well-known [9]–[11] that the sum capacity of the
MIMO BC is equal to that of the dual MIMO MAC,

max
K
0

Tr(K)≤Ptotal

1

2
log det

(
I + HuKHT

u

)

where Hu = HT
d . Select a covariance matrix Kopt that attains

the MIMO MAC sum capacity. Next, select a power allocation
Pu and a beamforming matrix Cu satisfying CuPuCT

u = Kopt.
From [20, Theorem 4], there exists an integer matrix Au such
that integer-forcing via Theorem 5 attains the sum rate

L∑

�=1

Ru,� = 1

2
log det

(
I + HuCuPuCT

u HT
u

)
− L

2
log L

= 1

2
log det

(
I + HuKoptHT

u

)
− L

2
log L .

using the optimal equalization matrix Bu from (18). From
Theorem 2, we can attain the same sum rate on the downlink
by using Ad = AT

u , Bd = BT
u , and Cd = CT

u as well as
solving for the downlink power vector ρd using (16) and
setting Pd = diag(ρd).
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