
Grant Agreement No.761508 5GCITY/H2020-ICT-2016-2017/H2020-ICT-2016-2 Deliverable D.4.1

 Page 1 of 89

5GCity
Grant Agreement No.761508 5GCITY/H2020-ICT-2016-2017/H2020-ICT-2016-2

Dissemination Level

 PU: Public

 PP: Restricted to other programme participants (including the Commission Services)

 RE: Restricted to a group specified by the consortium (including the Commission
Services)

 CO:
Confidential, only for members of the consortium (including the Commission
Services)

D4.1: Orchestrator design, service
programming and machine learning

models

Grant Agreement No.761508 5GCITY/H2020-ICT-2016-2017/H2020-ICT-2016-2 Deliverable D.4.1

 Page 2 of 89

Grant Agreement

no:
761508

Project

Acronym:
5GCity

Project title:

5GCity

Lead Beneficiary:
I2CAT Foundation

Document version: V1.0

WP4 – Scalable Management & Orchestration, and Service Programming Models

D4.1: Orchestrator design, service programming and machine learning models

Start date of the project:

01/06/2017
(duration 30 months)

Contractual delivery date:

M12

Actual delivery date:
Date of submission to

Coordinator

Editor name: Hamzeh Khalili and Apostolos Papageorgiou (i2cat)

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 3 of 89

List of Contributors

Participant Short Name Contributor

I2CAT Foundation I2CAT Hamzeh Khalili, Apostolos Papageorgiou, Shuaib Siddiqui, Julio
Barrera

NEC NEC Felipe Huici, Kenichi Yasukata

NEXTWORKS NXW Nicola Ciulli, Paolo Cruschelli, Elian Kraja, Elio Francesconi

UBIWHERE LDA Ubiwhere Ricardo Preto

ITALTEL SPA ITL Antonino Albanese, Viscardo Costa

University of Bristol UINIVBRIS Carlos Colman Meixner

ADLINK TECHNOLOGY SARL PRISMTECH Gabrielle Baldoni

Virtual Open Systems VOSYS Teodora Sechkova, Michele Paolino

List of Reviewers

Participant Short Name Contributor

Virtual Open Systems VOSYS Michele Paolino

University of Bristol UINIVBRIS Carlos Colman Meixner

I2CAT Foundation I2CAT Sergi Figuerola

NEC NEC Felipe Huici

Change History

Version Date Partners Description/Comments

0.1 05-03-2018 I2CAT First draft by i2CAT

0.2 11-04-2018 I2CAT Second draft, including consolidated ToC and initial contents

0.3 27-04-2018 I2CAT Added main bodies of sections 2, 3, and 4 (Orchestrator, SDK, and FML)

0.4 07-05-2018 NXW Corrections in section 3 (SDK)

0.5 10-05-2018 PRISMTECH Added descriptions about MEC components

0.6 11-05-2018 NXW Updates of interface documentation, information model, and more in section 3 (SDK)

0.7 14-05-2018 I2CAT Added introduction and conclusion, various updates in all technical sections

0.8 18-05-2018 I2CAT Addressed internal reviews, updates interfaces and figures, consolidated inputs, and more

0.9 24-05-2018 I2CAT Cross-checked sections, fine-tuned diagrams, consolidated references, and more

0.10 25-05-2018 I2CAT Version for project and technical coordinators’ check

0.11 30-05-2018 I2CAT Addressed coordinators’ reviews and fine-tuned architecture figures and terminology

1.0 31-05-2018 I2CAT Clean version for submission

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 4 of 89

DISCLAIMER OF WARRANTIES
This document has been prepared by 5GCITY project partners as an account of work carried out within the
framework of the contract no 761508.

Neither Project Coordinator, nor any signatory party of 5GCITY Project Consortium Agreement, nor any
person acting on behalf of any of them:

 makes any warranty or representation whatsoever, express or implied,

o with respect to the use of any information, apparatus, method, process, or similar item

disclosed in this document, including merchantability and fitness for a particular purpose, or

o that such use does not infringe on or interfere with privately owned rights, including any

party's intellectual property, or

 that this document is suitable to any particular user's circumstance; or

 assumes responsibility for any damages or other liability whatsoever (including any consequential

damages, even if Project Coordinator or any representative of a signatory party of the 5GCITY Project

Consortium Agreement, has been advised of the possibility of such damages) resulting from your

selection or use of this document or any information, apparatus, method, process, or similar item

disclosed in this document.

5GCITY has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 761508. The content of this deliverable does not reflect the official opinion of the
European Union. Responsibility for the information and views expressed in the deliverable lies entirely with
the author(s).

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 5 of 89

Table of Contents

Executive Summary ... 8

1. Introduction .. 9

1.1. 5GCity architecture summary ... 9

1.2. Challenges in 5G Orchestration and Service Programming .. 11

2. 5GCity Orchestration and Control ... 13

2.1. Orchestration ... 13
 Existing orchestration platforms .. 13
 Architecture .. 13
 Components ... 15
 Main orchestration interfaces ... 23
 Main orchestration interactions .. 26

2.2. Dashboard .. 31
 5GCity Dashboard roles ... 31
 Graphical User Interface design and usability .. 32
 Dashboard implementation technologies .. 37

2.3. Monitoring ... 38
 NFVI monitoring .. 38
 Applications and Services monitoring .. 39
 Monitoring as-a-service... 39
 Monitoring module implementation ... 40

2.4. Security .. 41

3. E2E Service Modelling and SDK Toolkit design.. 47

3.1. 5GCity service modelling and composition .. 47

3.2. SDK Toolkit for Service Programming .. 50
 Requirements ... 50
 Architecture .. 52
 Information Models .. 55
 Main interfaces ... 57
 Main interactions .. 62

4. Federated Machine Learning .. 65

4.1. 5GCity Federated Machine Learning platform ... 66
 Machine Learning with Resource-Constrained Devices .. 66
 System Design ... 66
 Performance Evaluation .. 68

4.2. Using Artificial Intelligence in the 5GCity platform .. 70

4.3. Using Machine Learning for Scalable and Adaptive NFV.. 70

5. Conclusion .. 72

 Orchestration platforms state of the art analysis ... 74

 Related Work for Resource Placement ... 81

Abbreviations and Definitions ... 84

References ... 86

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 6 of 89

Figures
Figure 1. 5GCity high-level architecture design..9
Figure 2. A view of 5G hardware resources upon the ETSI NFV orchestration landscape 14
Figure 3. 5GCity Orchestration platform architecture .. 15
Figure 4. Internal architecture of Resource Placement. ... 17
Figure 5. 5GCITY SLA manager architecture ... 18
Figure 6. Internal architecture of Slice Manager. ... 19
Figure 7. Network Slice Life-Cycle Management. ... 20
Figure 8. Infrastructure abstraction architecture. .. 21
Figure 9. Edge VIM simplified architecture .. 22
Figure 10. Resource placement workflows .. 27
Figure 11. SLA manager sequence diagram ... 27
Figure 12. Network slice creation internal process. ... 28
Figure 13. Network slice operation. .. 29
Figure 14. Network slice maintenance. ... 29
Figure 15. Network slice termination. ... 30
Figure 16. Dashboard High-Level Architecture .. 31
Figure 17. Dashboard design process phases... 32
Figure 18. Example of map and list view side by side ... 33
Figure 19. Example of Geo-representation .. 34
Figure 20. Example of Listings ... 34
Figure 21. Example of Geo-representation with dark UI .. 35
Figure 22. 5GCity Platform Infrastructure Overview available for Neutral Host role 36
Figure 23. Slice resource visualization ... 37
Figure 24. Prometheus internal architecture ... 40
Figure 25. Components that interact with the AAA system.. 41
Figure 26. AAA framework approach... 42
Figure 27. Create session .. 43
Figure 28. Token-based authentication ... 44
Figure 29. Authorization process ... 45
Figure 30. Accounting Process... 46
Figure 31. 5GCity with a high level of abstraction. ... 48
Figure 32. SDK Toolkit high-level architecture. .. 54
Figure 33. Private 5G Service & Application Catalogue. ... 55
Figure 34. ETSI NFV deployment template described with TOSCA model mapping. 56
Figure 35. TOSCA deployment template modelling ETSI NFV ... 57
Figure 36. SDK internal Interfaces diagram .. 58
Figure 37. Workflow for user login to SDK GUI. ... 62
Figure 38. Sequence diagram for Service Creation (role=vertical). ... 63
Figure 39. Sequence diagram for Service Creation (role=developer) .. 63
Figure 40. The edge computing architecture. .. 65
Figure 41. Example of CNN .. 67
Figure 42. Model split. .. 67
Figure 43. Branch split. ... 68
Figure 44. FML platform acceleration of image processing using PyTorch.. 69
Figure 45. Tracker Architecture. .. 74
Figure 46. Cloudify MANO architecture. .. 76
Figure 47. ONAP architecture. ... 77

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 7 of 89

Figure 48. SONATA architecture mapped to ETSI MANO architecture.. 78
Figure 49. OSM architecture mapping to ETSI framework. .. 79
Figure 50. OSM release three architecture. ... 80

Tables
Table 1. 5GCity orchestration.E1 interface description .. 24
Table 2. 5GCity orchestration.I1 interface description ... 25
Table 3. 5GCity orchestration.I2 interface description ... 25
Table 4. 5GCity orchestration.I3 interface description ... 25
Table 5. 5GCity orchestration.I4 interface description ... 26
Table 6. 5GCity orchestration.I5 interface description ... 26
Table 7. 5GCity orchestration.I7 interface description ... 26
Table 8. 5GCity SDK simplified Network Service information model .. 49
Table 9. 5GCity definition of atomic function deployment flavour ... 49
Table 10. 5GCity definition of Topology .. 49
Table 11. Requirements for SDK Toolkit .. 52
Table 12. 5GCity SDK roles definition and access to catalogue resources ... 53
Table 13. SDK.E1 NS interface requirements ... 59
Table 14. SDK.E1 VNF interface requirements ... 59
Table 15. SDK.I1 interface description for the function resource ... 60
Table 16. SDK.I1 interface description for the NetworkService resource.. 60
Table 17. SDK.I2 interface description ... 60
Table 18. SDK.I3 interface description for VNFD resources .. 61
Table 19. SDK.I3 interface description for NS resources .. 61
Table 20. SDK.I4 interface description ... 61

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 8 of 89

Executive Summary

This document describes the components of the 5GCity architecture related to orchestration, service
programming, and machine learning as main outcomes of tasks T4.1, T4.2, and T4.3. The overall 5GCity
architecture is described in Deliverable D2.2 [1] and based on pilot requirements introduced in Deliverable
D2.1 [2]. Our orchestration, service programming, and machine learning components are vital for addressing
challenges of state-of-the-art 5G orchestrators and platforms, such as multi-tenancy support and efficient
configuration and resource placement. In the main body of this document:

Firstly, we describe the 5GCity platform design, including a scalable orchestration solution that is based on
the ETSI NFV MANO specification, extending it to support network slicing, intelligent SLA (Service-Level
Agreement) management, efficient resource allocation, a broader palette of underlying infrastructure
technologies, and more. This 5GCity orchestrator is the core management component of the functional
5GCity architecture. In this context, we also discuss about the design of the 5GCity dashboard, which is an
entry point to the 5GCity platform in a way that provide capabilities to deploy end-to-end services upon a 5G
infrastructure that follows the “neutral host” scenario.

Secondly, we provide a new SDK (Service Development Kit) and service programming model following the
flow-based programming paradigm to enable rapid edge service programming directly on the distributed city
edge infrastructure. This SDK can be used by “customers” of the neutral host (i.e., tenants such as Network
Operators and Content/Service Providers) to request slices with combine edge computing resources, 5G
access networking resources, and more.

Thirdly, machine learning- and optimization-based location-aware algorithms are being developed and
documented, with the intention to achieve VNF (Virtual Network Function) placement, re-deployment, and
re-configuration times that stay within the requirements of the neutral host scenario and the project Use
Cases within an edge-based city environment.

Therefore, the modules involved in these three parts are detailed in this deliverable, including their
components and internal architecture, functionality, external and internal interfaces, interaction with other
components, and the main high-level workflows. Finally, we conclude with a summary of how our
developments advance the state of the art of 5G orchestration, service programming, and machine learning
for edge computing.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 9 of 89

1. Introduction

The main goal of 5GCity is to define how to turn a city into a distributed and multi-tenant edge infrastructure
which uses orchestration and service programming to integrate 5G services administered by a neutral host.
These 5G services will be used by municipalities to host Smart City services, by Virtual Network Operators
(VNO) to extend their networks, and by additional third party providers such as media or automotive verticals
to offer innovative services to their customers.

Before we introduce our proposed components for 5G- and “neutral host”-driven orchestration, service
programming, and edge machine-learning, we start by briefly summarizing the 5GCity architecture (focussing
on related components) and introducing the main (orchestration and service programming) challenges that
we are trying to solve.

1.1. 5GCity architecture summary

The 5GCity architecture contains functional blocks that combine distributed cloud technologies and edge
network virtualization for exploiting the new city edge infrastructure deployments such as street cabinets,
city-owned edge servers, wireless access points, small cells, and more. Figure 1 summarizes our proposed
four layers, which 5GCity architecture introduced in [1]. The orchestration, control, and service programming
functionalities, which are the focus of this Deliverable, are mainly implemented by the 5GCity Platform, but
also the SDK and the VIMs.

Figure 1. 5GCity high-level architecture design

Service layer consists of a set of functions/tools available for infrastructure providers, customers, and any
third party. The sets of tools can be identified as:

 SDK and service programming tools create, validate, and test specific VNFs, and network services
packages to be deployed by dashboard users upon 5GCity physical infrastructure.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 10 of 89

 Public catalogue of 5G services and applications, as well as an OSS/BSS system (Operation/Billing
Support System), which should be implemented by reusing existing technologies.

Orchestrator and Control layer is the core management layer in the 5GCity architecture. This layer performs
the lifecycle management and orchestration of all 5G-based edge services and controls the available city edge
infrastructure. It includes the following main functional parts:

 The Dashboard represents the entry point to the system, used by administrators of the cloud-like 5G
infrastructure to connect to the orchestrator functionality through northbound API (Application
Programming Interface). It provides capability to deploy end-to-end services upon the city edge
infrastructure. The dashboard will hold different views to enable multi-tenancy by allowing different
roles and capabilities for each user or tenant (e.g. super user, tenant administrator, external user).

 The Orchestrator represents the core functionality of the architecture which provides the capability
to 1) manage a non-homogeneous set of physical resources (i.e. computing, storage, wired network
and wireless network), 2) abstract physical resources 3) operate a horizontal slicing thus providing
inherent and 4) cast end-to end services tailored to a multitenant framework.

 The Monitoring component collects and processes runtime performance and status data from
resources and services.

 The Authentication, Authorization, and Accounting (AAA) component performs the required
security-related tasks.

Between the orchestration and the Infrastructure layer reside the elements that virtualize and manage cloud
and radio access technologies in the distributed city edge infrastructure. The joint deployment of the
following elements supports the creation an open, multi-tenant virtualization platform running on
heterogeneous devices as well as virtualizing the underlying edge network (both wired and wireless):

 VIMs (Virtualized Infrastructure Manager) control and manage the NFVI (Network Function
Virtualization Infrastructure) compute, storage and network resources, usually within an operator's
infrastructure domain. A VIM can be specialized in handling a certain type of NFVI resource (e.g.
compute-only, storage-only, networking-only), or can be capable of handling multiple types of NFVI
resources (e.g. in NFVI-Nodes). In the 5GCity architecture three different types of VIM will be used:

o VIM-Core operates homogeneous physical resources located in the city data center.

o VIM-Edge operates a non–homogenous, wide area, resource-constrained set of physical
resources located in street cabinets across the City.

o VIM-Extended Edge operates a non-homogeneous and resource-constrained set of devices
located at the extended edge (e.g. lamppost), as well as any IoT (Internet of Things) sensors.

 SDN Controllers provide intuitive programmatic interfaces along the lines of the network interfaces
and thus can be best categorized as an abstraction layer below the VIM for a given NFVI-PoP (Point
of Presence). Each NFVI-PoP or administrative domain may include a network controller, e.g. SDN
(Software-Defined Networking) controller, responsible for providing the programmable network
interfaces that enable the establishment of connectivity within the domain. In the 5GCity
architecture, the SDN controllers are defined as a master and slaves model.

The Infrastructure layer is the layer for physical resources management across the city edge infrastructure.

 Core NFVI (Data Center) manages the virtualized and non-virtualized resources, supporting full and
partially virtualized network functions. Virtualized resources in-scope are those that can be
associated with virtualization containers, and have been catalogued and offered for consumption
through abstracted services, for example:

o Compute, including machines (e.g. hosts or bare metal), and virtual machines, as resources
that comprise both CPU (Computer Processing Unit) and memory.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 11 of 89

o Storage, including volumes of storage at either block or file-system level.

o Network, including: networks, subnets, ports, addresses, links and forwarding rules, for the
purpose of ensuring intra- and inter-VNF connectivity.

 Back-haul network is a portion of network that provides connectivity from MEC (Multi-access Edge
Computing) nodes to the DC (Data Center) resources.

 Edge NFVI (MEC nodes) are non-homogeneous pools of resources located away from centralized DCs,
with limited capabilities due to constrained resources in terms of power, computing, connectivity.

 Front-haul network is a portion of network that connects the cell site unit (Remote Radio Head/RRH
or Radio Unit/RU) of the base station to its digital unit (BBU) residing centrally in a DC or local cabinet.

 Extended Edge NFVI (including Small Cells/Wi-Fi) corresponds to the hardware equipment located
at the extended edge, e.g., at the lamppost, which is also used to produce the LTE/5G radio channels.
5GCity, following the evolution of radio access network towards a perfect integration with 5G topics,
foresees a Wi-Fi and LTE/5G as main radio access technologies.

1.2. Challenges in 5G Orchestration and Service Programming

Orchestration and service programming (in the context of networking) refer to the on-boarding, instantiation,
and lifecycle management of network functions. This work is mainly concerned with virtualized network
functions. As such, orchestrators (or orchestrator platforms) are the management components that perform
the aforementioned tasks, usually empowered by consistent and complete data models of the involved
entities, e.g., Network Services (NS) and Virtual Network Functions (VNF).

State-of-the-art orchestration and service programming solutions (which are analysed in Appendix A) have
been developed in scenarios in which:

i. Network slices are created and instantiated with very low frequency and loose time requirements

ii. The management of computing and storage resources of the slices is decoupled by the management
of networking resources

iii. The services and VNFs running on the slices are placed and configured based on algorithms that focus
on optimality with regard to global runtime metrics such as latency times and bandwidth
consumption.

Although the above are valid assumptions in many scenarios, the neutral host scenario and the other 5GCity
Use Cases described in D2.1 introduce a higher dynamicity in slice lifecycle management, a higher diversity
of slice elements (Small Cells, MEC nodes, WiFi APs, as well as DC nodes, networking equipment etc.), and
tighter timing requirements for slice and service (re-)instantiation and (re-)allocation. This forces us to face
the following main challenges:

 CHALLENGE 1: The “slicing-unaware” and “Cloud-oriented” design of state-of-the-art NFV
orchestrators restricts the efficiency of the management of neutral host scenarios by posing
restrictions with regard to i) the number and the diversity of NFVI technologies that can be managed,
ii) the degree of isolation of the orchestrated Network Services and VNFs of different stakeholders,
iii) optimality of resource allocation and fragmentation, and iv) the diversity of captured and analysed
runtime VNF parameters.

 CHALLENGE 2: For Service Programming, Service Development Kits (SDK) are a fundamental
component to open-up the virtualization advantages. An SDK is a stand-alone collection of services,
functionally integrated with an orchestration platform, able to craft network service templates ready
to be deployed over a pool of virtual resources. Different SDK toolkits are already available within
the NFV (Network Function Virtualization) realm (e.g. the COHERENT SDK, the SONATA SDK, etc.).

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 12 of 89

However, most of these SDKs adopt a network-centric approach, aiming at defining and testing
Network Services and VNFs before their instantiation in runtime MANO (Management and
Orchestration) environments. The user of those toolkits needs to be fully aware of the complex
details of the information models used within the orchestration platform. Also those state-of-art
toolkits are built on top of specific frameworks and bound to be used in those specific deployments,
thus missing the capability to encompass several NFV technologies.

 CHALLENGE 3: The state of the art in computing (whether learning or prediction) NN (Neural
Networks) is to assume that the infrastructure is entirely homogeneous, consisting of clusters of
equally-spec’d servers with well-provisioned network links between them. Some of the previous
challenges will be hard to handle without advanced intelligence, so the usage of AI might be essential.
However, the right tools and learning strategies are not obvious.

After the description of the developed technologies, we will come back to these challenges, summarizing
how they are being addressed by our components and mechanisms.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 13 of 89

2. 5GCity Orchestration and Control

This section introduces our proposed 5GCity orchestration and control platform design, development, and

implementation. Our platform will be capable to operate large number of devices in dynamic conditions (e.g.

network, device overload, multi-tenancy etc.) in an efficient manner. The 5GCity orchestration platform is a

core management component of the functional 5GCity architecture. It is responsible for the lifecycle

management and orchestration of all 5G-based edge services and for the control and management of the

available city edge infrastructure. It also includes 5G edge service programming models, as well as a

northbound API to enable access to the different edge services and the orchestrator functionalities.

2.1. Orchestration

 Existing orchestration platforms

An investigation of existing ETSI (European Telecommunications Standards Institute) NFV-based
orchestration platforms has been performed in order to see if there is a possibility to build upon existing
functional modules and integrate edge computing and 5G networking aspects with traditional orchestration
workflows. Among others, we have analysed platforms like Tracker [3] TeNoR [4], OpenBaton [5], Cloudify
[6], ONAP [7], SONATA [8], and OSM (OpenSourceMano – [9]). The detailed discussion of these platforms,
together with views of their functional architectures, are provided in Appendix A.

The 5GCity orchestration platform will leverage on existing orchestration tools to guarantee performance
and scalability in dense urban 5G deployments cities. Therefore, based on the analysis presented in Appendix
A, the project has chosen to utilize and extend the ETSI OSM for orchestration because of the following
reasons:

1. Fine-grained architecture.

2. Open source platform with standardized interfaces, which allows third parties to extend
functions/plugins and/or add new ones.

3. Supports the addition of other types of VIM, SDN controller and monitoring components.

4. Can be extended for multi-VIM and multi-cloud environments such as OpenStack (almost all the
versions), OpenVIM, VMware, vCloud, Fog05, etc.

5. Can integrate multiple SDN controllers such as OpenDayLight, ONOS, Floodlight, etc.

6. Widely adopted in 5G research projects.

7. Regular software updates, i.e., every 6 months.

8. High availability of software and code documentation and distributions.

 Architecture

This section describes the architecture of the orchestration platform proposed in the 5GCity project. 5GCity
orchestrator shall comply with ETSI NFV MANO specifications, while adapting to specific distributed edge
infrastructures and 5G technologies, including network slicing. The orchestrator platform provides a unified
management of connectivity with end-to-end services for dynamic provisioning of network slices for
accommodating smooth, automated introduction, and deployment of novel services. This allows network
operators to seamlessly control and orchestrate services for different vertical, which are provided over
multiple platforms.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 14 of 89

Before presenting the orchestration architecture designed for 5GCity, we present a view of 5G hardware
resources that are important for the 5GCity project upon an ETSI NFV orchestration landscape. This view was
based on a study of 3GPP (3d Generation Partnership Project) from December 2015 about introducing ETSI
NFV MANO elements in to the 3GPP architecture (3GPP Rel. 13 Study: 32.842 recommendation). The idea
was to come up with the mixed network management mapping relationship between 3GPP and the ETSI NFV
MANO architecture framework. Figure 2 presents this view and served as a basis for the design principles of
the 5GCity orchestrator.

Figure 2. A view of 5G hardware resources upon the ETSI NFV orchestration landscape

 Figure 3 introduces the 5GCity orchestrator in accordance with the ETSI OSM model. The extra functionalities
compared to OSM will be mainly reflected in the internal logic and the interactions of the following main
components of the 5GCity Orchestrator (which are detailed in the next subsection):

 NFV Orchestrator

 MEC Components

 Resource Placement

 SLA Manager

 Slice Manager

 Infrastructure Abstraction

 WAN Resource Manager

The Dashboard and the Monitoring tightly interact with the 5GCity Orchestrator and are very important for
the orchestration procedures, but they do not belong to the architecture or the scope of the orchestrator,
thus they are discussed in separate sections.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 15 of 89

Figure 3. 5GCity Orchestration platform architecture

 Components

NFV Orchestrator (NFVO)

As already mentioned, for the NFVO (NFV Orchestrator) functionality the project will adopt the OSM solution,
extending it to support (and/or incorporate) all the other components and functionalities described in the
following paragraphs. In its core, the NFVO is responsible for NS on-boarding and VNF management, as
described in the respective ETSI NFV specifications.

MEC components

Due to the edge-computing focus of the targeted 5G scenarios, the 5GCity Orchestrator needs to be able to
orchestrate also a special type of VNFs, namely VNFs that are ME (Multi-access Edge) apps, according to the
ETSI MEC specification. According to the ETSI specification for using MEC in NFV-based systems [10], ME apps
are indeed VNFs, and therefore they can be generally managed by an NFVO-based system, e.g., OSM.
However, they use special descriptors and have special requirements, and therefore some MEC components
are required in order to “assist” the NFVO in the orchestration of ME apps. There are two main reasons why
these components might be required (which are also the reason why we add MEC support to our NFVO):

i. Some edge-focused VNFs might benefit a lot by using the MEC descriptors instead of (or in addition
to) the VNFD (Virtual Network Function Descriptor), because it includes many additional edge-
related parameters such as latency characteristics.

ii. Some edge-focused VNFs might require to interact with special edge services (e.g., location services),
which are modelled and operated according to the ETSI MEC specifications and interfaces.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 16 of 89

The MEC components attached to the NFVO are explained in the following, while their interaction with the
NFVO and the infrastructure layer is done in line with the related ETSI specification [10] and explained in
more detail in D3.1 [11], because it is tightly coupled with the edge VIM/NFVI and with the infrastructure
layer.

The MEC components required to implement the core ETSI MEC functionalities in the 5GCity system are in
particular:

 Multi-access Edge Application Orchestrator (MEAO)

 Multi-access Edge Platform Manager – Virtual (MEPM-V)

 Multi-access Edge platform (ME platform)

Note that only the MEAO and the MEPM-V are actually attached to the NFVO within the 5GCity Orchestrator,
while the ME platform is a “special” VNF that resides on edge hosts. These three components will interact
between each other and also with the NFVO to allow the orchestrations of ME applications and services. As
there are no publicly available full implementations of all these components, the project will implement the
required subset of their specified functionalities. In particular, for the MEAO and MEPM-V we will be using
fog05 [12], a distributed and pluggable architecture that implements the interfaces needed by these
components and the control logic behind this. These components will interact with OSM and with the
OSS/BSS (Operations Support System / Billing Support System), because of the MEC implementation that has
been chosen by 5GCity. Fog05 was selected because it is easily pluggable and it already has an eagerly
distributed architecture that makes trivial to implement solutions in which the nodes are distributed through
the city, the MEAO needs also to interact with the service placement algorithms when it is time to insatiate
a new ME application, because they need to work together to solve the placement problem and find the
correct NFVI-PoP in which the ME app should be instantiated.

The ME platform is used for the communication between services and its PoC (Proof of Concept) can be
implemented using an SDN controller that configures the communication path between different services.

Both MEAO and MEPM-V will be developed as plugins for fog05, implementing two different interfaces, the
MEAO will implement the RO_plugin interface, which contains the methods needed by an orchestrator, and
will validate the descriptors with the 5GCity information model, map the ME apps with the NSs in which they
are part, and then send the NFV information to the NFVO. It will be also responsible for all the communication
to the NFVO. The MEMP-V will be developed implementing the RM_plugin, because it needs to be able to
understand the LCM (LifeCycle Management) and platform management for the ME platform. It will also
interact with OSM for LCM and platform management. While the first one is a known interface of OSM, the
second one will be developed based on the OSM REST (REpresentational State Transfer) API.

The interface that will be developed is the one between OSS/BSS and MEAO, that should follow the OSM
REST API, for the sake of simplicity, the one between MEAO and NFVO (OSM in our case) that will use the
northbound interface present in ETSI OSM, then the one between MEAO and MEMP-V can be implemented
using the data centric abstraction provided by the fog05 communication model and so be an always on
pub/sub communication that enable the MEAO and the MEMP-V to notify themselves when something
happen. The interface between MEMP-V and VNFM regarding the LCM is not exposed by ETSI OSM so in this
case has to be implemented and will follow the OSM REST API, but the PM information will come from the
OSM Monitoring tool API. Then, the interface between the ME platform and MEPM-V can also be always on
pub/sub, because this reference point is not defined in ETSI MEC. Please refer to Deliverable D3.1 [11] for
MEC-specific architectural details. In the current context it can be practically considered as an “attachment”
or “extension” of the NFVO, not interacting directly with the other components of the 5GCity Orchestrator.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 17 of 89

Resource Placement

Resource placement is responsible for computing an optimal allocation of VNFs over different physical
resource domains. The component needs to keep track of the resource usage, the edge network status, and
more. Examples of input data can be the geographical positions of VMs (Virtual Machines) and available
resources in terms of vCPU (virtual Computer Processing Unit), vRAM (virtual Random Access Memory), and
vHDD (virtual Disk). Appendix B. investigates related work with regard to the well-investigated topic of
optimal placement, and discusses the potential peculiarities of the 5GCity system. The output of the
placement algorithm will be returned to the NFVO, which will enforce the respective deployment plan by
interacting with the Infrastructure Abstraction.

The architecture of Resource Placement is illustrated in Figure 4 and consists of the following functional
blocks:

 Placement Algorithm: It is responsible for running the algorithm that computes the deployment plan.
Note that many different algorithms or flavours of them might co-exist (e.g., performance
optimization-based, machine-learning based) and be used in different circumstances.

 Resource Monitoring Driver: It retrieves, checks, and organizes all the monitoring parameters that
are required by the Placement Algorithm, e.g., the status and load of VMs. It performs this by using
the services of the Monitoring component (see also section 2.3)

Figure 4. Internal architecture of Resource Placement.

SLA Manager

Service Level Agreements (SLA) represent the relationship between a service provider and a customer to
ensure and maintain an acceptable level of Quality of Service (QoS). It includes monitoring, managing and
reporting of delivered vs contracted QoS. QoS-based prioritization and low latency are considered as major
points to maximize the availability and response time of network services. Thus, the 5GCity SLA Manager
should be able to perform the following:

 Align the high-level end-user requirements with the low-level system parameters.

 Re-allocate resources always adapting to the system state.

 Enforce SLA for each Service Provider.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 18 of 89

In order to achieve this, the SLA manager (Figure 5) is composed of the following main entities:

 SLAs Repository is where the SLAs bound to the Network Services are stored. The SLA data model is

yet to be defined, but it should be aligned with data models used by the Monitoring, so that the

Monitoring Driver can register alarms that involve parameters that are “shared” between the SLA

Manager and the Monitoring.

 Dispatcher is the functional block which implements the logic of the SLA manager, triggering internal

interaction (read/write of database entries), triggering API calls to NFVO to gather monitoring data,

trigger an action whenever certain threshold for a specific monitored parameter is exceeded, and

thus indicating an SLA violation.

 Monitoring driver is the entity in charge of requesting from the NFVO the creation of a performance

job for the specific Network Service under analysis. This entity is also responsible for gathering the

performance metrics exposed by the monitoring system via the NFVO, and is also in charge of

generating an action in case of a SLA violation event.

 Figure 5. 5GCITY SLA manager architecture

Slice Manager

Network slicing enables the virtualized and non-virtualized network elements and functions to be easily
logically segmented, configured and reused (isolated from one another) in order to meet various demands.
Each slice has its own specific network architecture, mechanism and network provisioning.

Network slicing in 5GCity will cover end-to-end service provisioning, management, termination, and
operation workflows on a per-slice basis. The slices will be dynamically allocated in the network and on the
Multi-access edge, extending through the radio infrastructure. Network slicing will enable a unified system
for dynamic deployment and provisioning of novel services, and allow the efficient and secure control and
orchestration of services for different verticals. Each slice possess specific requirements related to quality
policies, security functions, functions routing, radio resource management, cloud and network resource
management capabilities, etc. The deployed architecture will be capable of:

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 19 of 89

 Creating customizable and user-specific slices with flexible and dynamically deployable resources,
based on explicit user requests, existing slice templates, or implicit info about the planned services.

 Dynamic provisioning and instantiation of end-to-end network slices.

 Multi-tenancy and support of different underlying technologies and resources (that are used to
compile slices).

 Various runtime operations and control during the entire lifetime of slices.

As shown in Figure 6, the internal architecture of the Slice Manager for the 5GCity orchestration platform
consists of three main functional blocks: 1) Network Slice Life-Cycle Management, 2) Policy Management
Function, and 3) Slice Repository.

Figure 6. Internal architecture of Slice Manager.

The Slice Manager is triggered via the dashboard and is responsible for interacting with the Infrastructure
Abstraction to control and manage slices over the physical and virtual infrastructures.

Network Slice Life-Cycle Management is an entry point to the Slice Manager of the 5GCity orchestration
platform that can be accessed by the Slice User via the Dashboard. It is responsible for coordinating and
allocating required slices and services upon request. As shown in Figure 7, with the Network Slice Life-Cycle
Management, it is possible to request a slice with certain properties, deploy services, provision a network
function, or modify the resources allocated to the existing slice. A Slice User can also request to terminate
the slice completely and release the assigned resources. The Life-Cycle Management involves the following:

 Slice creation is responsible for handling requests to create slices and for interacting with the Policy
Management Function and the Slice Repository to determine if it is possible to create a new slice.
Note that slice creation might be done i) by passing the exact requested parameters of a slice, ii) by
using existing “slice templates”, or iii) by passing information about the NSs that shall run on the
template and letting the Slice Manager to craft an appropriate slice. If the slice creation is possible
then the Network Slice Life-Cycle Management reserves and assigns a part of infrastructure for
exclusive use of a slice owner to be isolated form other slices in the sense of traffic, security, and
resource usage.

 Slice operation is available in order to deploy network services and provision network functions in
isolated fashion for its customers. Slicing operation must be done according to the applicable policies
and the deployment environment.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 20 of 89

 Slice maintenance monitors performance- and security-related aspects of the slices, implicitly
enabling an enhanced management of the lifecycle of the network services that run upon the slice.
For example, a network slice can be scaled at runtime, adjusting the slice to the desired level of
performance.

 Slice termination ends the life of the slice and all the NS and VNF running on it. The following aspects
should be undertaken before the slice termination: i) The network services need to be stopped and
deleted, ii) the involved nodes need to be released, and iii) the VIM-defined network needs to be
deleted. Once the slice has been terminated, all the resources associated with the slice will have
returned to the pool of available resources.

Figure 7. Network Slice Life-Cycle Management.

Slice Repository is responsible for storing information related to the network slices. It stores Information
related to the virtual resources and physical resources of the slices, such as which virtual resources belong
to the slice, which physical resources they are mapped to, and to whom each slice belongs. Some of the main
parameters that compose a slice are the following:

 Slice id and name

 Lifetime

 Owner

 Required resources (which will be concretized and provisioned by the Infrastructure Abstraction by
a series of commands that will be eventually directed to VIMs, SDN controllers, and access network
controllers). These include:

o Compute

o Storage

o Network

o (RAN or WiFi) Access resources

 List of VLAN tags that identify its networking resources

 The CIDR (Classless Inter-Domain Routing) identifier(s) that is used for devices attached to its VLAN(s)

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 21 of 89

The above can be elaborated to a qualified and more complete Information Model (aka “Slice Descriptor”),
which is an important missing part of the NFV world, though critical for the management of 5G services within
our neutral host scenario.

Policy Management Function is responsible for runtime policies enforcement over the deployed slices such
as creation and expiration dates. This module could be extended to support other specific policies such as
security, etc., to be reinforced on a particular slice.”

Infrastructure Abstraction

Infrastructure abstraction is the element of the 5GCity orchestrator which enables communication between
5GCity orchestration platform with the multiples underlying infrastructure elements such as VIMs (i.e. Core
VIM, Edge VIM, and Extended Edge VIM) and WAN parts (i.e. SDN controller, fronthaul network and backhaul
network).

Infrastructure abstraction is composed of two plugins (i.e. VIM plugin and WAN plugin) for communicating
independently with the underlying infrastructure. The VIM plugin is a specific component for the VIMs
implementation, which allows the 5GCity orchestrator to interact with the VIMs in a vendor- and technology-
independent way, thus providing extra flexibility for configuration and implementation of different
technologies used in the 5GCity slices. The VIMs supported in this platform are depicted in Figure 8 and
described in below:

 Core VIM, which could be implemented by using OpenStack, an open source software for creating
private and public clouds [13]. It is a cloud operating system that controls large pools of compute,
storage and networking resources throughout a datacentre.

 Edge VIM is an extension of the OpenStack with performance optimization for the edge and support
for Trusted Computing (see also [11]).

 Extended Edge VIM, which can be implemented by using Fog05, a computing VIM that runs on low-
end devices [12]. It unifies the compute fabric that spans across things, edge and cloud infrastructure.
In addition, Fog05 unifies administration, management and monitoring end-to-end.

Figure 8. Infrastructure abstraction architecture.

Each of these VIMs is designed to have an interface offering specific functions with the ability to store VM
images, deploy VMs, and configure their internal networking. For this, there must be a relevant database to
store the images needed for the service deployment. The aforementioned VIM plugins will allow 5GCity

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 22 of 89

platform to continuously expand and support new VIM implementations or follow the evolution of the
already supported ones.

The WAN plugin is the second component of the infrastructure abstraction, which exposes an interface to
the WAN Resource Manager element for dealing with the underlying network such as SDN controller,
fronthaul and backhaul networks. Thus, it allows WAN Resource Manager to control the WAN networks, e.g.
be able to define the data traffic flows. In this plugin, the functionalities greatly depend on the underlying
networking technologies employed as well as on their virtualization capabilities.

To determine whether there is an existing open-source solution suitable to be a basis for the role of the
5GCity Edge VIM, an investigation was done considering OpenStack and OpenVIM. OpenStack, being a cloud
operating system based on an open-source software with an active community and OpenVIM, introduced as
a lightweight VIM part of ETSI Open Source MANO (ETSI OSM) [9].

The results of the benchmark and analysis of the two solutions, presented in detail in Deliverable D2.2
(section 3.7.2), showed advantage for OpenVIM in terms of performance, however this comes at the cost of
reduced functionality and flexibility. On the other side, the more complex and general-purpose OpenStack
has an active community and allows for the creation of custom solutions for the need of the 5GCity Edge VIM.

In 5GCity an Edge VIM will be provided based on OpenStack with a Trusted Computing Pools feature enabled
for edge devices which have been described in Deliverable D3.1 [11] together with the related extensions
that will be developed at the NFVI level. Relying on hardware-based security, combined with an attestation
server, the compute nodes will be running only trusted software with verified measurements. Today’s
implementation of Trusted Computing Pools is based entirely on the Intel TXT technology while this
OpenStack feature will be extended to support ARM devices with built-in ARM TrustZone technology.

Figure 9. Edge VIM simplified architecture

The simplified architecture of the Edge VIM as well as an overview of the compute node verification
mechanism are shown in Figure 9. The nova-scheduler service, part of OpenStack Compute, requests

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 23 of 89

information from an attestation server whether the compute node is trusted or not. The attestation server
on its turn challenges the compute node and verifies the received data against a whitelist database to
determine node trustworthiness. The detailed architecture and description of the EdgeVIM can be found in
Deliverable D3.1 [11].

WAN Resource Manger

The WAN Resource Manager is responsible for managing resource of the lower layers, and especially for
configuring the traffic flows among them. The simple usage of an SDN Controller such as ODL (OpenDayLight)
is being considered, and therefore the WAN Resource Manager would simply use Northbound API of that
controller to set the flows, as well as some information from the Infrastructure Abstraction about the
underlying infrastructure technologies, in order to decide how to set the flows and build up appropriate WAN
configurations.

 Main orchestration interfaces

The 5GCity orchestrator is designed as a set of components, interconnected via external and internal
interfaces. The external interfaces connect the 5GCity orchestrator with the rest of the 5GCity platform, while
the internal interfaces refer to the internal interactions among the different entities composing the
orchestrator.

NOTES:
1. The present documentation of the basic REST operations is a high-level design output that

will guide the development of the interfaces. The full list of operations and their fully-
fledged documentation shall be created with development tools during the development
of the prototype, but always based on the scope and the structure indicated here.

2. The descriptions of the interfaces use (in their parameter lists) high-level objects such as
ns, vnf, sla, and slice. These objects will be implemented based on the respective data
models. For ns and vnf, these data models will be based on versions or extensions of the
respective ETSI NFV descriptors, namely nsd and vnfd, as specified in [14] and [15],
respectively. For sla and slice, they will be based on similar descriptors, which will be
developed by the 5GCity project upon the basis of the parameters and the functionality
described for the SLA Manager and the Slice Manager in section 2.1.3.

The 5GCity orchestrator interfaces as depicted in Figure 3 are external and internal.

EXTERNAL INTERFACES

5GCity orchestrator.E1 is the external interface offered by the 5GCity orchestrator and used by the
Dashboard, in order to request the creation/onboarding and manipulation of slices, NSs, VNFs, and SLAs. For
example, Table 1 documents the planned REST operations for acting upon slices.

Operation
Type

Resource Parameters Metadata Description Expected Result

GET orche1/slice slice_id
Authentication

Data
Retrieve the slice identified by

“slice_id”
All data and metadata related to the

slice with “slice_id”

POST orche1/slice slice
Authentication

Data
Request the setup of a slice with the

provided parameters
STATUS (SUCCESS or one of the to-be-

defined ERROR CODES)

PUT orche1/slice slice
Authentication

Data
Request the update of a slice with

the provided parameters
STATUS (SUCCESS or one of the to-be-

defined ERROR CODES)on

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 24 of 89

DELETE orche1/slice slice_id
Authentication

Data
Request the deletion of the slice

identified by “slice_id”
STATUS (SUCCESS or one of the to-be-

defined ERROR CODES)

POST
orche1/com

pileSlice

ns[],
vnf[],
sla[]

Authentication
Data

Request the compilation of a slice
that fits the provided parameters

All data and metadata related to the
slice compiled by the intelligence of

the slice manager

Table 1. 5GCity orchestration.E1 interface description

Note that while the orche1/slice operation “tells” the Slice Manager what to do with slices,
orchi1/compileSlice also tells the Slice Manager to create a slice, but provides only indications of what shall
run upon the slice, leaving the details of the slice up to the intelligence of the slice manager.

Similar REST resources exist within this interface for the other main managed entities:

 orche1/ns

 orche1/vnf

 orche1/sla

Note that while orche1/slice concerns the slice manager, orche1/sla is directed to the SLA manager and the
two others (orche1/ns and orche1/vnf) are handled by the NFVO.

5GCity orchestrator.E2 is the external interface offered by the Monitoring and used by the 5GCity
orchestrator, in order to request or subscribe to orchestration-critical monitoring values.

The current intention is that this interface correspond with a simple usage of the API that is offered by the
Monitoring module as a service not only to the orchestrator, but also to all modules that exploit monitoring
information. Therefore, the details belong to the development of the Monitoring module itself (see also
section 2.3). Here it is just noted that the main usage of this interface by the 5GCity orchestrator will be for:

 Subscribing (from the SLA manager) to monitoring parameter values, which should cause the SLA
manger to trigger a reaction if certain thresholds are exceeded.

 Collecting of related performance characteristics (mainly from the NFVO and the Resource
Placement) whenever they need to run optimizations (with regard to the configuration and allocation
of network services, VNFs, and slice resources).

5GCity orchestrator.E3 is the external interface offered by AAA and used by the 5GCity orchestrator, in order
to allow access to the system via validation of the users.

Again here, this interface corresponds with simple usage of the (AAA) interface, which will be available for
all components that require authentication, especially the Dashboard. The main usage of this interface within
the 5GCity orchestrator will be for:

 Identifying and authenticating the user when interaction between different orchestrator
components are performed, especially when these components reside in different administrative
domains.

 Checking the authorization of a component (for a given user/role) to trigger certain tasks
implemented by a different component (e.g. slicing) by calling the interfaces of the latter.

INTERNAL INTERFACES

5GCity orchestrator.I1 is the internal interface offered by the Resource Placement and used by the NFV
Orchestration, in order to trigger the decision process for finding an optimal placement of all the resources
involved in a network service. Table 2 documents the main operations for this functionality.

Operation
Type

Resource Parameters Metadata Description Expected Result

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 25 of 89

POST
orchi1/computeDe

ploymentPlan

 ns,
vnf[],
slice,

sla

Authentication
Data

Retrieve an optimal
placement/deployment plan for the
provided ns/vnfs with the provided

sla on the indicated slice

The deployment plan to be enforced
(by the Infrastructure Abstraction,

which will receive it and pass it over to
the appropriate VIMs as the

appropriate set of commands)

GET
orchi1/activateAlgo

rithm
 algorithm_id

Authentication
Data

activate/select one of the placement
optimization algorithms that can be

used by the Resource Placement
module

STATUS (SUCCESS or one of the to-be-
defined ERROR CODES)

Table 2. 5GCity orchestration.I1 interface description

5GCity orchestrator.I2 is the internal interface offered by the SLA Manager and used by the NFV Orchestrator,
in order to associate a network service with an SLA, which will be the basis upon which the SLA manager will
keep monitoring thresholds and identifying violations. Such violations are also accessible for the NFV
Orchestrator via operations of this interfaces. The main operations are described in Table 3.

Operation
Type

Resource Parameters Metadata Description Expected Result

GET orchi2/sla sla_id
Authentication

Data
Retrieve an SLA identified by “sla_id”

All data and metadata of this SLA
(including information about the

service it is associated with)

POST orchi2/sla
sla,

ns_id
Authentication

Data

Register an SLA to be stored by the
SLA manager, providing info about
the network service it is associated

with

STATUS (SUCCESS or one of the to-be-
defined ERROR CODES)

PUT orchi2/sla
sla,

ns_id
Authentication

Data

Update an SLA to be stored by the
SLA manager, providing info about
the network service it is associated

with

STATUS (SUCCESS or one of the to-be-
defined ERROR CODES)

DELETE orchi2/sla sla_id
Authentication

Data
Delete an SLA identified by “sla_id”

STATUS (SUCCESS or one of the to-be-
defined ERROR CODES)

GET orchi2/violation sla_id
Authentication

Data

Retrieve a violation (identified by the
SLA Manager) related to a specific

SLA, identified by “sla_id”

All data and metadata of the identified
violation

Table 3. 5GCity orchestration.I2 interface description

Note that the retrieval of violations by the NFVO might be done periodically or triggered by an alarm or “push”
operation, but this is an implementation detail which is out of scope at this point.

5GCity orchestrator.I3 is the internal interface offered by the Slice Manager and used by the NFV
Orchestrator, in order to check the ownership and other details of a slice before initiating NS- and VNF-
related orchestration actions that contradict these details. The main operation is described in Table 4.

Operation
Type

Resource Parameters Metadata Description Expected Result

GET orchi3/slice slice_id
Authentication

Data
Retrieve slice identified by “slice_id”

All data and metadata related to the
slice with “slice_id”

Table 4. 5GCity orchestration.I3 interface description

5GCity orchestrator.I4 is the internal interface offered by the Infrastructure Abstraction and used by the Slice
Manager, in order to enable in a VIM-technology-independent way the triggering of actions that are required
to actually put a slice in place. The main operations are described in Table 5.

Operation
Type

Resource Parameters Metadata Description Expected Result

POST
orchi4/allocateReso

urce

 resourceType,
resourceData,

owner

Authentication
Data

The type (e.g., RAN/WiFi capacity,
network capacity, Compute node,

storage space) and the details of the

A “resource_id” in case of SUCCESS
or one of the to-be-defined ERROR

CODES

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 26 of 89

required resource, along with an
owner who shall also be passed on to

the VIM

POST
orchi4/freeResourc

e
resource_id

Authentication
Data

Free the slice identified by “slice_id” by
calling the VIMs that are responsible

for the elements of the slice

STATUS (SUCCESS or one of the to-
be-defined ERROR CODES)

Table 5. 5GCity orchestration.I4 interface description

Note that a sequence of various “orchi4/allocateResource” invocations will be needed in order to “set up” a
slice. These will have in turn to translated by the Infrastructure Abstraction to VIM-specific commands.

5GCity orchestrator.I5 is the internal interface offered by the Infrastructure Abstraction and used by the
Resource Placement, in order to retrieve information needed in order to compute an (optimal)
placement/deployment plan, i.e. one that have been computed by an execution of the orchi1/placement
operation. The main operations are described in Table 6.

Operation
Type

Resource Parameters Metadata Description Expected Result

GET orchi5/status resource_id
Authentication

Data
Retrieve the status of the resource

identified by “resource_id”

Data and metadata about the status of
the resource identified by

“resource_id”

Table 6. 5GCity orchestration.I5 interface description

5GCity orchestrator.I6 is the internal interface offered by the Infrastructure Abstraction and used by the
WAN Resource Manager. It will be used for simple information gathering (about the infrastructure) and its
design will also depend on the SDN controller that the WAN Resource Manager will control. It will be used to
setting up traffic flows with conventional usage of SDN controllers, and no significant extensions to the
existing solutions are planned.

5GCity orchestrator.I7 is the internal interface offered by the Infrastructure Abstraction and used by the NFV
Orchestrator to deploy NSs and VNFs. This should be implemented in accordance with the “API Service and
Utilities” of the “Resource Orchestrator” of OSM. Some extensions might be dictated by the fact that our
Infrastructure Abstraction will support a broader palette of underlying VIMs, namely edge- and extended
edge-related VIMs in addition to standard Cloud VIMs such as OpenStack, as explained previously in section
2.1.3. Table 7 shows some of the involved operations.

Operation
Type

Resource Parameters Metadata Description Expected Result

GET orchi7/status resource_id
Authentication

Data
Retrieve the status of the resource

identified by “resource_id”

Data and metadata about the status of
the resource identified by

“resource_id”

POST orchi7/deploy
 vnf,

resource
Authentication

Data
Deploy the provided VNF to the

specified resource
STATUS (SUCCESS or one of the to-be-

defined ERROR CODES)

… .. … …

(other operations that will be generic
and technology-independent

versions of deployment-related
actions that can be performed by the

used VIMs)

…

Table 7. 5GCity orchestration.I7 interface description

 Main orchestration interactions

This section describes important end-to-end workflows for the 5GCity orchestrator platform.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 27 of 89

Resource Placement

As depicted in Figure 10, requests for deploying a service trigger a resource placement workflow, which
computes the optimal placement of the involved VNFs. This can be done by using with the NFVO and the
Infrastructure Abstraction to interact with the resources that can act as VNF hosts. The whole process is
assisted by a Monitoring Driver, which delivers also dynamic, performance-related information about the
resources.

Figure 10. Resource placement workflows

SLA Manager

The overall logic which describes the interaction between SLA manager and the rest of 5GCity architecture
upon the instantiation of a new service that is accompanied by an SLA is described in Figure 11.

Figure 11. SLA manager sequence diagram

Slice Manager

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 28 of 89

This section describes workflows of the Slice Manager from the point of view of the Slice User. The scenarios
include creating a new network slice, executing an operation upon a slice, maintaining/monitoring the slice,
and terminating a deployed network slice.

Slice Creation

Figure 12 shows how 5GCity slices are created in the 5GCity orchestration platform. In principle, when a Slice
User requests a slice, the request is forwarded to the Slice Manager (namely to its Network Slice Life-Cycle
Management component). This component is responsible for checking the slice policy with the Policy
Management Function prior to the creation of the slice. Once the Policy Management Function module
approves the creation process based on the existing policy then Network Slice Life-Cycle Management needs
to check with the network slice repository. If there is no slice with conflicting data, then the Network Slice
Life-Cycle Management creates the requested slice and adds the information to the repository.

Figure 12. Network slice creation internal process.

Slice Operation

Once a network slice is created, it becomes ready for assigning NSs and VNFs to it. A Slice User can access
the Slice Manager via the 5GCity Dashboard and request for a specific slice. Upon access to the slice, the Slice
User is able to perform various actions, e.g., fetch Network Service Descriptors (NSD) and Virtualized Network
Function Descriptors (VNFD) from the catalogue in order to create a service and ask for its deployment upon
this specific slice.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 29 of 89

Figure 13. Network slice operation.

Slice Maintenance

Figure 14 depicts the workflow of monitoring/maintenance actions upon a slice. The Slice User logs and
authenticates again over the 5GCity Dashboard and, having access to the slice, she/he is allowed to perform
certain maintenance actions upon the slice. These differ from the slice operation actions in that they are
related to the slice itself rather than to what is running upon the slice.

Figure 14. Network slice maintenance.

Slice Termination

A slice can be terminated manually by the Slice User or automatically after its lifetime period. Upon
termination of a network slice, the NSs running on it are stopped and the resources returned to the available
network resources. Finally, the information related to the network slice will be deleted from the repository.
The slice termination workflow is shown in Figure 15.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 30 of 89

Figure 15. Network slice termination.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 31 of 89

2.2. Dashboard

5GCity’s dashboard is aimed to be the main interface to the majority of 5GCity’s stakeholders. As depicted in
Figure 16, Dashboard is envisioned to be 5GCity’s “top” component functioning as the single-entry point for
5GCity’s platform end users as well as third party applications aiming to interact with the system.

Figure 16. Dashboard High-Level Architecture

This allows to check that the Dashboard is aimed to be composed by two main sub-components:

 Graphical User Interface (GUI)
The GUI will be the interface provided to 5GCity’s platform end users exposing its features through
an appealing and intuitive interface. The graphical user interface will provide different graphical
environments based on the user’s permission role. The graphical interface will be able to adapt its
contents (visualised information) as well as enabled features targeting the action scope of each
5GCity role. The different roles envisioned to be supported by the GUI as well as its actions will be
presented in a section below.

 Northbound Interface (NBI)
This subcomponent is envisioned to provide a REST interface to 5GCity’s platform third parties
(including the GUI) enabling the access to 5GCity’s information and features to authorised parties.
This subcomponent will provide a complete overview of 5GCIty’s features and information. To
achieve so, it will interact with different 5GCity’s subcomponents in order to retrieve the requested
information correlating multiple sources of data, if needed.

 5GCity Dashboard roles

5GCity dashboard will have to accommodate different user roles with considerably different scopes and
therefore a differentiated set of features provided to each one of them. Below, each role is presented with
a minor description as well as the main set of features envisioned to be provided by the dashboard.

 Service Developer

Description: This role is associated NFV and MEC app providers that will ultimately will enable the
creation of added value end to end services for end users. This type of user also includes entities who
create applications that can benefit from the 5GCity architecture, like for example video analytics or
augmented reality software.

Envisioned actions: Users with this role, will interact with 5GCity platform in order to manage the
NFV and MEC apps which they are responsible for. Furthermore, users with this role should be able
to test and monitor developed solutions in order to provide secure and optimised software.

 Neutral Host

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 32 of 89

Description: These entities own the necessary infrastructure that can be used for hosting the
computing, storage and networking infrastructure. The available resources include space in street
cabinets, lampposts or buildings along with power supply and connectivity facilities necessary to
power and interconnect the ICT equipment. Users with this role can be regarded as the owners of a
5GCity platform instance and will be seen as Administrators of the platform.

Envisioned actions: Users with this role will have access to platform management features allowing
an effective management of its information and access. One of the most important features to be
provided to this user is the possibility to view and manage all the infrastructure registered in the
5GCity platform in a georeferenced way. Despite this physical resource management, virtual
resource management is also one of the most important features to be enabled to this user. Users
with this role will be responsible to accept and manage slice requests performed by Content/Service
Providers and therefore will have to be able to see resource usage at both physical and virtual levels
as well as monitoring information of 5GCity platform resources.

 Slice Requester/User

Description: It includes entities not owning network deployments/resources but that will use virtual
resources to create and provide their own end to end services. By taking advantage of the 5GCity
architecture and the Neutral Host concept, these users will have a pool of different type of resources
that can be selected and used to develop new and innovative services.

Envisioned actions: One of the most important features to be provided to the current user is the
ability to define and request a slice (to be accepted/rejected by a Infrastructure Owner). These users
will be the responsible for the instantiation of end to end services (always in the scope of a slice
which they own) so features allowing the instantiation and management of end to end services
should be present in the dashboard. Furthermore, monitoring information regarding the instantiated
services should also be available for these users allowing the application of remediation actions if a
given SLA is not being met.

 Graphical User Interface design and usability

The design process was split in 5 smaller and trackable phases (Figure 17). These phases are composed of:

1. a requirements definition,
2. research,
3. low fidelity User interface (UI) design and wireframing
4. high fidelity UI design and
5. Style guide (Not yet started)

Figure 17. Dashboard design process phases

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 33 of 89

2.2.2.1.Graphical User Interface design and usability

5GCity’s platform is intended to be mostly used by network tech related people, the type of users that tend
to interact with systems using rudimentary, complex and unpleasant interfaces or even with a command line
interface. The requirements definitions established the guidelines to follow throughout the design process
of 5GCity’s dashboard with the goal to break with this “Status Quo” and deliver a better and enhanced
experience to end users. To do so, the following requirements for the UI were defined:

 Clean

 Appealing

 Organized

 Users should not need to read a manual or extensive documentation to be able to use its core
functionalities. Everything should be as simple and self-explanatory as possible

 Follow the brand identity in terms of colour, typography and general style (look & feel)

2.2.2.2.Research

The first step of the research phase was the creation of a “mood board”, i.e. a digital collage/collection of
different elements that would serve as inspiration for the following phases. This methodology is useful to
share and discuss different visions, the general look & feel of what is intended and how things will work in
the end. Some of the main contents of this study considered relevant towards shaping important decisions
for the 5GCity Dashboard appearance are provided below.

Figure 18. Example of map and list view side by side

A hybrid view with a list and map representations (Figure 18) was one the main researched topics. For
example, we found this to be really helpful for the design of the “Slice Management screen” where the users
need to see a list of slices along with a visual geo-representation of the slice.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 34 of 89

Figure 19. Example of Geo-representation

Some research was also made about the best ways to represent paths and markers on a map as well as item
states and visual warnings (see Figure 19).

Figure 20. Example of Listings

List views (see Figure 20) also belonged to the researched topics. They will be one of the main information
views of 5G City, since we considered them to be visually appealing and easy for the user (i.e., easy to
understand and keep track). This also supports scalability.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 35 of 89

Figure 21. Example of Geo-representation with dark UI

We figured out that a dark UI (e.g., as in Figure 21) might be the best approach for our use cases, since
choosing an appropriate background helped us become more efficient, which can become a key factor for a
global design solution in terms of UI layout and functionality. In our experience, the use of a dark background
favoured legibility, contrast, and the visual perception of item states (warnings, errors, etc.).

2.2.2.3.Low fidelity UI design

After the requirements and research phases, low-fidelity design process was started. Low-fidelity design
process phase is based on drawing solutions directly on paper for the key challenges of 5GCity, the basic
interface grid and structure, dashboard elements and resource management, usage and allocation.

The main goal was to diverge, to draw as many variations as possible. When drawing things in a hurry, no
masterpiece is expected, it’s all about the visual solution, the thinking behind it and not how it looks in the
paper. Some of the outcomes of this phase are exemplified below:

 Solution will provide a left menu containing all the possible activities to be engaged by a user (based
on its role).

 Information will be displayed in a minimalistic way (as collapsed as possible) allowing the user to
expand details of the elements he wishes to analyse.

 Table views will be commonly adopted by the platform and will share a unified design.

 Infrastructure topology information will be contextualised with geolocation information.

2.2.2.4.High fidelity UI design

High Fidelity UI design takes into account all the gathered feedback until this state and establishes a workflow
allowing to work on high fidelity mock-ups. Regarding styling, this phase takes into consideration the basic
styles initially defined as well as the style guide rules evolution. This definition is currently taking place with
the aim to specific in high detail 5GCity’s graphical user interface. However, an example of such a
specification is provided below already addressing some of the differences associated with information
visualisation when comparing what users with different roles can see.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 36 of 89

Figure 22. 5GCity Platform Infrastructure Overview available for Neutral Host role

Figure 22 already exemplifies one of the features aimed to be provided to users with the “Neutral Host” role.
In this screen, users will be able to check all the infrastructure currently registered in the platform and
available to be rented by Slice Requesters/Users. Per infrastructure node, users will be able to also see which
entities are currently renting its resources. Infrastructure usage information is also highlighted in this screen
allowing these users to check the need of expanding the infrastructure registered in the platform.
Furthermore, as the figure displays, left menu options will enable users with this role to manage 5GCity
platform, both in what regards its resources (physical and virtual) as well as its users.

Slice Requesters/Users will have a similar feature as the previously exemplified, containing, however, a
limited set of information. Figure 23 illustrates this behaviour:

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 37 of 89

Figure 23. Slice resource visualization

As illustrated in Figure 23, the information provided to users with Slice Requester/User role will be
considerably limited when compared to the similar view available for Neutral Host users. Slice
Requester/User users, will only be able to check the status and topology of the virtual resources that they
have previously rented being unaware of the resources rented by users with a similar role even if they share
virtual resources under the same physical host. Furthermore, and also visible in the previous figure, the
options provided to these users through the left panel are centred in the management of its slices and end
to end services being the user agnostic of other users with a similar role that is also using the platform (using
a multi-tenancy rational).

 Dashboard implementation technologies

Dashboard implementation aims to leverage on the outcomes of EU projects SELFNET, CHARISMA and
SONATA to create a state of the art Dashboard with the main outcomes of each one of the previously
mentioned projects. As a consequence, components from each project are envisioned to be adapted and
integrated in 5GCity platform.

In what respects authorisation and authentication methodologies, Dashboard will rely on 5GCity’s
Authentication, Authorization and Accounting (AAA) framework presented in section 2.4.

The technologies aimed to be used to implement 5GCity’s GUI are all standard in Web development. At the
basic level Hyper Text Markup Language (HTML), Cascading Style Sheets (CSS) and Javascript make up the
application’s foundation. On top of these standard languages, various frameworks will be used for efficiency,
productivity and better data handling. For visual elements styling, it was chosen Sass, being an extension to
CSS that improves on the language with new methods and efficient code structure. As for Javascript
frameworks, AngularJS is aimed to be used essential for data handling and data visualization. Addressing
each of them individually, AngularJS has great support and an extensive community behind the framework
and thus making it one of the most used technologies for web applications development. As for

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 38 of 89

communication, the standard REST communication for the great majority of API access requests is envisioned
to be used and eventually Websockets for updating in real time displayed information.

Focusing on the NBI and taking into consideration that REST is the most used technology in Web services, its
contents and features are envisioned to be served also using this technology. Focusing on implementation,
Python is the chosen language to develop both a REST client (that will query 5GCity’s bottom layers) and a
REST server that will expose an API to the GUI and other third parties. As a rest client Python library
“Requests: HTTP for Humans” will be used allowing the execution of HTTP requests in a simple format while
not requiring extra steps for its completion. This library can handle query strings automatically as well as
POST forms. The REST server will be powered by Falcon, a high performance Python framework to build APIs.
This framework follows REST standards and, was developed to be light, fast and flexible. To promote and
ease the usage of the APIs offered by 5GCity, Swagger documentation will be provided.

2.3. Monitoring

The main components to be considered in the monitoring system of the 5GCity platform are the monitoring
functionalities related to the overall virtualized resources (compute, storage and network) of the three-tier
architecture, as well as a set of parameters related to applications and services running on the 5GCity
infrastructure.

The group of infrastructure components includes three different domains of resources:

 NFV Infrastructure (NFVI) resources that comprise compute, network and storage virtual resources;

 SDN-enabled elements, including physical and virtual resources, which are usually controlled by a

SDN controller;

 Physical devices that do not belong to the previous categories, such as non-SDN compliant network

routers and switches, Small Cells, PNFs and other devices for which we are interested in collecting

monitoring information.

The second group of functionalities includes:

 Virtual Network Functions (VNFs) virtual machines performing specific network functionalities;

 Service monitoring parameters that represent metrics; they are tracked (meaning data collection)

to check the level of compliance of a specific running service with the agreed SLAs.

The monitoring system should be able to be integrated with several orchestration layer components, such as
the Resource Manager, the Slice Manager, the SLA Manager, and the OSS/BSS systems to provide decision
support for multiple purposes such as security threat detection and mitigation, SLA assurance, resource
optimization and root cause analysis.

 NFVI monitoring

The 5GCity architecture integrates the Cloud and Edge concepts and it is based on a three-tier model, which

reflects three different geographical areas. 5GCity resources are deployed and identified with: (i) a

centralized area where massive computing resource are deployed, (ii) an edge area with limited computing

resources, corresponding to street cabinets, and (iii) an edge area with wireless devices. The resulting

underlying NFVI infrastructure includes resources distributed along these three levels as well as the back-

haul and the front-haul network.

It is important to keep track of the key performance metrics within the 5GCity, distributed infrastructure, in

particular:

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 39 of 89

 CPU, Ram and Hard Disk utilisation: especially on the MEC nodes, belonging to cabinets and

lampposts, where it is important to monitor the resources allocation and possibly keep it as low as

possible;

 Virtual network devices utilisation, i.e. bitrate on virtual link, packets metrics on data flows, etc.

 System physical resources, i.e. Radio resources, LTE and Wi-Fi, PNF (Physical Network Functions).

 Applications and Services monitoring

VNFs

These parameters can be either VM-related information (e.g. CPU utilisation, bandwidth consumption) or
VNF specific such as, calls per second, number of subscribers, number of rules, flows per second, VNF
downtime, etc. One or more of these parameters, depending on the implemented logics, could also trigger
a reaction on the QoS loop.

Services

At Services level, monitoring parameters represent metrics that are tracked to check the level of compliance
with the agreed Service Level Agreements (SLA).

The SLA represents relationship between a service provider and a service customer to ensure and maintain
the level of Quality of Services (QoS) to an acceptable level. It needs monitoring, managing and reporting of
delivered vs contractual QoS. It guarantees also the quality of the Network Services (NS) to
maximize/optimize the ability of the services.

As a general consideration, these parameters can be used for specifying different deployment flavours of a

specific service and/or to indicate different levels of service availability. Examples of these parameters are

calls per second, maximum number of subscribers, number of rules, flow per second, etc.

 Monitoring as-a-service

The 5GCity monitoring systems provide the capability for monitoring both network and cloud infrastructural
elements and the related services. Considering the nature of 5GCity heterogeneous and distributed
infrastructures and the presence of virtualization components like VMs, a full end-to-end view of both
infrastructure and services is required.

To achieve this result, we must have a perspective that the end-to-end route should not be seen as a set of

blocks to be optimized locally, but parameter measurements must be analysed from a system perspective to

optimize the end-to-end route as a whole. This means the system shall be able to instrument and monitor

the different devices composing the overall infrastructure and provide a unique and simple-to-access view

of the system that can be exposed to both dashboards and analytical techniques. To this aim, the monitoring

module collects and provides all the information needed by the others modules included in the 5GCity

platform, e.g. SLA Manager, Slice Manager, in a “monitoring as a service” model.

Each module manages the requested parameters for the specific needs, considering an end-to-end model.

Examples of possible application are:

 SLA assurance

 QoS monitoring

 Resource utilization (real-time)

 Resource optimization

 Application health

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 40 of 89

 System (or sub-systems) health

 Root cause analysis

 Dashboard

 Data analytics

 Monitoring module implementation

For the context of 5GCity, Prometheus [16] can be selected as third party monitoring tool to fulfil the
monitoring system requirements.

Prometheus is a white box monitoring and alerting system that is designed for large and scalable
environments that includes built-in and active scraping, storing, querying, graphing, and alerting based on
time series data. It has knowledge about what the world should look like, and actively tries to find faults.
Prometheus covers both the domains of instrumentation (using so called “exporters” to instrument platform
or applications) and monitoring (providing mechanisms for the data collection, alerting, etc.).

Its main characteristics are:

 A multi-dimensional data model;

 Operational simplicity: easiness to set up monitoring anywhere;

 Scalable and decentralized;

 A powerful query language that uses the data model for meaningful alerting and visualisation.

Figure 24 depicts the internal architecture of the Prometheus system.

Figure 24. Prometheus internal architecture

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 41 of 89

Prometheus servers scrape (pull) metrics from instrumented jobs. Additionally, it also supports ephemeral
and batch job using “push” method by means of an intermediate service called PushGateway. There is no
distributed storage (metrics are stored locally). They can run rules over this data and generate new time
series, or trigger alerts. Servers also provide an API to query the data. Metric labelling feature enables easy
filtering, grouping, and matching via the query language.

It is able to expose the internal state of running applications giving possibility to send alerts and act upon
specific events.

Metrics can be defined by the following metrics type:

- A counter is a metric which is a numerical value that is only incremented, never decremented.

Examples include the total amount of requests served, how many exceptions that occur, etc.

- A gauge is an instantaneous metric value that is created via incrementing, decrementing or

accumulation. An example could be memory usage, CPU usage, amount of threads, or perhaps a

temperature.

- A histogram is a metric that samples observations. A typical use case for a histogram is the measuring

of response times.

- A summary is similar to a histogram, but it also calculates configurable quantiles.

Not everything can be instrumented. Third-party tools that do not support Prometheus metrics natively can
be monitored with exporters. Exporters can collect statistics and existing metrics, and convert them to
Prometheus metrics. An exporter, just like an instrumented service, exposes these metrics through an
endpoint, and can be scraped by Prometheus. Prometheus has large number of exporters that export metrics
from several systems.

2.4. Security

Access control is essential to guarantee that third parties do not compromise the correct functioning of the
system or adulterate sensitive information. Being able to unequivocally identify who is using the system, to
know the allowed operations that can be performed by the current user and, what was already done by it, it
is essential to build a safe and reliable system. In this context, a three-tier process composed by
Authentication, Authorization and Accounting (AAA) must be used.

Figure 25. Components that interact with the AAA system

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 42 of 89

The AAA system needs to be integrated with several 5GCity platform components such as the Dashboard,
the 5GCity Orchestrator, and the Monitoring (see Figure 25) in order to secure the interactions between
them and the users, but also between the 5GCity Platform components themselves. This security system will
mainly support the following operations:

1. Dashboard -> AAA: Registration and login for different users to the 5GCity platform through the
dashboard and get credentials for all further actions that will be performed or triggered via the
Dashboard.

2. 5GCity Orchestrator -> AAA: Grant access to specific components in the orchestration layer (e.g. Slice
Manager). For example, before providing information about a particular slice, the slice manager will
check it the requesting user is allowed to access the particular slice. Similarly, for instantiating a
service on a particular slice, similar controls will be performed.

3. Monitoring -> AAA: The main goal is to ensure that only authenticated and authorized users have
access to monitoring data. Furthermore, in multi-tenant environments, such as 5GCity, it is essential
that a slice user has access to its monitoring data only.

Figure 26 illustrates the internals of the AAA process.

Figure 26. AAA framework approach

Authentication is the first step and aims to identify a given user, i.e., to corroborate if the user is who claims
to be usually achieved through a password-based authentication. When registering in the system the user is
asked to provide a known unique identifier, usually a username that must be unique and, a password that
must be kept a secret. Sometimes, if the system contains sensitive information, the authentication process
can be enhanced with other information, i.e., two factor authentication which consists in besides the
username and password an extra information that only the user possesses, e.g., a token sent to a mobile
phone.

Authorization is the mechanism that asserts what a user can or can’t perform within the system, occurring
after the authentication. After a registration process, each user has assigned a group of tasks that can
perform within the system or a list of resources it can operate on. Authorization is the means to audit these
operations guaranteeing a user don’t perform tasks it is not allowed to do. The way the accesses are

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 43 of 89

controlled are, usually, following a Role Based Access Control (RBAC), in which there are a set of roles for a
group of tasks being the user only able to perform a task if it has the specified role.

Accounting is the final step within an AAA framework. In order to understand what a given user is doing
within a system, e.g., the amount of resources consumed or the amount of data a user sent or receive, the
accounting helps to comprehend how the resources are being consumed by a user. By logging all system’s
activity it’s possible to statistically understand the user activity for a wide range of purposes from billing to
resource utilization.

Within this project the goal is to have a centralized AAA server that allows all these features, authentication,
authorization and accounting in a consolidated and centralized framework capable of handling multiple
requests from multiple clients. Third party applications need to interact with the AAA server on behalf of end
users performing any action, since every request needs to be authenticated, authorized and accounted.

5GCity will be composed by multiple services providing parallel or complementary features however relying
in the same AAA framework to control the access to its features in a controlled and centralized way. To enter
into the 5GCIty ecosystem, users will create an account shared across all applications/services residing in the
AAA framework. Once a user performs a login operation the request is redirected to the AAA’s authentication
mechanism which is responsible to validate the provided credentials identifying the user. If the credentials
are wrong, the request is rejected, if the credentials are right the authentication returns a token that must
be used in other requests, Figure 27. This token is used to identify the user and the current session within
the AAA framework avoiding sending the username and password in every request, Figure 28.

Figure 27. Create session

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 44 of 89

Figure 28. Token-based authentication

Once a user is correctly identified the authorization takes place, i.e., to know if the user has permissions to
execute the request. The authorization mechanism works based on a set of centralized rules that dictate
what users with a given role can or cannot perform within the system. Once a request arrives to the
authorization, the mechanism will search within its rules for the action the user is trying to do, then it will
validate if the user has the right role to perform it, Figure 29. When related to resources, the rules can be
enhanced with ownership information, e.g., only the user that created the resource can delete it. In order to
centralize the process, all 5GCity services using this AAA framework will submit the authorization rules to the
AAA following a common format that allows the framework to understand and enforce the rules.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 45 of 89

Figure 29. Authorization process

The accounting is the final step of the AAA framework, despite centralized the approach followed on the
accounting is slightly different, since the accounting’s main goal is to register all user activity for billing (not
investigated in 5GCity) or resource control. When a request arrives to the framework it’s possible to log what
the user accessed, however it’s not possible to control how the resources were used, being subordinated to
each application/service approach. To address this limitation, besides logging the user’s activity each
application can notify the AAA framework regarding resource usage and other information. Figure 30
highlights the high-level components need to accomplish this task.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 46 of 89

Figure 30. Accounting Process

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 47 of 89

3. E2E Service Modelling and SDK Toolkit design

Lifecycle management of network services covers a pivotal role within 5G framework. In this section we
propose the 5GCity approach which cover the initial phase of a network service lifecycle, namely the design
phase, which produces a service template ready to be deployed and operated by a MANO stack over an NFV-
enabled architecture.

A proper design of network services is a critical process, which generally should take into account a wide
range of aspects going from hardware specific requirements to user SLAs. In this section we propose the
following main topics:

 A service modelling strategy which abstracts virtual resources with the main aim to offer to the
5GCity vertical user a simplified view on the infrastructure

 An SDK Toolkit to properly design, craft, and publish end-to-end network services which encompass
all three layers defined for 5GCity architecture [1]

3.1. 5GCity service modelling and composition

5GCity Service modelling strategy revolves around the following considerations:

 Flow based programming strategy
In computer programming, Flow-Based Programming (FBP) [17] is a programming paradigm that defines
applications as networks of "black box" tasks, which exchange data across predefined connections by
message passing, where the connections are specified externally to the processes. These black box processes
can be reconnected endlessly to form different applications without having to be changed internally. FBP is
thus naturally component-oriented.

According to the ETSI NFV definition, a Network Service (NS) is composed by an ordered set multiple Virtual
Network Functions (VNF) and can be thought as a pipe, which steer the traffic flows across subsequent stages
of data manipulation (Forwarding graph).

According to the given definition, it is clear that the design of a network service can be organized according
the rules of flow-based programming, which allows the breakdown of a complex network service into a set
of subsequent atomic functions. This approach invokes a clear shift from the concept of a monolithic network
service towards a configurable and programmable network service, where proper focus is put on the high
degree of re-usability of the single atomic functions of which an overall service is composed. This strategy
also led to new business scenarios, where we can envision 5G vertical which is composing its own network
services on the basis of atomic functions provided by third-party.

 Additional Level of Abstraction
In 5GCity, we look at the municipality as an infrastructure owner acting as Neutral Host who can rent pools
of virtual resources (in the form of end-to-end slices) to several customers acting as (“virtual”) Network
Operators and Content/Service Providers (e.g. for Media production, broadcast & distribution, connectivity,
security). Each Slice User is able to cast its own network services, has its own requirements in terms of
services and thus should be able to design network services tailored to the needs of its own business. It is
envisioned that the Slice User is enabled to design network services without being aware of full low-level
details of the underlying infrastructure. In other words, the infrastructure owner must be able to hide the
complexity of the physical infrastructure and expose to its customers only a partial and abstracted view of
the resources, according to a model which allows the Slice User to administer the pool of virtual resources it

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 48 of 89

has rented from infrastructure owner. This model is realized by equipping the 5GCity SDK with an abstraction
layer, which is one of the main innovations introduced by 5GCity and offers major advantages in comparison
with the current state of the art. Existing SDK toolkits for 5G NFV-enabled infrastructures, e.g. from other EU
(European Union) projects like SONATA, Superfluidity, Charisma or embedded in OSM solutions like OSM or
Openstack Tacker, still require the user to have a full understanding of MANO information models and
awareness of the MANO stack details. Contrary, the 5GCity SDK toolkit adopts a different perspective and
allows the user to play with more abstract and business-oriented concepts without caring about
infrastructure details, MANO stack procedures, or specific information models.

This overall and two-fold strategy is well depicted in Figure 31 where we can observe the different levels of
abstraction enabled by the 5GCity architecture.

 At the upper level (SDK toolkit level), the 5G-vertical user is not aware of low-level details of physical
infrastructure and is not aware of MANO NFV information model but is offered a simplified approach
to service design and composition. The 5G-vertical user is able, by means of a Graphical tool, to
arrange a set of given functions (in this example a Virtual media server, A virtual Firewall and a virtual
cache) in an ordered end-to-end service. We also observe that what 5G-vertical user at 5GCity SDK
level perceive as single atomic function, can be translated at 5GCity orchestrator level as multiple
VNF items each one of them composed by one or more Virtualisation Deployment Unit (VDU).

 At the intermediate level, the 5GCity orchestrator translates the information provided by 5GCity SDK
toolkit in an ETSI NFV-compliant model.

 At the lower level (5GCity infrastructure) we see a further translation where the ETSI NFV items are
casted over physical infrastructure, which in the 5GCity architecture is divided into three tiers of
computing pools of resources (core, edge, radio)

Figure 31. 5GCity with a high level of abstraction.

The 5GCity service modelling strategy has led to the definition of an information model which embodies the
5G vertical user abstracted view of the overall infrastructure. This information model has to be designed as
a simplified version of the full ETSI NFV standard Network Service information model.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 49 of 89

The different elements composing the information model, their cardinality, and their meaning are described
in Table 8, Table 9 and Table 10.

Item Qualifier Cardinality Description

Name Mandatory 1 User-friendly Name of the Network Service

ID M 1 UUID identification of the Network Service
item

Function M 1 .. n Atomic functions which composes the
Networks Service. Description of Function
on Table 9

Monitoring_Parameters O 0 .. n Ordered list of parameters to be monitored
by underlying MANO infrastructure.
Defined on a per link basis. Each parameter
monitoring will have a threshold.

Topology M 1 .. n Definition of the topology of the Network
service created. Description of the topology
on Table 10

Table 8. 5GCity SDK simplified Network Service information model

Item Qualifier Cardinality Description

ID M 1 UUID identification of the function

Flavour_id M 1 Deployment flavour of the Atomic Function
composing the Network service. It consists
in of
the virtual resources specification of the
VM/container which is used to deploy the
actual
function.

Table 9. 5GCity definition of atomic function deployment flavour

Item Qualifier Cardinality Description

ID M 1 Identification of the Topology

Link_ID M 1 Identification of the Link

Endpoint M 1 .. n Identification of the endpoint

SLA O 0 .. 1 Link level SLA parameters
Table 10. 5GCity definition of Topology

Some notes on the presented information models are provided in the following:

 flavour_id represents a combination of three main parameters (vCPU, vRAM, vHDD) which will be
later used in MANO environment during the deployment of the Networks Service. Those parameters
represent the basic knowledge that infrastructure needs to have to properly build Virtual Machines
(or containers) which contains the VNF we are actually considering. 5GCity orchestrator, at
deployment time of certain network service, will check if the flavour_id is defined in the VIM
infrastructure and in negative case, 5GCity orchestrator will command the VIM its creation.

 SLA parameters identified so far are expressed in terms of bandwidth/delay at Link level, to maintain
coherency with the ETSI template for NS [14], which assumes that SLA refers to Virtual Link items.

 Monitoring_Parameters (consists of an array of parameters and thresholds which provides
indication of what needs to be monitored by the MANO infrastructure for the involved service and
for which is the threshold, which triggers some actions towards BSS/OSS (alarm/notification) or

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 50 of 89

towards MANO stack (Network Service scaling). The most common parameters (according to [9]) are
the following (and their meaning is self-explanatory):

o AVERAGE_MEMORY_UTILIZATION
o DISK_READ_OPS
o DISK_WRITE_OPS
o DISK_READ_BYTES
o DISK_WRITE_BYTES
o PACKETS_DROPPED
o PACKETS_RECEIVED
o PACKETS_SENT
o CPU_UTILIZATION

 Topology (in analogy with the equivalent ETSI NFV VNFFG item) is described as a set of links, each
one characterized by a link_id, SLA parameters and the function_id which originates and terminated
the link itself. The implicit assumption that network path is symmetric has been done. The detailed
structure of the Topology object in the information model is yet to be defined.

This simplified information model will be parsed by a functional block inside the SDK toolkit that will
transform the simplified information model into a full ETSI NFV compliant information model.

3.2. SDK Toolkit for Service Programming

SDK toolkit is a self-contained, stand-alone software platform which provides a set of services to support the
design of network services ready for deployment upon a 5GCity infrastructure.

SDK toolkit is able to selectively offer different functionalities depending on the user/role which is exploiting
its functionalities. This design ensures a high level of configurability of the SDK, which is able to be deployed
in a wide range of scenarios, by a wide range of users, and agnostic with regard to the underlying
infrastructure.

5GCity SDK toolkit can be used in several deployment scenarios, namely it can be deployed by:

 Slice Users, e.g. in order to develop the NSs and VNFs that they will deploy on their own slices

 Neutral hosts, e.g. in order to develop elements required by the 5GCity platform in order to serve
the needs of the Slice Users

 Service Developers (belonging to any third party), e.g. in order to develop and register VNFs that can
be “sold” to Slice Users

The relationships between SDK toolkit and the rest of the platform are described in Deliverable D2.2 [1].
Proper design of the SDK toolkit allows for a coherent integration with the underlying architecture, in a
transparent way with regard to the different deployment scenarios.

 Requirements

SDK Toolkit requirements have been derived based on the following:

 High-level requirements gathered from the project proposal

 State of the art of similar platforms as described in relevant 5G projects (SONATA, 5GTANGO,
SESAME, Superfluidity)

The list of requirements identified so far is described in Table 11.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 51 of 89

Area Req-id
Requirement

name
TYPE Description

user
management

REQ-
USER-1

Multiple user
handling

MANDATORY SDK must be able to handle multiple users.

user
management

REQ-
USER-2

Workspace
definition

MANDATORY
Each user has to be provided with suitable

workspace virtually separated by other users.

user
management

REQ-
USER-3

Multiple Roles
handling

MANDATORY
SDK must be able to handle different roles. The
following roles are foreseen: Admin, Vertical,

and Dev-ops

user
management

REQ-
USER-4

Admin Role
definition

MANDATORY
Admin Role is in charge of maintenance,

configuration of the interface with full access to
each for the components composing the SDK

user
management

REQ-
USER-5

Vertical role
definition

MANDATORY

Vertical Role is in charge of SDK utilization, with
limited access to its toll. Vertical user is exposed

a simplified view of the virtual resources.
Vertical role is not aware of NFV MANO

information model and related low-level details.
Vertical role is allowed to design network

services according a simplified information
model which is presented in sec 2.1.

user
management

REQ-
USER-6

Dev-ops role
definition

OPTIONAL
Dev-ops role is in charge of the SDK utilization,

with full access to GUI-CLI tools.

Functional
REQ-

FUNC-1
Composer MANDATORY

SDK must be equipped with composer tool,
which Ensure for the role=Vertical a basic set of

capabilities is unlocked.

Functional
REQ-

FUNC-2
Composer MANDATORY

Composer tool provides a basic set of capabilities
which allow user with Role=vertical to

 Retrieve a set of given atomic functions

 Create/Edit/delete Network service
composed as an ordered set of functions.

Functional
REQ-

FUNC-2
Composer MANDATORY

Composer tool contains an adaptation module
which maps the 5GCity SDK vertical information
model to a full ETSI NFV information model.

Functional
REQ-

FUNC-2
Composer MANDATORY

Composer tool contains a validation module
which operates formal validation of Network
Service Templates designed by the user against
standard information model as described in

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 52 of 89

ETSI GS NFV-SOL 004 V2.3.1 and Draft ETSI GS
NFV-SOL 001 V0.3.0 (2017-11)

Functional
REQ-

FUNC-1
Editor tool OPTIONAL

SDK must be equipped with editor module which
unlocks full capability of SDK toolkit. Editor tool

enable user with dev-ops role to edit-modify
delete VNF/NS stored in the private catalogue.

Functional
REQ-

FUNC-6
Delivery tool MANDATORY

SDK should be equipped with a module to
promote-demote items for private catalogue to

public catalogue.

Functional
REQ-

FUNC-7
Private

Catalogue
MANDATORY

SDK must be equipped with Private Catalogue
where user stores crafted items.

Functional
REQ-

FUNC-9
Emulation tool OPTIONAL

SDK must be equipped with Emulation tool
which is able to emulate the deployment of user

created services over emulated MANO stack.

Miscellaneous
REQ-

MISC-1
deployment OPTIONAL

SDK should be provided in the form of script-
installer which take care of the installation and

configuration of the framework

Miscellaneous
REQ-

MISC-1
deployment OPTIONAL

SDK should be self-contained cloud-ready VM-
Container

Table 11. Requirements for SDK Toolkit

 Architecture

In the following section, the description of the design for the 5GCity SDK toolkit is provided. The selected
architecture has been designed in order to fully cover the high-level requirements as expressed in the
previous section, by taking care of the following main functionalities:

 Graphical User Interface represents the entry point for the platform and allows users to interact with
services exposed by SDK toolkit. Operation performed by the user at GUI level are translated in API
calls towards Composer and Editor blocks

 Composer is a set of tools which allows the user (Role=Vertical) to manage Network Service items by
providing the following capabilities:

o Intercept commands (Create, modify, and delete operations) issued by user via GUI
o Interact with local database with the main purpose of storing/retrieving items
o Adapt the 5GCity SDK toolkit information model to fully ETSI NFV information model
o Validate the network service items created by user

 Editor (OPTIONAL, described here only for reference) is a set of tools which allows the user
(Role=dev-ops) to manage Network Service items by providing the following capabilities:

o Intercept commands (Create, modify, and delete operations) issued by user via GUI
o Interact with local database with the main purpose of storing/retrieving items
o Validate the network service items created by user

 Policy Engine is the function block which implements RBAC access to resources, by checking the
matching between user/role which issue the request and the requested resource

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 53 of 89

 Private App service and Application Catalogue is a collection of services which provides the
following capabilities:

o A dispatcher engine which takes care of adapting the API calls sent-received on North Bound
interfaces in order to be served by local database and MANO plugin

o A local database where the NFV items packages (NS, VNF) are store according a full ETSI
information model

o A MANO plugin which is able to translate a generic NS descriptor to a NS descriptor which is
related to a specific MANO stack

 Emulation Toolkit (OPTIONAL, described here only for reference) provides an emulated full stack
MANO framework where the user is allowed to deploy the Network service designed by means of
the 5GCITY SDK Toolkit.

The 5GCity SDK toolkit has been designed in order to implement RBAC access to the resources. A clear
definition of user and roles is provided in the following table, together with matrix which states correlated
the roles with the operations they are allowed to perform on the resources.

Role Type Role Description Resources accessed and allowed
operations

Role=Admin It is in charge of the configuration
and maintenance of the SDK
framework with full access
(super-user) to each of the
components composing the SDK

 Life Cycle management of the
platform.

Role=Vertical It has access to a basic set of SDK
functionalities, mainly consisting
in the editing of a service item as
an ordered set of given (atomic)
functions. The Vertical role is
exposed a simplified-abstracted
view of 5GCITY resources.

 Full R/W access to NSd

 ReadOnly access to VNF
packages

Role=Developer It has access to the full
capabilities of 5GCITY-SDK, being
able to create/modify VNF and
NS templates

 Full R/W access to NSd

 Full R/W access to VNF packages

Table 12. 5GCity SDK roles definition and access to catalogue resources

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 54 of 89

Figure 32. SDK Toolkit high-level architecture.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 55 of 89

Figure 33. Private 5G Service & Application Catalogue.

Private Catalogue is described in Figure 33 and it is composed by the following main elements:

 Dispatch Engine which is in charge of delivering messages among catalogue main components

 Database back-end where templates are stored

 MANO plugin which is in charge to translate a deployment template according the generic ETSI NFV
information model, to an information model which is specific to the MANO platform deployed.

 Information Models

ETSI NFV standard provides a clear definition of the information model used represent items, relationships,
constraints and operations and a modelling language used for the for deploying of applications and services
in virtual, physical, or hybrid networks. TOSCA, a data modelling standardization effort led by Oasis for cloud
orchestration environments and applications, has been selected as a modelling language for the ETSI NFV
deployment templates [ETSI GS NFV SOL04]. The TOSCA NFV profile [tosca-nfv-v1.0-csd04] specifies an NFV
specific data model using TOSCA language.

The deployment and operational behaviour requirements of each Network Service in NFV is captured in a
deployment template and stored during the Network Service on-boarding process in a catalogue, for future
selection for instantiation. This profile using TOSCA as the deployment template in NFV and defines the NFV

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 56 of 89

specific types to fulfil the NFV requirements. This profile also gives the general rules when TOSCA used as the
deployment template in NFV.

ETSI NFV information model is composed by four information elements defined apart from the top-level
Network Service (NS) information element:

 Virtualized Network Function (VNF) information element

 Physical Network Function (PNF) information element

 Virtual Link (VL) information element

 VNF Forwarding Graph (VNFFG) information element

Those information models should be wrapped in suitable deployment template, which provides all the
necessary information details for the deployment upon a full NFV MANO infrastructure, namely:

 A VNF Descriptor (VNFD) is a deployment template which describes a VNF in terms of its deployment
and operational behaviour requirements.

 A VNF Forwarding Graph Descriptor (VNFFGD) is a deployment template which describes a topology
of the Network Service or a portion of the Network Service, by referencing VNFs and PNFs and Virtual
Links that connect them.

 A Virtual Link Descriptor (VLD) is a deployment template which describes the resource requirements
that are needed for a link between VNFs, PNFs and endpoints of the Network Service, which could
be met by various link options that are available in the NFVI.

 A Physical Network Function Descriptor (PNFD) describes the connectivity, Interface and KPI (Key
Performance Indicator) requirements of Virtual Links to an attached Physical Network Function.

The main assumption used for TOSCA modelling language within an NFV domain is the following:

 ETSI NFV NSD is modelled as a TOSCA Service template

 ETSI NFV VNFD, VLD, VNFFG, PNFD are modelled as Node template

Figure 34. ETSI NFV deployment template described with TOSCA model mapping.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 57 of 89

Figure 35. TOSCA deployment template modelling ETSI NFV

Figure 34 and Figure 35 describe an example of TOSCA resource modelling, where VNFD and VLD are
represented as Node Templates and a new “virtualLinksTo” relationship type can be defined to connect VNF
and VL.

 Main interfaces

SDK toolkit is designed with a set of interfaces which allows external communication between SDK toolkit
and the 5GCity service & App Public catalogue on one hand and internal interaction among the different
entities composing the platform.

SDK Toolkit interfaces as described in Figure 36 are identified as follows:

 SDK.E1 (external interface to Public Catalogue)

 SDK.I1 (internal interface between GUI and Composer)

 SDK.I2 (internal interface between GUI and Policy Engine)

 SDK.I3 (internal interface between Composer and Private Catalogue)

 SDK.I4 (internal interface between GUI and Editor)

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 58 of 89

Figure 36. SDK internal Interfaces diagram

3.2.4.1.External Interfaces

5GCity SDK External interface, SDK.E1 allows communication between SDK Toolkit and the Public catalogue
platform. SDK can perform the following main operations:

 Onboard NSD package to 5G Service & App Public Catalogue

 Modify/deleted NSD package residing in 5G Service & App Public Catalogue

 Fetch NSD package from 5G Service & App Public Catalogue

 Onboard VNF package to 5G Service & App Public Catalogue

 Modify/deleted VNF package residing in 5G Service & App Public Catalogue

 Fetch VNF package from 5G Service & App Public Catalogue

This interface is modelled according ETSI NFV Os-Ma-Nfvo reference point [18] is exposed by 5G Service &
App Public catalogue and is designed according the following requirements which are directly inherited from
Os-Ma-Nfvo.NSd interface definition [18]. The numbering has been maintained to stress the close
relationship between 5GCITY SDK external interface and the its equivalent ETSI NFV. Original Os-Ma-
Nfvo.NSd requirements which are not applicable to 5GCITY scenario have been left blank.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 59 of 89

Numbering Functional requirement description
SDK.E1.Nsd.001 The NSD Management interface produced by the PUBLIC CATALOGUE on the SDK.E1

reference point shall support on-boarding NSD.

SDK.E1.Nsd.002 The NSD Management interface produced by the PUBLIC CATALOGUE on the SDK.E1
reference point shall support disabling an NSD.

SDK.E1.Nsd.003 The NSD Management interface produced by the PUBLIC CATALOGUE on the SDK.E1
reference point shall support enabling an NSD.

SDK.E1.Nsd.004 The NSD Management interface produced by the PUBLIC CATALOGUE on the SDK.E1
reference point shall support updating an NSD..

SDK.E1.Nsd.005 The NSD Management interface produced by the PUBLIC CATALOGUE on the SDK.E1
reference point shall support querying NSDs.

SDK.E1.Nsd.006 The NSD Management interface produced by the PUBLIC CATALOGUE on the SDK.E1
reference point shall support deleting an NSD.

SDK.E1.Nsd.007 The NSD Management interface produced by the PUBLIC CATALOGUE on the SDK.E1
reference point shall support providing notifications about the on-boarding of NSDs.

SDK.E1.Nsd.008 The NSD Management interface produced by the PUBLIC CATALOGUE on the SDK.E1
reference point shall support providing notifications as a result of changes on NSD states.

SDK.E1.Nsd.009 N/A

SDK.E1.Nsd.010 N/A

SDK.E1.Nsd.011 N/A

SDK.E1.Nsd.012 N/A

SDK.E1.Nsd.013 The NSD Management interface produced by the PUBLIC CATALOGUE on the SDK.E1
reference point shall support subscribing to notifications related to NSD management
changes.

SDK.E1.Nsd.014 The NSD Management interface produced by the PUBLIC CATALOGUE on the SDK.E1
reference point shall support fetching an NSD.

SDK.E1.Nsd.015 N/A

SDK.E1.Nsd.016 N/A

SDK.E1.Nsd.017 N/A

Table 13. SDK.E1 NS interface requirements

SDK.E1.VnfPkgm.001 The VNF Package Management interface produced by the PUBLIC CATALOGUE on the
Os-Ma-nfvo reference point shall support on-boarding a VNF Package.

SDK.E1.VnfPkgm.002 The VNF Package Management interface produced by the PUBLIC CATALOGUE on the
Os-Ma-nfvo reference point shall support disabling a VNF Package.

SDK.E1.VnfPkgm.003 The VNF Package Management interface produced by the PUBLIC CATALOGUE on the
Os-Ma-nfvo reference point shall support enabling a VNF Package.

SDK.E1.VnfPkgm.004 The VNF Package Management interface produced by the PUBLIC CATALOGUE on the
Os-Ma-nfvo reference point shall support querying VNF Package information. See note
1.

SDK.E1.VnfPkgm.005 The VNF Package Management interface produced by the PUBLIC CATALOGUE on the
Os-Ma-nfvo reference point shall support deleting a VNF Package.

SDK.E1.VnfPkgm.006 The VNF Package Management interface produced by the PUBLIC CATALOGUE on the
Os-Ma-nfvo reference point shall support providing notifications about the on-boarding of
VNF Packages.

SDK.E1.VnfPkgm.007 The VNF Package Management interface produced by the PUBLIC CATALOGUE on the
Os-Ma-nfvo reference point shall support providing notifications as a result of changes on
VNF Package states.

SDK.E1.VnfPkgm.008 The VNF Package Management interface produced by the PUBLIC CATALOGUE on the
Os-Ma-nfvo reference point shall support fetching a VNF Package, or selected artifacts
contained in a package.

SDK.E1.VnfPkgm.009 N/A

SDK.E1.VnfPkgm.010 The VNF Package Management interface produced by the PUBLIC CATALOGUE on the
Os-Ma-nfvo reference point shall support updating VNF Package information. See note
2.

Table 14. SDK.E1 VNF interface requirements

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 60 of 89

3.2.4.2.Internal Interface SDK.I1

5GCity SDK External interface, SDK.I1 allows communication between GUI front-end and the Composer entity.
The interface is produced by the Composer entity and allows the operations described in Table 15 and Table
16 for two different type of resources.

Operation
Type

Resource Parameters Metadata Description Expected Result

GET /sdki1/function Function_ID
Authentication

Data

retrieve resource
identified with

Function_ID

All data and metadata related to the
Function_ID

Table 15. SDK.I1 interface description for the function resource

Regarding the NetworkService resource, the interface permits all CRUD operation, shown on the following
table.

Operation
Type

Resource Parameters Metadata Description Expected Result

GET /sdki1/ns NetworkService_ID
Authentication

Data

retrieve resource
identified with

Network_Service_ID

All data and metadata related to the
NetworkService_ID

POST /sdki1/ns

Function_ID_1,
VM_Flavour

...
Function_ID_N,

VM_Flavour
Topology

Monitoring
parameters
Service SLA
parameters

Authentication
Data

Creation of
NetworkService Element

.
A NetworkService_ID, all its data and

related metada

PUT /sdki1/ns

NetworkService_ID
Function_ID_1,

VM_Flavour
...

Function_ID_N,
VM_Flavour
Monitoring
parameters

Link SLA parameters

Authentication
Data

Update of
NetworkService Element.

A NetworkService_ID all its data and

related metada are retrieved

DELETE /sdki1/ns NetworkService_ID
Authentication

Data
Deletion of

NetworkService Element
Status of the operation (OK, NotOK)

Table 16. SDK.I1 interface description for the NetworkService resource

3.2.4.3.Internal Interface SDK.I2

5GCity SDK internal interface, SDK.I2 allows communication between Composer and Policy Engine, to ensure
that Composer access operations to the resources stored in the private catalogue are checked against user
and role privileges. The interface is produced by the Policy Engine and allows the operations described in
Table 17.

Operation Type Resource Parameters Metadata Description Expected Result

GET /sdki2/token
User,

Credentials
Resource_ID

N/A
Retrieve privilege to access the Resource element by

provided user
Token, token validity

Table 17. SDK.I2 interface description

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 61 of 89

3.2.4.4.Internal Interface SDK.I3

5GCity SDK internal interface, SDK.I3 allows communication between Composer and Private catalogue. The
interface is produced by Private Catalogue and allows the operations as described in Table 18 and Table 19.

Operation
Type

Resource Parameters Metadata Description Expected Result

GET /sdki3/vnfd VNFd_id
Authentication

Data

retrieve resource identified
with

VNF_id

All data and metadata related to the VNFd
package

POST /sdki3/vnfd VNFd_id
Authentication

Data
Creation of VNFd package

Element
Full VNF package

PUT /sdki3/vnfd VNFd_id
Authentication

Data
Update of VNFd package

Element
Full VNF package

DELETE /sdki3/vnfd NSd_id
Authentication

Data
Deletion of NetworkService

Element
Status of the operation (OK, NotOK)

Table 18. SDK.I3 interface description for VNFD resources

Operation
Type

Resource Parameters Metadata Description Expected Result

GET /sdki3/ns NSd_id
Authentication

Data
retrieve resource identified with

Network_Service_ID
All data and metadata related to the NSd

package

POST /sdki3/ns
NSd Package

Authentication

Data
Creation of NetworkService

Element
Full NSD package

PUT /sdki3/ns
NSd Package

Authentication

Data
Update of NetworkService

Element
Full NSD package

DELETE /sdki3/ns NSd_id
Authentication

Data
Deletion of NetworkService

Element
Status of the operation (OK, NotOK)

Table 19. SDK.I3 interface description for NS resources

3.2.4.5.Internal Interface SDK.I4

5GCity SDK internal interface, SDK.I4 allows communication between GUI and Editor module. The interface
is produced by Editor Module and allows the operations as described in Table 20

Operation
Type

Resource Parameters Metadata Description Expected Result

GET /sdki4/vnfd VNFd_id
Authentication

Data

retrieve resource
indentified with

VNF_id

All data and metadata related to the
VNFd package

Operation
Type

Resource Parameters Metadata Description Expected Result

GET /sdki4/vnfd NSd_id
Authentication

Data

retrieve resource indentified
with

Network_Service_ID

All data and metadata related to the
NSd package

POST /sdki4/vnfd
NSd Package

Authentication

Data
Creation of NetworkService

Element
.

Full NSD package

DELETE /sdki4/vnfd NSd_id
Authentication

Data
Deletion of NetworkService

Element
Status of the operation (OK, NotOK)

Table 20. SDK.I4 interface description

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 62 of 89

 Main interactions

In the next sections, sequence diagrams will be provided to show the interaction between the modules
composing the SDK in the following cases:

- Login to GUI

- Network Service Creation (Role=vertical)

- Network service Creation (Role=developer)

The sequence diagrams will also provide clear indication regarding how the same operation (Service Creation)
involves different modules and result in different workflows according the user role which is triggering the
initial request.

Note that in this deliverable only sequence diagram for positive cases will be described. The sequence
diagrams which describe the SDK state machine completely will be provided in the next WP4 deliverables.

3.2.5.1.User Login to GUI

Figure 37. Workflow for user login to SDK GUI.

The sequence diagram which describes the SDK processing a login request done by the user is structured as
follows:

1. User initiate a login request, by providing user and password

2. GUI front-end receive the user credentials and send an Auth_req message to the Policy Engine
module

3. Policy Engine Module, according to its database where user credentials are stored, provides an
Auth_reply message which contains for the current user a software token and a token time frame
validity.

4. GUI front-end provides a successful login reply to the user. SDK home page for the current user/role
combination is displayed and made accessible to the user.

3.2.5.2.User with role=Vertical, Service creation

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 63 of 89

Figure 38. Sequence diagram for Service Creation (role=vertical).

The sequence diagram which describes the SDK processing the request to create a network service done by
the user with role=vertical is structured as follows:

1. User logged in to SDK GUI, issue the request for the creation of Network Service, by providing the
necessary parameters (as described in sec 3.1)

2. GUI front-end parse the parameters provided by user and send a ServiceCreationRequest to
Composer Module. The message also software token that user has previously obtained at login time

3. Composer issues an Auth_req to PolicyEngine module providing software token and identification
for resources to be accessed

4. Policy Engine grants access by replying with Auth_reply message

5. Composer performs a validation of the parameters in the ServiceCreationRequest message

6. Composer performs a template adaptation operation by translating SDK simplified information
model to a full ETSI NFV compliant information model

7. Composer sends to private Catalogue a NS_write_Req by requesting the store of the newly created
Network Service template into the local database

3.2.5.3.User with role=developer, Service creation

Figure 39. Sequence diagram for Service Creation (role=developer)

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 64 of 89

The sequence diagram which describes the SDK processing the request to create a network service done by
the user with role=developer is structured as follows:

1. User logged in to SDK GUI, issue the request for the creation of Network Service, by providing the
necessary parameters (as described in sec 3.1)

2. GUI front-end parse the parameters provided by user and send a ServiceCreationRequest to Editor
Module. The message also software token that user has previously obtained at login time.

3. Editor issue a Auth_req to PolicyEngine module providing software token and identification for
resources to be accessed

4. Policy Engine grants access by replying with Auth_reply message

5. Editor perform a formal validation of the parameters contained in the ServiceCreationRequest
message

Editor sends to private Catalogue an NS_write_Req by requesting the store of the newly created Network
Service template into the local database

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 65 of 89

4. Federated Machine Learning

Recent hardware developments have dramatically increased parallelism of computation by orders of
magnitude. The commoditization of hardware such as GPUs, along with their wide deployment not only in
data-centers but also in personal computers and mobile devices, means that nowadays it is possible to run
large mathematical computations that would have in the past required super computers.

One field that has particularly benefitted from these trends is Machine Learning (ML), which leverages
massive parallelism in order to train ML models quickly and cheaply. Within ML, Neural Networks (NNs) have
recently seen its popularity increase thanks to its ability to yield excellent results in image recognition, voice
recognition and language translation, among others.

By federated machine learning we mean the computation of such NNs in distributed, heterogeneous settings
which may include large data-centers with clusters of standard x86 servers, but also edge equipment running
on single-board computers all the way down to mobile devices. Although GPUs (Graphics Processing Units)
are now standard in such mobile devices, their performance is still worse than GPUs installed in rack-scale
computers. Further, mobile devices are constrained in terms of network bandwidth and battery, but have
the clear advantage that, if computations are done on the device itself, delay is potentially shorter and
network bandwidth consumption is null.

Figure 40 depicts the three-tier structure of federate ML scenarios, with compute power in data-centers, at
edge nodes and on mobile device; this precisely maps to 5GCity’s three-tier architecture, with mobile devices,
edge devices (on lamp posts or city cabinets) and DCs (in municipality buildings). Given this, the aim of this
work is to optimize the computation of NNs over such distributed infrastructure (e.g., for the illegal waste
dump use case, which relies on NNs to detect the illegal dumping).

Figure 40. The edge computing architecture.

Compute resources of edge nodes are usually larger than mobile devices, but smaller than machines in data-
centers. However, edge nodes are geologically distributed and located near to users’ mobile devices so that
the mobile devices can leverage bigger computation resources with low latency. In short, the edge computing
technology allows mobile devices to extend their available computation resources and increase the number
of runnable applications of them.

In our federated machine learning platform, we investigate the numerous trade-offs between running
training or prediction NN workloads on these three types of devices, taking into account metrics such as CPU
and GPU power, power consumption, delay and network bandwidth, among others. We call our initial
framework the FML (Federated Machine Learning) platform, which is able to distribute NN workloads across
a set of distributed compute nodes. We show results from initial performance tests to give a taste of FML’s
potential benefits.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 66 of 89

4.1. 5GCity Federated Machine Learning platform

Although in 5GCity configuration parameters of the edge infrastructure (e.g., RAN allocations, edge
connectivity flow tables) are in principle set by the WAN Resource Manager and the VIMs based by
centralized optimization logic of the 5GCity Orchestrator, in some case fast, local decisions and reactions are
required. Therefore, part of the mentioned optimization logic might be moved to NNs running in a distributed
manner on the devices of the edge infrastructure. The 5GCity Federated Machine Learning platform shall
enable this, and thus in a performance-wise efficient manner.

 Machine Learning with Resource-Constrained Devices

Mobile devices’ resources are constrained in several aspects. Mobile devices such as smart phones are
typically powered by batteries that have a relatively small amount of charge. In many cases, CPUs installed
in those devices are battery efficient, but relatively slow. Mobile devices normally also come with wireless
network interfaces. Those interfaces enable the devices to connect to 4G networks whose bandwidth is up
to 100Mbps, with 5G networks expected to be 100 times faster than 4G ones. This shows one of the possible
trade-offs between carrying out a computation locally on a slow CPU and consuming battery or shipping it to
an edge node or data center, consuming power and bandwidth for transmission (not to mention the fact that
the wireless throughout can be quite variable too).

Given this landscape, the research question is how and under which conditions to distribute NN workloads
to edge and data center nodes. While existing research has already proposed a number of methods to
distribute NN computation, these assume execution in a homogeneous, low delay and high bandwidth
environment such as data-centers, where the trade-offs we have been mentioning largely do not exist. Given
that federated ML presents a much more complex landscape, existing NN distribution techniques do not
apply.

 System Design

While there are several widespread NN frameworks (e.g., Theano, PyTorch, TensorFlow, etc), none of them
support workload distribution, a requirement for an FML platform. As a result, we develop an FML platform
that is able to split and distribute ML workloads to multiple different compute nodes. The FML platform is
mainly composed of three components:

1. The NN Directed Acyclic Graph (DAG) splitter. NN workloads are usually expressed as DAGs. The
FML platform cuts these DAGs into multiple shards so that they can be executed in different compute
nodes in parallel.

2. The RPC (Remote Procedure Call) protocol. A shard is transferred to a compute node using an RPC
protocol. We develop an RPC mechanism able to execute shards efficiently and flexibly.

3. The task scheduler. When multiple edge nodes are available, there is the executor selection problem.
Proper worker scheduling is essential to achieving optimal performance. The FML platform
implements a scheduling mechanism that properly balances workloads to multiple workers.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 67 of 89

Figure 41. Example of CNN

As a target workload, we choose a Convolutional Neural Network (CNN), a popular network for image
recognition. Figure 41 illustrates a part of a CNN. CNNs are constructed from convolution and pooling layers,
among others. The DAG splitter cuts the DAGs of CNNs in several ways. The first way is model split. A CNN’s
layers are mainly matrix-based calculations. In model split, the DAG splitter splits a layer’s matrix into multiple
matrices. The second method is branch split. Some CNN models such as GoogleNet have branches in their
DAGs. The DAG splitter cuts the DAG at the branch points. Figure 42 illustrates how model split and branch
split work.

Figure 42. Model split.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 68 of 89

Figure 43. Branch split.

In the RPC mechanism of FML, there are 3 types of actors:

 Worker node are: in charge of the actual computation, a node runs an RPC server. When the RPC
server receives a request, the worker node executes the requested workload and replies with the
result.

 Master nodes are responsible for maintaining the information of worker nodes such as IP addresses
and port numbers.

 Clients initiate the NN computation. First, a client node asks a master node for a list of available
worker nodes. The master node provides a list of worker nodes to the client node. The client node
the tries to establish RPC connections to worker nodes based on the received worker list. After the
client node obtains the connections to worker nodes, the client starts to distribute its NN workload.
The client node splits the NN workload by using the DAG splitter and submits them as requests to
worker nodes.

While the FML platform enables mobile devices to distribute CNN computation to multiple edge nodes, there
is still a worker selection problem. Because of the heterogeneity of resources described in the three-tier FML
scenario, wrong worker selection can cause severely delays through the straggler problem, i.e., a master has
to wait until the results from one slow node arrive, slowing down the entire computation. To deal with this,
we developed a robust worker selection mechanism which copes with the heterogeneity of worker resources
and dynamicity of network bandwidth. The worker scheduler component is implemented as a feature of the
client node. The scheduling decision phase comes after the DAG splitter cuts the ML DAG into multiple shards
which are treated as tasks submitted to workers. The basic scheduling algorithm adopted is first-in-first-out.
The scheduler assigns a task to any possible worker as quick as possible. If there is no available worker when
a new task is queued in the client node, the new task has to wait until a new worker becomes available. When
a worker node finishes an assigned task, it replies the result to the client node and tells the worker node to
become idle. Immediately after the client receives this notification, a queued task is submitted to the worker
node. This mechanism automatically achieves optimal load-balancing since the scheduler assigns more tasks
to fast workers than slow workers.

 Performance Evaluation

We conduct a performance test in order to demonstrate the effectiveness of the FML platform. In this test,
we measure how quickly the FML platform can process images. We compare the FML platform with the
vanilla implementation of PyTorch. In the FML setup, we launch 12 worker nodes. We feed 12 images to MFL
and measure the time spent for processing all images.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 69 of 89

We carry out the experiment using a machine equipped with a 12-core CPU, Intel Xeon E5-2695 v2 2.4 GHz.
Although the fundamental idea of FML is workload distribution, a fair comparison is impossible when the
total available resources are not equal. Therefore, we conduct this benchmark in the same physical server.
The maximum available resources are even in both cases, so this benchmark shows the fundamental benefit
of FML.

The graph of Figure 44 shows the result of the benchmark. It took 7.3 sec for the baseline to process 12
images. On the other hand, it took 1.7 sec for the FML platform. Here we see 76.7% latency reduction. This
performance gain comes from better CPU resource utilization. The baseline implementation (PyTorch) can
utilize only up to 300% of CPU even though 1200% is the maximum. On the other hand, the FML platform
achieves higher CPU utilization by distributing the NN workload to 12 workers running on different CPU cores.
This result demonstrates the increased parallelism extends the amount of usable computation resources.

Finally, we note here that this improvement comes without the heterogeneity of computation performance
between the local device and edge node. We expect further improvement when the performance difference
between the local device and edge node is bigger than in this experiment; conducting such heterogeneous
experiments is this subject of further work. We also aim, as future work, to conduct such tests using 5GCity’s
nodes and its multi-tier, federated architecture.

Figure 44. FML platform acceleration of image processing using PyTorch.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 70 of 89

4.2. Using Artificial Intelligence in the 5GCity platform

The idea of using AI (Artificial Intelligence) in advanced communication networks is focused on automation
reducing costs, increasing productivity, and driving more value. The main principle is to use AI for automating
the operations processes based on collection and elaboration in real time of data about states and level of
performances of systems and logical/virtualized resources etc. For instance, machine learning approach can
automate the management, control and orchestration processes of physical pieces of equipment, which
today are mostly carried out by humans, introducing control loops acting on virtual/logical entities (e.g.,
Virtual Machines, Containers, appliances etc.). Moreover, network and service computational intelligence
(e.g., in the Radio Access Networks and in the Core), based on data about user service patterns and traffic
would allow improving the quality of the user experience whilst optimizing the use of resources. Smart
management mechanisms using machine learning at the service orchestration platform enable optimize the
network operations experience towards automation and zero-touch orchestration. This will make the
network more flexible allowing proactive resource allocation decisions based on heuristics rather than
utilizing reactive approaches due to changes in the load. This approach is in line with the goal of a recent ETSI
group called Experiential Network Intelligence (ENI) [19], which proposes an engine that adds closed-loop
machine learning mechanisms based on context-aware and metadata-driven policies to more quickly
recognize and incorporate new and changed knowledge, and hence, make automatically actionable decisions.

In this direction, the combination of network softwarization and AI will generate a huge amount of data,
which is named, Big Data. The Big Data processing faces a number of challenges, which need to be addressed
by the 5GCity architecture. The first and possibly most important challenge is scalability. While some systems
have been able to adapt and handle easily terabytes of data in data centre environments, the data generation
rate keeps growing, and whole set of new paradigms may have to be conceived. For instance, because its
huge volume, it may not be feasible to move the data to a single location to be processed. Hence, the
implementation of clouds may have to be extended to consider edge computing, and Big Data processing
may have to be distributed. The distribution of the Big Data processing by using technologies like edge or fog
computing has several important advantages over data centres. As an example, it allows the data to be
processed near its source, reducing the amount of data that should traverse the communication networks.

4.3. Using Machine Learning for Scalable and Adaptive NFV

Due to the continuous development of SDN and NFV technology in recent years, it is important to improve
the network performance to the end-users. In order to apply these two technologies (Adaptive and
Autoscaling) in computer networks, we use SDN not only to separate the forwarding plane and control plane,
but has the nature of the programmability also. Based on the actual business requirements for automatic
deployment, NFV technology has the resources of virtualization and the characteristics of flexibility and fault
isolation. Two kinds of technology are different, but they can work cooperatively very well. In 5GCity we are
going to combine the SDN and NFV technology, to build an automated NFV ecosystem that include
autonomous network management.

Network management currently undergoes massive changes towards realizing more flexible management of
complex networks. Recent efforts include slicing data plane resources by using network (link) virtualization
and applying operating system design principles in Software Defined Networking (SDN). Driven by network
operators, network management principles are currently envisioned to be even further improved by
virtualizing network functions, which are currently realized in dedicated hardware appliances. The resulting
Network Function Virtualization (NFV) paradigm abstracts network functions from dedicated hardware to
virtual machines running on commodity hardware and enables a Cloud-like network management. All of
these efforts contribute to a softwarization of communication networks. This softwarization represents a
significant change to network design and management by allowing the application of operating system

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 71 of 89

design and software engineering principles to make network management more efficient, e.g., by enabling
flexible and dynamic service provisioning.

NFV offers the opportunity to run high-performance network services in a flexible way. Edge is a new place
to provide such services, potentially with very low latency access for users. The types of “users” connecting
to such services also may change over time not just users on phones or laptops, but autonomous vehicles,
robots, smart city edge infrastructure, etc. These new types of users may require new types of NFV services,
and may cause us to rethink the line between a network function and an application.

Critical issues to realize NFV in practice include proper performance evaluation methodologies towards
predictable behaviour and in support of optimized VNF placement. In particular, network functions can be
placed on-demand during an attack to inspect and filter traffic at multiple locations throughout the network.
These locations can be dynamically chosen to be closer to the attacker sources as opposed to placing all
filtering at the victim’s network gateway where the attack traffic volume can already be intractable to control.

NFV together with SDN opens up new challenges for the composition, placement and migration of network
function in an operator’s network. This class of problems is generally referenced as the Function Placement
Problem (FPP) inspired from the Controller Placement Problem that has been introduced for SDN controllers
by Heller in HOTSDN 2012 [20]. However, there are challenges to deal with the FPP. First, as part of an optimal
placement an optimal function (de-)composition and chaining has to be considered. SDN and NFV offer
complementing concepts here where network functions can be moved completely (based on NFV) or partially
(based on the SDN control/data plane split) into a data center [21]. Second, dynamic placement and
migration must involve important network design aspects [22].

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 72 of 89

5. Conclusion

This Deliverable has specified the details of the parts of the 5GCity architecture that realize the orchestration,
service programming, and edge-focused machine learning solutions. These are critical functionalities for
satisfying the requirements of 5G Use Cases, especially of the neutral host scenario, and their
implementation in the next phase of the 5GCity project should lead to important extensions of state-of-the-
art Open Source solutions for orchestration and service programming.

The design of the related components, which is detailed in Sections 2, 3, and 4, has addressed –among others-
the main state-of-the-art challenges that were identified in the Introduction, in the way summarized below.

CHALLENGE HOW WE ADDRESS IT

1. The “slicing-unaware” and “Cloud-oriented”
design of state-of-the-art NFV orchestrators
restricts the efficiency of the management
of neutral host scenarios by posing
restrictions with regard to i) the number and
the diversity of NFVI technologies that can
be managed, ii) the degree of isolation of
the orchestrated Network Services and
VNFs of different stakeholders, iii)
optimality of resource allocation and
fragmentation, and iv) the diversity of
captured and analysed runtime VNF
parameters.

We eliminate the described restrictions by
adjusting and extending the NFVO architecture
(while also defining new Information Models) in
a way that i) introduces an infrastructure
abstraction layer between the NFVO and the
NFVI ii) manages VNFs in the context of the
custom and dynamic 5G slices upon which they
will run, iii) incorporates efficient and 5G
slicing-aware resource placement, and iv)
connects the NFVO to MEC components, thus
exploiting the existence of edge-related
runtime VNF parameters that are part of the
MEC information models..

2. For Service Programming, Service
Development Kits (SDK) are a fundamental
component to open-up the virtualization
advantages. An SDK is a stand-alone
collection of services, functionally
integrated with an orchestration platform,
able to craft network service templates
ready to be deployed over a pool of virtual
resources. Different SDK toolkits are already
available within the NFV realm (e.g. the
COHERENT SDK, the SONATA SDK, etc.).
However, most of these SDKs adopt a
network-centric approach, aiming at
defining and testing Network Services and
VNFs before their instantiation in runtime
MANO environments. The user of those
toolkits needs to be fully aware of the
complex details of the information models
used within the orchestration platform. Also
those state-of-art toolkits are built on top of
specific frameworks and bound to be used

An SDK toolkit has been designed to serve as a
standalone entity, agnostic to the platform
where the network services shall be deployed.
This is done by means of the following main
design ideas:

(i) The 5GCITY SDK toolkit is composed of an
adaptation layer which hides the complexity of
5GCity infrastructure low-level details.

(ii) The 5GCITY SDK toolkit is designed to jointly
work with a 5G Service and Application
Catalogue, which serves as a point of exchange
between SDK toolkit and orchestration
platform, helping to translate from standard
ETSI NFV information models to an information
model which is specific to the orchestration
platform where the network services need to
be deployed.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 73 of 89

in those specific deployments, thus missing
the capability to encompass several NFV
technologies.

3. The state of the art in computing (whether
learning or prediction) NNs is to assume that
the infrastructure is entirely homogeneous,
consisting of clusters of equally-spec’d
servers with well-provisioned network links
between them. Some of the previous
challenges will be hard to handle without
advanced intelligence, so the usage of AI
might be essential. However, the right tools
and learning strategies are not obvious.

Within the Federated Machine Learning
solution we tackle the problem of running
AI/NN computations in an environment that
has wildly different hardware specs for the
nodes, where energy consumption is a
paramount factor (think mobile phones with
batteries), and where network links are not
only heterogeneous but can have huge
differences in bandwidth over time, thus
making AI an option for efficient resource
placement in the 5GCity platform.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 74 of 89

Orchestration platforms state of the art analysis

Tacker

Tacker is an official OpenStack project [3] that builds a Generic VNF Manager (VNFM) and a NFV
Orchestrator (NFVO) to deploy and operate Network Services (NSs) and Virtual Network Functions (VNFs)
on an NFV infrastructure platform like OpenStack (at this moment, the multi VIM is not supported, the
tracker only support OpenStack). It is based on ETSI MANO Architectural Framework and provides a
functional stack to Orchestrate Network Services end-to-end using VNFs, see Figure 45. It has capability to
performs the basic life-cycle of VNF such as create, update and delete.

Figure 45. Tracker Architecture.

 T-NOVA (TeNoR)

T-NOVA orchestrator has been named as TeNoR [4], which is ETSI-NFV compliant VNF deployment and
operation. T-NOVA introduces a novel enabling framework, allowing operators to 1) deploy Virtualized
Network Functions (VNFs) for their own needs, and 2) offer them to their customers, as value-added
services. Virtual network appliances (gateways, proxies, firewalls, transcoders, analysers etc.) can be
provided on-demand as-a-Service, eliminating the need to acquire, install and maintain specialized
hardware at customers’ premises.

For these purposes, T-NOVA designed and implemented a management/orchestration platform for the
automated provision, configuration, monitoring and optimization of Network Functions-as-a-Service over
virtualized Network/IT infrastructures. It leverages and enhances cloud management architectures for the
elastic provision and (re-) allocation of IT resources assigned to the hosting of Network Functions. It also
exploits and extends Software Defined Networking platforms for efficient management of the network
infrastructure.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 75 of 89

T-NOVA establishes a “NFV Marketplace”, in which network services and Functions by several developers
can be published and brokered/traded. Via the Marketplace, customers can browse and select the services
and virtual appliances which best match their needs, as well as negotiate the associated SLAs and be
charged under various billing models. A novel business case for NFV is thus introduced and promoted. The
T-NOVA architecture includes three main parts:

 Service Management and Life cycle concentrates all the features at the Network Service level.

 VNF Management and Life cycle concentrates all the features at the Virtual Network Function level.

 WIM (Wide-area network Interconnection Management) abstracts away all the interactions with
the WAN (e.g., communication between VNFs that may leave in different DCs, connection to a
specific customer’s network, etc.).

 OpenBaton

Open Baton is an open source platform [5] that provides a comprehensive implementation of the ETSI NFV
MANO specification. The main features and components of OpenBaton are 1) a Network Function
Virtualisation Orchestrator (NFVO), 2) a generic Virtual Network Function Manager (VNFM) that manages
VNF life cycles based on the VNF description, 3) An Auto-scaling Engine which can be used for automatic
runtime management of the VNFs, 4) A Fault Management System for automatic management of faults, 5)
an SDK comprising a set of libraries that could be used for building a specific VNFM, and 6) a dashboard for
managing the VNFs.

The NFVO is the main component of OpenBaton, which is written in Java using the spring.io framework. To
interconnect the NFVO to different VNFMs, OpenBaton relies on the Java Messaging System (JMS).

The NFVO is currently using OpenStack as first integrated NFV PoP VIM, supporting dynamic registration of
NFV PoPs and deploys in parallel multiple slices one for each tenant, consisting of one or multiple VNFs.
Through this functionality, the orchestrator provides a multi-tenant environment distributed on top of
multiple cloud instances.

 Cloudify

Cloudify is an open source TOSCA-based orchestration platform [6], which is designed to fit as an NFVO and
a generic VNFM. Virtual Network Functions and Physical Network Function are modelled using the TOSCA
language and on-boarded to Cloudify. Cloudify Model Driven Design allows operators to build VNF
descriptors and Network Service Descriptors and manage the lifecycle of the network service. As illustrated
in Figure 46, Cloudify Pluggable Architecture and the Plugin Framework makes integration to multiple VIMs
and other platforms such as SDN Controllers, 3rd party VNFMs or hardware based system an easy and
painless process. VNF modelling enables to describe the network service with all its resources:
infrastructure, functions, service chaining, application code, scripts, configuration management, metrics,
and policies, in a generic, descriptive language based on both TOSCA and Cloudify language.

The Orchestration is the core of the Cloudify Platform, it enables to maintain and run the complete life
cycle of the service, from onboarding and instantiation to operations such as scaling, healing, maintenance,
updates, and termination.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 76 of 89

Figure 46. Cloudify MANO architecture.

5.1.1.1. Open Network Automation Platform (ONAP)

Open Network Automation Platform (ONAP) [7] provides a platform for real-time, policy-driven
orchestration and automation of physical and virtual network function, which allow providers and
developers to automate new services and support lifecycle management. Figure 47 shows a high-level
architecture of the ONAP and its platform components.

The design time framework is a development environment with tools, techniques, and repositories for
defining/describing resources, services, and products.

The runtime framework executes the rules and policies distributed by the design and creation environment.
This framework distributes policy enforcement and templates among various ONAP modules such as the
Service Orchestrator, Controllers, Data Collection, Analytics and Events, Active and Available Inventory, and
a Security Framework.

The orchestration stack on ONAP provides for service delivery, change, scaling controller instantiation and
capacity management across both the application and network controllers.

 The Service Orchestrator component is responsible for executing the specified processes and
automates sequences of activities, tasks, rules and policies needed for on-demand creation,
modification or removal of network, application or infrastructure services and resources.

 Controllers are applications that are coupled with cloud and network services and execute the
configuration, real-time policies, and control the state of distributed components and services.

o SDN-C: Cloud computing resource controller.

o APP-C: Application controller.

o VF-C: Virtual function controller (provide generic VNFM capability).

 Active and Available Inventory (A&AI) provides real-time views of a system’s resources, services,
products and their relationships with each other

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 77 of 89

Figure 47. ONAP architecture.

ONAP is not support slicing yet, but it has plan to support the 5G specific services in the future.

 SONATA

SONATA [8] is an orchestration platform based on ETSI MANO that provides development toolchain for
virtualized services. The architectural level of SONATA includes two main components: service platform
and SDK. The service platform offers customization on service platform operator and service developer.
The SDK supports service developers with a programming model and a set of software tools. SONATA
provides a modular and flexible MANO framework where a service or function specific manager can be
added such as life-cycle management scaling, placement, and etc., thus modifying the provided default
managers to a specific service or function needs.

As shown in Figure 48, the Service-Specific Managers (SSM) and Function-Specific Managers (FSM) are
introduced in SONATA as main components by specifying desired placement or scaling behaviour for the
service and function.

 SSM allows third-party service developers with control over specific orchestration and
management functionalities pertaining to their own service.

 FSM Provides NFV MANO flexibility to network operators with customizable platform functionality
and ability to add new features via plug-ins.

The Orchestrator provides a default manager for every network service (at the NFVO level) and VNF (at the
VNFM level), but allows this generic behaviour to be adapted for each network service/VNF by their
developers.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 78 of 89

Figure 48. SONATA architecture mapped to ETSI MANO architecture.

SONATA architecture are:

 Support multi VIM, multi-vendor, and multi-site.

 Support both resource and service orchestration.

 Providing service developers with a SDK for efficient creation, deployment and management of
VNF-based network services on the platform.

 NFV DevOps workflow and platform/SDK support bridges collaboration between operators and
service developers.

 Open Source MANO (OSM)

ETSI Open Source MANO (OSM) [9] is an operator-led ETSI community that is delivering a production-
quality open source Management and Orchestration (MANO) stack aligned with ETSI NFV information
models and that meets the requirements of production NFV networks.

The OSM community has set itself the goal of being an excellent production ready solution. OSM Release
THREE represents another significant step along this path. It has been engineered, tested and documented
to be functionally complete to support Operator RFx processes, and to be a key component for internal/lab
and external/field trials as well as interoperability and scalability tests for virtual network functions and
services.

The OSM group has defined an expansive scope for the project covering both design-time and run-time
aspects related to service delivery for telecommunications service provider environments. Figure 49 shows
the approximate mapping of the OSM components to the ETSI NFV MANO architecture framework.

The Design-Time Framework architecture are:

 A model-driven environment with data mode aligned with ETSI NFV MANO.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 79 of 89

 The capability of create, read, update and delete operations on the Network Service Definition.

 A VNF package generation.

 A GUI to accelerate network service design time phase, VNF on-boarding and deployment.

The Run-Time Framework architecture includes:

 An automated Service Orchestration environment that enables and simplifies the operational
considerations of the various lifecycle phases involved in running a complex service based on NFV.

 A superset of ETSI NFV MANO where the salient additional area of scope includes Service
Orchestration but also explicitly includes provision for SDN control.

 A plugin model for integrating multiple SDN controllers.

 A plugin model for integrating multiple VIMs, including public cloud based VIMs.

 A plugin model for integrating multiple monitoring tools into the environment.

 A reference VIM that has been optimized for Enhanced Platform Awareness (EPA) to enable high
performance VNF deployments.

 An integrated “Generic” VNFM with support for integrating “Specific” VNFMs.

 An integrated Physical Network Functions into an automated Network Service deployment.

 Support both Greenfield and Brownfield deployment scenarios.

 GUI and CLI, a Python based client library and REST interfaces to enable access to all features.

Figure 49. OSM architecture mapping to ETSI framework.

The OSM orchestration solution is covering all the aspects of network service life cycle management and
network function life cycle management. Figure 50 shows the logical blocks functionality delivered by the
OSM.

 The Service Orchestration Engine is responsible for all aspects of service orchestration including
lifecycle management and service primitive execution. It is effectively the “master” orchestration
component in the system that governs the workflow throughout OSM. In addition, it supports the
concepts of multi-tenancy, projects, users, and enforcing role-based access controls.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 80 of 89

 The Configuration Data Store is responsible for persistently storing the SO state, particularly in the
context of VNF and NSD deployment records.

 The Network Service Composition Engine is responsible for supporting NS and VNF descriptor
composition. It validates the composed NS and VNF descriptors conform to the defined YANG
schema.

 The Catalog Manager is responsible for supporting the “create, read, update, delete” lifecycle
operations on the defined VNF and NS descriptors and packages.

 The Resource Orchestrator Plugin provides an interface to integrate the Resource Orchestrator
(RO).

 The Network Service to VNF Communication (N2VC) plugins framework between the Service
Orchestrator (SO) and the VNF Configuration and Abstraction (VCA) layer.

 The VNF Configuration and Abstraction (VCA) layer enables configurations, actions and
notifications to/from the VNFs and/or Element Managers.

 The Resource Orchestration Engine manages and coordinates resource allocations across multiple
geo-distributed VIMs and multiple SDN controllers.

Figure 50. OSM release three architecture.

As slicing in not still covered in the latest version of the OSM (release three), the OSM community created
an official OSM Proof of Concept (PoCs) framework to identify opportunities for further development of
OSM. The PoC has been used to introduce the application of DevOps for supporting network slicing in the
OSM.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 81 of 89

Related Work for Resource Placement

Cloud computing offers computing resources as a utility: one no longer has to manage and maintain its
own private computing infrastructure, instead computing infrastructure is time-shared and can run
applications on-demand.

Nowadays, there is a large growth of a specific class of applications that has stringent requirements, such
as low latency, high processing demand, and large bandwidth. This class of applications are known as
applications with 5G requirements.

Although most applications do not have specific requirements, this class of applications demands that
Cloud technology allows elastic scaling of resources when demand for an application changes.

To meet these specific requirements, Data Centers (DC) grow in size and complexity, hosted applications
become increasingly vulnerable to dynamically occurring cloud infrastructure bottlenecks. As an example
of this complexity, cloud infrastructures are built hierarchically geographically distributed. In this way,
services that require low latency should be executed in the edge, while services that need high
computational power should be allocated in centralized DCs.

Additionally, while heterogeneity in a DC is limited to multiple generations of servers being used, there is
a large spread on capabilities within a cloud environment. Memory and processing means range from high
(e.g. servers), over medium (e.g. cloudlets, gateways) to very low (e.g. mobile devices, sensor nodes). While
some communication links guarantee a certain bandwidth (e.g. dedicated wired links), others provide a
bandwidth with a certain probability (e.g. a shared wired link), and others do not provide any guarantees
at all (wireless links).

Reliability is an important non-functional requirement, as it outlines how the software systems realizes its
functionality [23]. The unreliability of substrate resources in a heterogeneous cloud environment, severely
affects the reliability of the applications relying on those resources. Therefore, it is very challenging to host
reliable applications on top of unreliable infrastructure [24].

Applications are composed by services, and to allocate these services to meet the requirements of each of
the applications, on-demand clouds use placement algorithms. There are potentially two types of service
placement decisions to be made: initial placement [25] and migration (and/or resizing) of service resources
over time [26], as the available resources are changed or new demands emerge from the applications new
placement decisions must be taken.

The problem of mapping the services in physical resources, whilst considering failures in the cloud
environment are known as Survivable Virtual Network Embedding (SVNE) [27]. The goal of allocation
algorithms is to satisfy a minimum level of total availability for each application in case of cloud
infrastructure failure.

There are different service placement algorithms [28]. Early work merely considers nodal resources, such
as Central Processing Unit (CPU) and memory capabilities. Deciding whether requests are accepted and
where those virtual resources are placed then reduces to a Multiple Knapsack Problem (MKP) [29]. An MKP
is known to be NP-hard and therefore optimal algorithms are hampered by scalability issues. A large body
of work has been devoted to finding heuristic solutions. For instance, [30] focuses on the multi-objective
Virtual Machines (VMs) placement problem. They propose a genetic algorithm with fuzzy multi-objective

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 82 of 89

evaluation for efficiently searching the large solution space and conveniently combining possibly conflicting
objectives. While Yi et al. propose an evolutionary game theoretic framework for adaptive and stable
application deployment in clouds [31]. Other works include Network Interface Card (NIC) capabilities as a
dimension in the MKP [32] and assumes an over-provisioned inner-network. While plausible within the
boundaries of one DC, this condition rarely holds when a combination of multiple clouds or even a wireless
environment is considered.

In this field the application requests are usually modelled as Virtual Networks (VNs), and consisting of
services and their required communication channels. The cloud infrastructure is modelled as a Substrate
Network (SN) consisting of physical nodes and their interconnecting links. The problem of mapping the VNs
to a SN, whilst considering failures in the SN is known as the Survivable Virtual Network Embedding (SVNE)
problem.

When the application placement not only decides where computational entities are hosted, but also
decides on how the communication between those entities is routed in the SN, then we speak of network
aware APP. Network-aware application placement is closely tied to Virtual Network Embedding (VNE) [33].

An example of a network-aware approach is the work from [34]. It employs a Service Oriented Architecture
(SOA), in which applications are constructed as a collection of communicating services. This optimal
approach performs node and link mapping simultaneously. In contrast, other works try to reduce
computational complexity by performing those tasks in distinct phases [35].

While the traditional VNE problem assumes that the SN network remains operational at all times, the SVNE
problem does consider failures in the SN. For instance, Ajtai et al. try and guarantee that a virtual network
can still be embedded in a physical network, after k network components fail. They provide a theoretical
framework for fault-tolerant graphs [36]. However, in this model, hardware failure can still result in service
outage as migrations may be required before normal operation can continue.

Csorba et al. propose a distributed algorithm to deploy replicas of VM images onto PMs that reside in
different parts of the network [37]. The objective is to construct balanced and dependable deployment
configurations that are resilient. The problem is that the number of replicas to be placed is assumed
predefined.

Chowdhury et al. propose Dedicated Protection for Virtual Network Embedding (DRONE) [38]. DRONE
guarantees VN survivability against single link or node failure, by creating two VNEs for each request. These
two VNEs cannot share any nodes and links.

The aforementioned SVNE approaches lack an availability model. When the infrastructure is homogeneous,
it might suffice to say that each VN or VNE need a predefined number of replicas. However, in geo-
distributed cloud environments the resulting availability will largely be determined by the exact placement
configuration, as moving one service from an unreliable node to a more reliable one can make all the
difference. Therefore, geo-distributed cloud environments require SVNE approaches which have a
computational model for availability as a function of SN failure distributions and placement configuration.

The following cloud management algorithms have a model to calculate availability: Jayasinghe et al. [39]
model cloud infrastructure as a tree structure with arbitrary depth. Physical hosts on which VMs are hosted
are the leaves of this tree, while the ancestors comprise regions and availability zones. The nodes at bottom
level are physical hosts where VMs are hosted. Wang et al. [40] were the first to provide a mathematical
model to estimate the resulting availability from such a tree structure. They calculate the availability of a
single VM as the probability that neither the leaf itself, nor any of its ancestors fail. Their work focuses on
handling workload variations by a combination of vertical and horizontal scaling of VMs. Horizontal scaling
launches or suspends additional VMs, while vertical scaling alters VM dimensions. The total availability is
then the probability that at least one of the VMs is available. While their model suffices for traditional

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 83 of 89

clouds, it is illsuited for a geo-distributed cloud environment as link failure and bandwidth limitations are
disregarded.

In contrast, Yeow et al. define reliability as the probability that critical nodes of a virtual infrastructure
remain in operation over all possible failures [41]. They propose an approach in which backup resources
are pooled and shared across multiple virtual infrastructures. Their algorithm first determines the required
redundancy level and subsequently performs the actual placement. However, decoupling those two
operations is only permissible when link failure can be omitted and nodes are homogeneous.

In [24], an availability model for geo-distributed cloud networks was introduced, which considers any
combination of node and link failures, and supports both node and link replication. The aforementioned
model was employed to study the problem of guaranteeing a certain level of availability for applications.
Using an ILP formulation of the problem and an exact solver, an increased placement ratio was
demonstrated, compared to naive approaches which lack an availability model. While the ILP solver can
find optimal placement configurations for small scale networks, its computation time quickly becomes
unmanageable when the substrate network dimensions increase. In [42] a first heuristic is presented. This
distributed evolutionary algorithm employs a pool model, where execution of computational tasks and
storage of the population database (DB) are separated.

Many of these algorithms can be used by available open source orchestration tools such as Tacker and
OSM, however such implementations may not be flexible enough that would require modifications to the
packages as can be seen in [43] and [44].

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 84 of 89

Abbreviations and Definitions

3GPP. 3d Generation Partnership Project
AI. Artificial Intelligence
API. Application Programming Interface
CNN. Convolutional Neural Network
CPU. Computer Processing Unit
DAG. Directed Acyclic Graph
DC. Data Center
ENI. Experiential Network Intelligence
ETSI. European Telecommunications Standards Institute
EU. European Union
FBP. Flow-Based Programming
FML. Federated Machine Learning
FPP. Function Placement Problem
FSM. Function-Specific Managers
GPU. Graphics Processing Unit
IoT. Internet of Things
KPI. Key Performance Indicator
LCM. LifeCycle Management
LTE. Long Term Evolution
MANO. Management and Orchestration
ME. Multi-access Edge
MEAO. Multi-access Edge Application Orchestrator
MEC. Multi-access Edge Computing
MEPM-V. Multi-access Edge Platform Manager – Virtual
ML. Machine Learning
N2VC. Network Service to VNF Communication
NFV. Network Function Virtualization
NFVI. Network Function Virtualization Infrastructure
NFVO. Network Function Virtualization Orchestrator
NN. Neural Network
NS. Network Service
NSD. Network Service Descriptor
ODL. OpenDayLight
ONAP. Open Network Automation Platform
OSS/BSS. Operations Support System / Billing Support System
PNF. Physical Network Function
PNFD. Physical Network Function Descriptor
PoC. Proof of Concept
PoP. Point of Presence
QoS. Quality of Service
RBAC. Role Based Access Control
REST. REpresentational State Transfer
RO. Resource Orchestrator
RPC. Remote Procedure Call

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 85 of 89

RRH. Remote Radio Head
RU. Radio Unit
SDK. Service Development Kit
SDN. Software-Defined Networking
SLA. Service Level Agreement
SO. Service Orchestrator
SSM. Service-Specific Managers
VCA. VNF Configuration and Abstraction
vCPU. virtual Computer Processing Unit
VDU. Virtualisation Deployment Unit
vHDD. virtual Hard Disk Drive
VIM. Virtualized Infrastructure Manager
VL. Virtual Link
VLD. Virtual Link Descriptor
VM. Virtual Machine
VNF. Virtual Network Function
VNFD. Virtual Network Function Descriptor
VNFFG. Virtual Network Function Forwarding Graph
VNO. Virtual Network Operator
vRAM. virtual Random Access Memory
WIM. Wide-area network Interconnection Management

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 86 of 89

References

[1] 5GCity Project, Deliverable 2.2: 5GCity Architecture and Interfaces Definition. Online at
https://www.5gcity.eu/deliverables/, 2018.

[2] 5GCity Project, Deliverable 2.1: 5GCity System Requirements and Use Cases. Online at
https://www.5gcity.eu/deliverables/, 2018.

[3] Tracker, OpenStack NFV Orchestration. Online at https://wiki.openstack.org/wiki/Tacker.

[4] TeNoR, TeNoR – T-nova Orchestration platform. Online at http://www.t-nova.eu/open-source/.

[5] Open Baton, An Open source reference implementation of the ETSI NFV MANO. Online at
https://openbaton.github.io/.

[6] Cloudify, Cloud and NFV Orchestration based on TOSCA. Online at https://cloudify.co/.

[7] ONAP, Open Network Automation Platform. Online at https://www.onap.org/.

[8] SONATA Project, Online at http://www.sonata-nfv.eu/.

[9] ETSI, Open Source MANO (OSM). Online at https://osm.etsi.org/.

[10] ETSI, Mobile Edge Computing (MEC) - Deployment of Mobile Edge Computing in an NFV environment.
ETSI GR MEC 017 V1.1.1, 2018.

[11] 5GCity Project, Deliverable 3.1: 5GCity Edge Virtualization Infrastructure Design. Online at
https://www.5gcity.eu/deliverables/, 2018.

[12] Fog05, Fog Computing IaaS. Online at http://www.fog05.io.

[13] OpenStack, Online at https://www.openstack.org/.

[14] ETSI, “Network Functions Virtualisation (NFV) Release 2; Management and Orchestration; Network
Service Termplates Specification. ETSI GS NFV-IFA 014 V2.4.1,” 2018.

[15] ETSI, “Network Functions Virtualisation (NFV) Release 2; Management and Orchestration; VNF
Descriptor and Packaging Specification, ETSI GS NFV-IFA 011 V2.4.1,” 2018.

[16] Prometheus, Monitoring System and Time Series Database. Online at https://prometheus.io/.

[17] J. P. Morrisson, Flow-Based Programming, 2nd Edition: A New Approach to Application Development.
CreateSpace, Paramount, 2010.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 87 of 89

[18] ETSI, Network Functions Virtualisation (NFV) Release 2; Management and Orchestration; Os-Ma-Nfvo
reference point - Interface and Information Model Specification ETSI GS NFV-IFA 013 V2.4.1, 2018.

[19] ETSI, Experiential Network Intelligence Whitepaper. Online at
http://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp22_ENI_FINAL.pdf., 2017.

[20] B. Heller, R. Sherwood and N. McKeown, “The controller placement problem,” in ACM first workshop
on Hot topics in software defined networks (HotSDN '12), 2012.

[21] A. Basta, W. Kellerer, M. Hoffmann, H. Morper and K. Hoffmann, “Applying NFV and SDN to LTE
Mobile Core Gateways; The Functions Placement Problem,” in ACM SICGOMM Workshop
AllThingsCellular14, 2014.

[22] A. Basta, A. Blenk, M. Hoffmann, H. Morper, K. Hoffmann and W. Kellerer, “SDN and NFV Dynamic
Operation of LTE EPC Gateways for Time-varying Traffic Patterns,” in 6th International Conference on
Mobile Networks and Management (MONAMI), 2014.

[23] ISO, “ISO/IEC-25010, Systems and software engineerng. Systems and software Quality Requirements
and Evaluation (SQuaRE). System and software quality models,” 2010.

[24] B. Spinnewyn and S. Latré, “Towards a fluid Cloud: An extnsion of the Cloud into the local Network.,”
in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Vol. 9122, Gh, 2015.

[25] M. Cardosa, A. Singh, H. Pucha and A. Chandra, “Exploiting Spatio-Temporal Tradeoffs for Energy
Efficient MapReduce in the Cloud,” in Department of Computer Science and Engineering, University
of Minnesota, TR-10-008, 2010.

[26] M. Chen, H. Zhang, Y.Y. Su, X. Wang, G. Jiang and K. Yoshihra, “Effective VM Sizing in Virtualized Data
Centers,” in 12th IFIP/IEEE Symposium on Integrated Network Management, 2011.

[27] M. Rahman and R. Boutaba, “SVNE: survivable virtual network embedding algorithms for network
virtualization.,” in IEEE Transactions on Network and Service Management 10 (2), Pages 105-118,
2013.

[28] B. Spinnewyn, R. Mennes, J. F. Botero and S. Latré, “Resilient Application Placement for Geo-
distributed Cloud Networks,” in Journal of Network and Computer Applications, Volume 85, Pages 14-
31, 2017.

[29] R. Camati and A. Calsavara, “Solving the virtual machine placement problem as a multiple
multidimensional knapsack problem,” in ICN 2014, Pages 253–260, 2014.

[30] J. Xu and J. Fortes, “Multi-objective virtual machie placementin virtualized data center
environments.,” in IEEE/ACM International Conference on Cyber, Physical and Social Computing
(CPSCom), GREENCOM-CPSCOM, 2010.

[31] Y. Ren, J. Suzuki, A. Vasilakos, S. Omura and K. Oba, “Cielo: An evolutionary game teoretic framework
for virtual machine placement in clouds.,” in International Conference on Future Internet of Things
and Cloud, FiCloud 2014, Pages 1-8, 2014.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 88 of 89

[32] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt and F. De Turck, “CostEffective feature
placemnt of customizable multi-tenant applications in the cloud.,” in Journal of Network Systems
Management 22 (4), Pages 517–558, 2014.

[33] A. Fischer, J. Botero, M. Beck, H. De Meer and X. Hesselbach, “Virtual network embedding: a survey,”
in IEEE Communications Surveys and Tutorials 15 (4), Pages 1888–1906, 2013.

[34] H. H. B. D. B. D. T. F. Moens, “Hierarchical network-aware plcement of service oriented applications
in clouds,” in IEEE/IFIP Network Operations and Management Symposium: Management in a
Software Defined World, Pages 1-8, 2014.

[35] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo and J. Wang, “Virtual network embedding through
topology-aware node ranking,” in ACM SIGCOMM Computing and Communications Review 41 (2),
2011.

[36] M. Ajtai, N. Alon, J. Bruck, R. Cypher, C. Ho, M. Naor and E. Szemeredi, “Fault tolerant graphs, perfect
hash functions and disjoint paths,” in 33rd Annual Symposium on Foundations of Computer Science,
Pages 693–702, 1992.

[37] M. Csorba, H. Meling and P. Heegaard, “Ant system for service deployment in private and public
clouds,” in 2nd workshop on Bio-inspired algorithms for distributed systems (BADS '10), 2010.

[38] S. Chowdhury, R. Ahmed, M. Alam Khan, N. Shahriar, R. Boutaba, J. Mitra and F. Zeng, “Dedicated
Protection for Survivable Virtual Network Embedding,” in IEEE Transactions on Network and Service
Management, 2016.

[39] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whalley and E. Snible, “Improving performance and
avalability of services hosted on IaaS clouds with structural constraint-aware virtual machine
placement,” in IEEE International Conference on Services Computing (SCC '11), Pages 72-79, 2011.

[40] W. Wang, H. Chen and X. Chen, “An availability-aware virtual machine placement approach for
dynamic scaling of cloud applications,” in IEEE 9th International Conference on Ubiquitous Intelligence
and Computing and IEEE 9th International Conference on Autonomic and Trusted Computing (UIC-ATC
2012), 2012.

[41] W.-L. Yeow, C. Westphal and U. Kozat, “Designing and embedding reliable virtual infrastructures,” in
2nd ACM SIGCOMM workshop on Virtualized infrastructure systems and architectures (VISA '10), 41
(2), 2010.

[42] R. Mennes, B. Spinnewyn, S. Latré and J. Botero, “GRECO: A Distributed Genetic Algorithm for Reliable
Application Placement in Hybrid Clouds,” in IEEE Proceedings of the 5th International Conference on
Cloud Networking (CloudNet '16), 2016.

[43] J. Chen, Y. Chen, S.-C. Tsai and Y.-B. Lin, “Implementing NFV System with OpenStack,” in IEEE
Conference on Dependable and Secure Computing, 2017.

[44] M. Kourtis, M. McGrath, G. Gardikis, G. Xilouris, V. Riccobene, P. Papadimitriou, E. Trouva, F. Liberati,
M. Trubian, J. Batalle, H. Koumaras, D. Dietrich, A. Ramos, J. F. Riera, J. Bonnet, A. Pietrabissa, A.
Ceselli and A. Petrini, “T-NOVA: An Open-Source MANO Stack for NFV Infrastructures,” in IEEE
Transactions on Networks and Services Management, vol. 14, no. 3, Pages 586–602, 2017.

5GCITY- Deliverable 4.1. Orchestrator design, service programming and machine learning models.
Page 89 of 89

<END OF DOCUMENT>

