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Introduction

e ML based seismic interpretation in an exploration context
e Uncertainty analysis in deep learning models

e Discuss how the additional information provided by machine learning
can impact on volume estimates via examples on a well known dataset
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Subsurface Uncertainty

The subsurface is not

o
uncertain.
M H H i @Geos sGuyv - 1¢

What is uncertain is our 0 Michael Pyrez @ GeostatsGuy -1 . N
Embrace = ! It is not a property of the # . it's due to our
ignerance! Result of sparse data + ! There is no objective

measu rements a nd mOdeIs Of uncertainty, it is a model that depends on scale & no matter what you do, don't

the su bsu rfa Ce even think about uncertainty in the uncertainty!

o

It is the uncertainty of these
that we need to in turn model
and work to quantify as well as
understanding their accuracy.
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Uncertainty in Deep Learning

Dropout randomly disables X% of units

Dropout as a Bayesian Approximation: . h o
in a network during training.

Representing Model Uncertainty in Deep
Learning. Gal, Ghahramani. 2015 (rev. ) )
2016) [https://arxiv.org/abs/1506.02142]

Probabilistic Seismic Facies
Classification. Mosser, Stevenson,
Oliveira. FORCE Seminar 2018
[https://doi.org/10.5281/zenodo0.1466917] @, O

MC Dropout applies 50% dropout at training
and prediction time to approximate a
random process (Bernoulli Distribution)


https://arxiv.org/abs/1506.02142
https://doi.org/10.5281/zenodo.1466917
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New Zealand - Taranaki Basin

Mohakatino
volcanic centre

/ - Thanks to New Zealand GNS for '
:%p
 provi dlng the open seismic dataset qReprgfi:lc.:ed from Mattos. AIves»& chlly 2218 -
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https://www.researchgate.net/profile/Nathalia_Mattos4/publication/327328738_Structural_and_depositional_controls_on_Plio-Pleistocene_submarine_channel_geometry_Taranaki_Basin_New_Zealand/links/5ba8ad4d299bf13e6048339c/Structural-and-depositional-controls-on-Plio-Pleistocene-submarine-channel-geometry-Taranaki-Basin-New-Zealand.pdf
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thhostratlgraphlc Unit - Labelling
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Lithostratigraphic Predictions

Example labels Inline Prediction Crossline Prediction
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200 Realisations - Lithostratigraphy

Predicted lithostratigraphy classes Frequency (occurrence, voxel-wise)
(orange) clinoform package for clinoform package
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Gully Systems

Potential stratigraphic
traps

Complex geomorphology
Varying infill response

Extensive and difficult to
pick
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https://www.researchgate.net/profile/Nathalia_Mattos4/publication/327328738_Structural_and_depositional_controls_on_Plio-Pleistocene_submarine_channel_geometry_Taranaki_Basin_New_Zealand/links/5ba8ad4d299bf13e6048339c/Structural-and-depositional-controls-on-Plio-Pleistocene-submarine-channel-geometry-Taranaki-Basin-New-Zealand.pdf
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The Objective

HCIIP = GRV x N/G x POR X S, ./ FVF

HCIIP = hydrocarbons in place*

CRV = gross rock volume

N/G = net / gross ratio

POR = porosity

She = hydrocarbon saturation
FVF = formation volume factor

*of oil, solution gas, free gas, condensate and normal surface conditions
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Interpretation of
complex geobodies

hard-to-track basal
surfaces

Manual (point)
interpretation in
traditional software
takes time and is
prone to errors
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Interpretation of
complex geobodies

hard-to-track basal
surfaces

Manual (point)
interpretation in
traditional software
takes time and is
prone to errors

Gridding of manual
(point) interpretation
suffers from picking
inconsistency
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Gullies Labels
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Gullies Prediction

XL 4980
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Isolating Potential Trap

Saddle point between N & S feeding
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(yellow) average across a number
of realisations




GRV Estimate for Gully

e 250 realisations using Monte Carlo
Dropout

e Cropped at Oil/Water contact
1248ms

e Created stacked volume &
examined the bounding geobody

e Created a bounding polygon &
calculated GSV in this area for all
realisations

e (p10=0.360, p90=0.391) GM3

Training Time: 3 hours
#——=——Prediction: 1 min / realisation
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GRV Estimates over 250 realisations
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. Deep Learning ASI
with Uncertainty

freq.

freq.

derived POR logs
POR
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ML inversion and/or
contextual queries on ML

Contextual queries on
analogous field data

cum. prob.

=
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Monte Carlo simulation
based on below
distributions

ML inversion and/or
contextual queries on ML
derived N/G logs

ML inversion and/or
contextual queries on ML
derived SHC logs
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Conclusions

e Various approaches to introducing model uncertainty in ML methods (MC Dropout
demonstrated here). These type of methods will be prevalent in approaches to ASI.

e This enable us to look a significantly more variation in static models than scenario
analysis can achieve

e We will be generating interpretation data with quantification of uncertainty for
probabilistic volumetrics

e Generate multiple realisations for flow simulation
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