
GEN1INT Manual
Version 0.2.1

Bin Gao and Andreas J. Thorvaldsen
May 25, 2012

Centre for Theoretical and Computational Chemistry (CTCC)
Department of Chemistry

University of Tromsø, N–9037
Tromsø, Norway

c© 2009 – 2012 Bin Gao and Andreas J. Thorvaldsen

Gen1Int is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

Gen1Int is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License along with Gen1Int. If not, see
http://www.gnu.org/licenses/.

http://www.gnu.org/licenses/

Contents

Notation v

Preface vii

Acknowledgments ix

1 Installation 1
1.1 CMake . 1
1.2 GNU Autotools . 2
1.3 Python . 2
1.4 Compiler and Flags . 3

2 Python Interface of Gen1Int 5
2.1 “Hello World” in Python . 5
2.2 What You Get from Gen1Int . 5
2.3 Tools in Gen1Int . 6
2.4 Pre-defined Property Integrals in Python Interface . 8
2.5 Memory Usage in Gen1Int . 15

3 Fortran Interface of Gen1Int 17
3.1 “Hello World” in Fortran 90 . 17
3.2 Using Fortran 90 Module . 19

3.2.1 Pre-defined Property Integrals in Fortran 90 Module 19
3.2.2 Total Geometric Derivatives in Fortran 90 Module 23

3.3 Parallelization of Gen1Int . 24
3.4 Mixed Spherical and Cartesian Gaussians . 24

4 Framework of Gen1Int 25
4.1 Theoretical Background of Gen1Int . 25
4.2 Data Structure in Gen1Int . 30
4.3 Geometric Derivatives . 33

4.3.1 Sequence of Total Geometric Derivatives . 33
4.3.2 Partial Geometric Derivatives . 36

4.4 Magnetic and Total Rotational Angular Momentum Derivatives 37
4.5 Contracted Integrals . 39
4.6 One-electron Operators in Gen1Int . 39

4.6.1 Electronic Derivatives . 39
4.6.2 Cartesian Multipole Moments . 39

iii

iv CONTENTS

4.6.3 Dirac delta Function . 41
4.6.4 Nuclear Attraction Potential . 43
4.6.5 Inverse Square Distance Potential . 44
4.6.6 Gaussian Charge Potential . 45
4.6.7 Diamagnetic Spin-Orbit Coupling . 46
4.6.8 Effective Core Potential . 46
4.6.9 Model Core Potential (Version 1) . 49
4.6.10 Overlap Distribution . 50

4.7 Quadrature in Gen1Int . 50
4.8 Basis Sets in Gen1Int . 51

4.8.1 Normalization of Contracted Spherical Gaussians 51
4.8.2 Normalization of Contracted Cartesian Gaussians 52
4.8.3 Transformation between Spherical and Hermite Gaussians 53
4.8.4 Recovering Partial Geometric Derivatives from Hermite Gaussians 53
4.8.5 Transformation between Cartesian and Hermite Gaussians 53

4.9 Auxiliary Functions in Gen1Int . 56
4.9.1 Boys function . 56
4.9.2 Function Gn(T) . 56
4.9.3 Scaled Modified Spherical Bessel Function of the First Kind 56

4.10 Test Suite of Gen1Int . 56
4.10.1 Testing Dashboard of Gen1Int . 57

5 Gen1Int Subroutines 59
5.1 Public Gen1Int Subroutines . 59
5.2 Private Gen1Int Subroutines . 61

6 Files and Directories of Gen1Int 65
6.1 Header Files in Gen1Int . 65

7 Limitations of Gen1Int 67

Notation

The following notation conventions in Refs. [1–3] will be used throughout the manual: bold capital
letters such as Rκ denote positions of nuclei (or centers). The vector from Rλ to Rκ is denoted by
Rκλ = Rκ −Rλ. The capital letters Xκ, Yκ, and Zκ represent the Cartesian coordinates of a nucleus
at position Rκ, whereas Rκ denotes the norm of vector Rκ. The position of an electron relative to a
nucleus at position Rκ is given by rκ = r −Rκ. Small letters xκ, yκ and zκ, and rκ denote the three
Cartesian coordinates of the electron relative to center Rκ, and the norm of the vector rκ, respectively.

Moreover, the so-called multi-index notation [4] will be used extensively to simplify the expres-
sions. For instance, the geometric derivatives with respect to a center Rκ are written as

∂K
Rκ

=
(

∂

∂Xκ

)KX (∂

∂Yκ

)KY (∂

∂Zκ

)KZ
=

∂|K|

∂XKX
κ ∂Y KY

κ ∂ZKZκ
, (1)

where the three-dimensional multi-index K = (KX ,KY ,KZ)T is a vector of non-negtive integers and
|K| = KX + KY + KZ is the norm (length) of the multi-index K. More details on the multi-index
notation could be found in Refs. [3, 4].

Therefore, the contracted rotational London atomic orbitals (LAO) [1, 5] used in Gen1Int could
be written as

ωκ(r; B,J) = exp
[
− i

2B · (Rκ −G)× rP + iI−1J · (Rκ −O)× rP
]
χκ(r) (2)

= exp
[
− i

2B ·RκG × rP + iJ · I−T (RκO × rP)
]
χκ(r),

where B and J denote the external magnetic field and total rotational angular momentum, respectively.
G is the gauge origin of the magnetic vector potential, P is the origin of the London phase factor, O
is the center of mass of the system, and I−T the transpose of the inverse of the inertia tensor I. χκ(r)
is the atomic orbital (AO) located at nucleus Rκ

χκ(r) = θκ(rκ)ρκ(rκ), (3)

where ρκ(rκ) is a contracted Gaussian∗

ρκ(rκ) =
∑

i

wiκ exp(−aiκr2κ), (4)

with wiκ and aiκ being the radial contraction coefficients (normalization constant included) and orbital
exponents, respectively. The angular part θκ(rκ) of the AO is either a real solid-harmonic function
Slκmκ(rκ) or Cartesian Gaussian

Glκ
iκ(r) = rlκ

κ exp(−aiκr2κ), (5)

which obey the following transformation [6]

Slκmκ(rκ)
∑

i

wiκ exp
(
−aiκr2κ

)
=
∑

|lκ|=lκ
Slκmκlκ

∑

i

wiκG
lκ
iκ(r). (6)

∗Each individual exp(−aiκr2κ) is named as primitive Gaussian.

v

vi CONTENTS

Preface

Gen1Int is a Fortran 90 library (with Python interface) to evaluate the derivatives of one-electron
integrals with respect to the geometry perturbation, external electric and magnetic fields, and total
rotational angular momentum

1. at zero fields (for instance B = 0 and J = 0), and

2. using the contracted rotational London atomic orbitals (LAO) as in Eq. (2).

More explicitly, what we evaluate is

Ng∏
∂

Lg
Rg

{
∂K−K0

B ∂L−L0
J

∫
∂Lκ

Rκ

[
∂K1

B ∂L1
J ω∗κ(r; B,J)

]
ÔK0L0
`β

∂Lλ
Rλ

[
∂K2

B ∂L2
J ωλ(r; B,J)

]
dr

}

B,J=0

,

(7)
where we have introduced the following generalized one-electron operator [1, 3]

ÔK0L0
`β

=
(

K

K0

)(
L

L0

)[
∂K0

B ∂L0
J Ô`β

(
{rCα} ,∂n

r ; B,J
)]

B,J=0
. (8)

The quantities Lκ and Lλ, K1 and K2, and L1 and L2 in Eq. (7) are the partial derivatives respectively
on bra and ket, with respect to the geometry perturbation, external magnetic field, and total rotational
angular momentum.

Notice that the number of centers in operator ÔK0L0
`β

usually satisfies Nα ≤ 2, so that the number of

differentiated centers in the total geometric derivatives
∏Ng ∂

Lg
Rg

should satisfy Ng ≤ 4. The evaluation
of geometric derivatives could be found in Section 4.3 and Ref. [1], while those of magnetic and total
rotational angular momentum derivatives are in Section 4.4 and Refs. [1, 3].

In current version of Gen1Int, we have implemented the integral evaluation of the following different
forms of operator

ÔK0L0
`β

= C̄f̂ ({rCα}) ∂n
r , (9)

where

f̂ ({rCα}) =





(
∂LM

M rm
M

)(
∂LC

C r−m0
C

)
, (m0 = 1, 2),(

∂LM
M rm

M

) [
∂LC

C δ(rC)
]
,

∂LM
M rm

M ,(
∂

LC1
C1

r−1
C1

)(
∂

LC2
C2

r−1
C2

)
,

(
∂LM

M rm
M

)[
∂LC

C

erf(√%rC)
rC

]
,

Effective core potential,
Model core potential (Version 1).

(10)

vii

viii CONTENTS

The recurrence relations of evaluating these operators have been developed in Refs. [1–3]. In Section 4.6,
we focus on the implementation of these recurrence relations from the point view of programmers.

It is well-known that the real solid-harmonic functions Slκmκ(rκ)† are not separable in the Cartesian
directions, the integrals are therefore evaluated either using the separable Cartesian Gaussians or the
following Hermite Gaussians

Hlκ
iκ (r) = (2aiκ)−|lκ|∂lκ

Rκ
exp(−aiκr2κ), (11)

from which the real solid-harmonic Gaussians are obtained as [6]

Slκmκ(rκ)
∑

i

wiκ exp
(
−aiκr2κ

)
=
∑

|lκ|=lκ
Slκmκlκ

∑

i

wiκH
lκ
iκ (r), (12)

with the same expansion coefficients Slκmκlκ
as in Eq. (6) [7]. Therefore, the integral evaluation in

Gen1Int with real solid-harmonic Gaussians is first performed using either contracted Cartesian or
Hermite Gaussians followed by the transformation (6) or (12). The implementation of this transforma-
tion is described in Section 4.8.3. In Section 4.8.5, we describe the implementation of transformation
between Cartesian and Hermite Gausians, which is used when recovering the orbital quantum numbers
of primitive Cartesian Gaussians from primitive Hermite Gaussians.

Another important issue related to basis sets is the normalization of contracted spherical and Carte-
sian Gaussians. Usually, this should be performed outside Gen1Int. However, we have implemented
such functionalities as described in Sections 4.8.1 and 4.8.2.

Last but not least, most integrals need the evaluation of auxiliary functions, such as Boys function.
We have addressed this problem in Section 4.9. Moreover, the evaluation of these functions may also
affect the accuracy and stability of Gen1Int, and results some limitations as described in Chapter 7.

To sum up, the following chapters are recommended for basic usage of Gen1Int:

1. Chapter 1 “Installation”,

2. Chapter 2 “Python Interface”,

3. Chapter 4.3.1 “Sequence of Total Geometric Derivatives”,

4. Chapter 6.1 “Header Files in Gen1Int”, and

5. Chapter 7 “Limitations”.

In particular, we have described the results you get from Gen1Int in Section 2.2, such as the order of
basis sets, operators and derivatives, which are better and necessary to know ;-)

Other sections in Chapter 4 “Framework of Gen1Int” and Chapter 3 “Use Gen1Int in Your Code”
are more advanced topics, which might be suitable for those who want to use Gen1Int in their own
code, or who would like to contribute to Gen1Int. All the Gen1Int subroutines are listed in Section 5.
In Section 3.3, we describe one possible solution to use Gen1Int in parallel. However, such try is just an
example, the parallelization is obviously performed outside Gen1Int, and requires the consideration of
advanced users. A special topic of “mixed Spherical and Cartesian Gaussians” is described in Section 3.4
which might be useful in some case. If you are finally interested in the files and directories of Gen1Int,
please refer to Chapter 6.

Finally, as regards details of the theoretical background, we refer to Refs. [1–3]. Enjoy ;-)

†In the following chapters, we often use the term “spherical Gaussian” for χκ(r) = Slκmκ(rκ)
P
i wiκ exp

`
−aiκr2κ

´
instead of “real solid-harmonic Gaussian”.

Acknowledgments

When Professor Kenneth Ruud provides us this project, we did not think it is such a big one (or, maybe
we are not so efficient ;-)). It took us around one year to have a workable version only with geometric
derivatives and few forms of operator. What is worse, it is not a standalone library and not so easy to
implement in other quantum-chemistry codes except for Dalton (we start this project in Dalton ;-)).

After another year of work, especially after the Dalton meeting in Oslo, Jan. 11-12, 2010, we
finally fixed the framework of Gen1Int: writing in Fortran 90 language with Python interface. So that
all the object-oriented stuff is taken care by Python. We also avoided using advanced data types in
Fortran 90 like type and pointer, only the allocatable array is used comparing with Fortran 77. This
makes the wrapper work using Python or other languages be quite easy.

It is worthy of mentioning that the Gen1Int project can not be finished without the help and discus-
sions from other persons. Firstly, we would like to express our great thankfulness to Professor Kenneth
Ruud. Without the opportunity providing by him, without his helpful discussions and suggestions, and
without his great patience, this work could not even be presented. Tusen takk ;-)

We also wish to thank another CTCC leader, Professor Trygve Helgaker, who has always provided
insightful suggestions and discussions, and helped us prepare and polish the manuscripts related to
Gen1Int.

During writing Gen1Int and preparing related scientific publications, we also received great help
and discussions from, including but not exclusively, Dr. Radovan Bast (many things), Dr. Michal
Repisky (especially, the discussion of recurrence relations), and Dr. Stefano Borini (the help of using
Q5Cost in Gen1Int Version 0.1.0). We also appreciate the nice work environment in CTCC, the
computational resource on Stallo, and more ..., and of course, your choice and use of Gen1Int, and
contributions ... ;-)

ix

x CONTENTS

Chapter 1

Installation

Before installing Gen1Int, you need to make sure the following programs are installed on your com-
puter:

1. Git (for developers),

2. CMake or GNU Autotools (for generating Fortran library),

3. Fortran 90 compiler,

4. Python and NumPy (for Python interface).

The latest version of Gen1Int could be found at http://repo.ctcc.no/projects/gen1int. After
you get a workable version, you may first need to check or modify the following header files for your
own case∗

1. src/stdout.h defines the IO of standard output, default is 6;

2. src/xkind.h defines the kind type parameter of real numbers, default is real(8);

3. src/max_gen_order.h, src/boys_power.h and src/tab_boys.h: generated by tools/GenHeader.py,
contains respectively the maximum order (default is 50), minimum and maximum arguments,
step size and number of steps, values of pretabulated Boys functions. These files will be used
in src/aux_boys_vec.F90 to improve the efficiency. The Boys functions will be calculated in
run-time by subroutines in src/aux_boys_vec.F90 if given argument and order is not found in
the table.

Afterwards, you could start to compile Gen1Int.

1.1 CMake

For CMake users, let us assume that you want to compile the library in directory “build”, which might
be performed by the following steps:

mkdir build
cd build
ccmake ..
make

∗For instance, you may run tools/GenHeader.py with your required maximum order and replace the header files
src/max_gen_order.h, src/boys_power.h and src/tab_boys.h.

1

http://repo.ctcc.no/projects/gen1int

2 CHAPTER 1. INSTALLATION

In the step “ccmake ..”, you may need to change “CMAKE_BUILD_TYPE” (default is “RelWithDebInfo”),
and other options as you may would like. As regards CMAKE_BUILD_TYPE, we would recommend you to
change it as “Release”, otherwise you may get huge dumping information which may only be useful
for debugging. You could also add the option “-DXTIME” for compiler, so that Gen1Int will print the
CPU elapsed time during the calculations. However this will also produce extremely large information,
which might not be useful for ordinary use of Gen1Int.

You could also use

cmake -DCMAKE_BUILD_TYPE=Release ..

instead of “ccmake ..”. You may also try

cmake -DDISABLE_F90_MODULE=1 ..

so that the Fortran 90 module of Gen1Int in src/gen1int.F90 will not be compiled.
During the step of “make”, you could also try “make VERBOSE=1” to get more information during

compiling. If everything is OK, you will get the library named as “libgen1int.a” and an executable
code “test_gen1int”. We strongly recommend you run this code for test suite (more details about test
suite could be found in Section 4.10), and make sure there is no error. Otherwise, please write to us
(see the contact information in “AUTHORS”) with the test log file test_gen1int.html, thank you!

1.2 GNU Autotools

We are lazy to provide you a fantastic “configure” file ;-), so please first check “configure.ac” to see
if it needs any modification for your requirement. The procedure of compiling using GNU autotools
might be

aclocal
autoheader
automake --add-missing
autoconf
./configure --with-debug --with-time --enable-fmodule
make

where the meaning of “--with-debug --with-time” can be found in Section 1.1. While “--enable-fmodule”
will compile the Fortran 90 module of Gen1Int in src/gen1int.F90.

Similar to the case of CMake, the library is named as “libgen1int.a” and you will get an executable
code “test_gen1int”. Again, we strongly recommend you run this code for test suite (more details about
test suite could be found in Section 4.10), and make sure there is no error. Otherwise, please write to
us (see the contact information in “AUTHORS”) with the test log file test_gen1int.html.

1.3 Python

We use f2py to wrapper Gen1Int. However, as far as our knowledges concerns, f2py does not do
preprocess source codes. We therefore provide several simple functions in setup.py to perform such
preprocessing in Gen1Int, and generate source codes named as “src/py_xxxx.F90” for f2py.

Additionally, there is a dictionary variable “def_opts” in setup.py which controls the compiling
options

def_opts = {’DEBUG’:False,’XTIME’:False}

1.4. COMPILER AND FLAGS 3

where the meaning can be found in Section 1.1, and you may modify it according to your case.
To summarize, what you may use is the following one-line command to install Gen1Int in Python

python setup.py install

or

python setup.py install --home=path_install

to install Gen1Int in directory “path_install”.
Describe the test suite (in directory test_py) ...

1.4 Compiler and Flags

Some compilers with specific flags may not work correctly. For instance, we have problem to compile
src/basic/hgto_to_cgto.F90 using “ifort (IFORT) 11.1 20090511” on Stallo (http://www.notur.no/
hardware/stallo/) with flags -g and -O3 together. Changing the compiler, removing flag -g, or using
flag -O1 has solved the problem.

http://www.notur.no/hardware/stallo/
http://www.notur.no/hardware/stallo/

4 CHAPTER 1. INSTALLATION

Chapter 2

Python Interface of Gen1Int

2.1 “Hello World” in Python

Describe the “Hello World” in Python, such as ...

import Gen1Int.ContrInt
import Gen1Int.Tools

2.2 What You Get from Gen1Int

The results obtained from Gen1Int is always a five-dimensional array containing the contracted inte-
grals

contr_ints(num_gto_bra,num_contr_bra,num_gto_ket,num_contr_ket,num_opt)

where the first dimension either contains the angular parts of spherical Gaussians, or xyz powers of
Cartesian Gaussians on bra center. The second dimension contains the sub-shells with the same az-
imuthal quantum number (but different principal quantum numbers) on bra center. Taking p sub-shells
as an example, the second dimension is arranged in an ascending order according to the principal quan-
tum numbers, such as (2p, 3p, . . . , 6p). The third and fourth dimensions contains the angular parts or
xyz powers, sub-shells on ket center, which are arranged in the same way as those on bra center.

The angular parts of spherical Gaussians in contr_ints are arranged according to their magnetic
quantum numbers, from −l to +l (l is the azimuthal quantum number), i.e., in an ascending order. As
regards the xyz powers of Cartesian Gaussians, we use an ascending zy-major order in Gen1Int. For
instance, the Cartesian Gaussians representing f sub-shell are arranged as∗

xxx xxy xyy yyy
xxz xyz yyz

xzz yzz
zzz

which could be generated by the following loops in Python

for z in xrange(l+1):
for y in xrange(l+1-z):

return [l-y-z,y,z]

∗The reason of this ordering is ...

5

6 CHAPTER 2. PYTHON INTERFACE OF GEN1INT

Last, the fifth dimension num_opt in the contracted integrals contains all the xyz components of†

1. electronic derivatives (∂r
n),

2. Cartesian multipole moment (rm
M),

3. partial and total derivatives with respect to magnetic field (∂K1
B , ∂K2

B and ∂K
B),

4. partial and total derivatives with respect to total rotational angular momentum (∂L1
J , ∂L2

J and
∂L

J),

5. partial geometric derivatives with respect to centers on bra, ket and operator (∂Lκ
Rκ

, ∂Lλ
Rλ

and
∂Lα

Cα
), and

6. total geometric derivatives (
∏Ng ∂

Lg
Rg

).

Therefore, the fifth dimension is arranged in the order of

num_elec, num_mom,
num_mag_bra, num_mag_ket, num_mag_total,
num_ram_bra, num_ram_ket, num_ram_total,
num_geo_bra, num_geo_ket, num_geo_opt, num_geo_total,

where num_ram_xxx is the number of xyz components of derivatives with respect to total rotational
angular momentum (RAM). All the xyz components of the aforementioned operators and derivatives
are arranged using the ascending zy-major order as that of xyz powers of Cartesian Gaussians.

As regards the total geometric derivatives (
∏Ng ∂

Lg
Rg

), the xyz components of the first differentiated
center is the most consecutive part, followed by the second, third, ..., and the last differentiated center.

2.3 Tools in Gen1Int

As discussed in previous section, the angular parts of spherical Gaussians and xyz powers of Cartesian
Gaussians in Gen1Int are arranged in order. If the order of your basis functions are different from
them, you could reorder the contracted integrals by using the functions defined in Gen1Int.Tools, as
shown in Table 2.1.

Table 2.1: Functions of reordering integrals in Gen1Int.Tools.

reorder_sgtos Reorders the contracted real solid-harmonic Gaussians on bra or
ket center.
In ang_ket orbital quantum number (or angular number)

of ket center
num_sgto_ket number of basis functions on ket center (equals

to 2ang_ket+1)
mag_ket magnetic numbers of basis functions on ket

center
Continued on next page

†There is neither electronic derivatives nor Cartesian multipole moment for effective core potential and model core
potential.

2.3. TOOLS IN GEN1INT 7

Table 2.1 – continued from previous page
dim_bra_sgto dimension of SGTOs on bra center
num_contr_ket number of contractions of ket center
num_opt number of operators
gen_ints contracted integrals from Gen1Int.ContrInt

Out ro_ints reordered integrals according to given mag_ket
reorder_sgto_ints Reorders the integrals of contracted real solid-harmonic Gaussians.

In ang_bra orbital quantum number (or angular number)
of bra center

num_sgto_bra number of basis functions on bra center (equals
to 2ang_bra+1)

mag_bra magnetic numbers of basis functions on bra
center

ang_ket orbital quantum number (or angular number)
of ket center

num_sgto_ket number of basis functions on ket center (equals
to 2ang_ket+1)

mag_ket magnetic numbers of basis functions on ket
center

num_contr_bra number of contractions of bra center
num_contr_ket number of contractions of ket center
num_opt number of operators
gen_ints contracted integrals from Gen1Int.ContrInt

Out ro_ints reordered integrals according to given mag_bra
and mag_ket

reorder_cgtos Reorders the integrals of contracted Cartesian Gaussians on bra or
ket center.
In ang_ket orbital quantum number (or angular number)

of ket center
num_cgto_ket number of basis functions on ket center (equals

to (ang_ket+1)(ang_ket+2)/2)
power_ket Cartesian powers of basis functions on ket cen-

ter
dim_bra_cgto dimension of CGTOs on bra center
num_contr_ket number of contractions of ket center
num_opt number of operators
gen_ints contracted integrals from Gen1Int.ContrInt

Out ro_ints reordered integrals according to given
power_ket

reorder_cgto_ints Reorders the integrals of contracted Cartesian Gaussians.
In ang_bra orbital quantum number (or angular number)

of bra center
num_cgto_bra number of basis functions on bra center (equals

to (ang_bra+1)(ang_bra+2)/2)
power_bra Cartesian powers of basis functions on bra cen-

ter
Continued on next page

8 CHAPTER 2. PYTHON INTERFACE OF GEN1INT

Table 2.1 – continued from previous page
ang_ket orbital quantum number (or angular number)

of ket center
num_cgto_ket number of basis functions on ket center (equals

to (ang_ket+1)(ang_ket+2)/2)
power_ket Cartesian powers of basis functions on ket cen-

ter
num_contr_bra number of contractions of bra center
num_contr_ket number of contractions of ket center
num_opt number of operators
gen_ints contracted integrals from Gen1Int.ContrInt

Out ro_ints reordered integrals according to given
power_bra and power_ket

The Fortran 90 source codes of these reordering subroutines are in file reorder_ints.F90, which
could be called by users in their own programs.

Describe other functions in Gen1Int.Tools ...

2.4 Pre-defined Property Integrals in Python Interface

To further facilitate the use of Gen1Int, we have implemented ?? property integrals in file
Gen1Int/PropInt.py, which could be used by

import Gen1Int.PropInt

All the functions defined in Gen1Int/PropInt.py are given in Table 2.2 with detailed descriptions
(this table needs to be rewritten, sorry) ...

The total electron density ρ(r) can be written as

ρ(r) =
∑

κλ

Dκλχκ(r)χλ(r), (2.1)

2.4. PRE-DEFINED PROPERTY INTEGRALS IN PYTHON INTERFACE 9
T
ab

le
2.
2:

Im
pl
em

en
te
d
on

e-
el
ec
tr
on

pr
op

er
ty

in
te
gr
al
s
in

G
en

1I
n
t
.

K
ey
w
or
d

In
te
gr
al
s

L
ab

el
s

D
es
cr
ip
ti
on

*1
EL

PO
T

−
∑

K

〈 χ
κ

∣ ∣ ∣Z
K
r K

∣ ∣ ∣χ
λ

〉
PO

TE
NE

RG
‡

O
ne

-e
le
ct
ro
n
po

te
nt
ia
le

ne
rg
y
in
te
gr
al
s.

*A
NG

LO
N

〈χ
κ
|L
N
|χ

λ
〉

XA
NG

LO
N_

YA
NG

LO
N_

ZA
NG

LO
N_

C
on

tr
ib
ut
io
n
to

th
e
on

e-
el
ec
tr
on

co
nt
ri
bu

ti
on

of
th
e
m
ag
ne

ti
c
m
o-

m
en
t
us
in
g

Lo
nd

on
or
bi
ta
ls

ar
is
in
g

fr
om

th
e

di
ffe

re
nt
ia
ti
on

of
Lo

nd
on

-o
rb
it
al

tr
an

sf
or
m
ed

H
am

ilt
on

ia
n,

se
e
R
ef
.[
8]
.

*A
NG

MO
M

〈χ
κ
|L
O
|χ

λ
〉

XA
NG

MO
M_

YA
NG

MO
M_

ZA
NG

MO
M_

A
ng

ul
ar

m
om

en
tu
m

ar
ou

nd
th
e
m
ol
ec
ul
ar

or
ig
in
.
T
hi
s
ca
n
be

ad
-

ju
st
ed

by
ch
an

gi
ng

th
e
ga

ug
e
or
ig
in

th
ro
ug

h
th
e
us
e
of

th
e
.G

AU
GE

O
ke
yw

or
d.

*C
AR

MO
M

〈 χ
κ

∣ ∣ x
i y
j
z
k
∣ ∣ χ

λ

〉
CM

ii
jj

kk
C
ar
te
si
an

m
ul
ti
po

le
in
te
gr
al
s,

w
ho

se
or
de

r
is

de
te
rm

in
ed

by
th
e

ke
yw

or
d
.I

OR
CA

R.
La

be
ls
ii

,j
j,

an
d
kk

ar
e
de

te
rm

in
ed

by
,s
uc
h
as

i
i

=
(
i 1
0

) ×
10

+
m

od
(i
,1

0)
.

*D
AR

WI
N

π
α

2

2

∑
K
〈χ
κ
|δ

(r
K

)|
χ
λ
〉

DA
RW

IN
__

O
ne

-e
le
ct
ro
n
D
ar
w
in

in
te
gr
al
s
[9
].

*D
IP

LE
N

〈χ
κ
|r|
χ
λ
〉

XD
IP

LE
N_

YD
IP

LE
N_

ZD
IP

LE
N_

D
ip
ol
e
le
ng

th
in
te
gr
al
s.

*D
IP

VE
L

〈χ
κ
|∇
|χ

λ
〉

XD
IP

VE
L_

YD
IP

VE
L_

ZD
IP

VE
L_

D
ip
ol
e
ve
lo
ci
ty

in
te
gr
al
s.

*D
PT

OV
L

〈 χ
κ

∣ ∣ ∣∂
2

∂
r
2

∣ ∣ ∣χ
λ

〉
dd

/d
xd

x_
dd

/d
xd

y_
dd

/d
xd

z_
dd

/d
yd

y_
dd

/d
yd

z_
dd

/d
zd

z_

D
P
T

(D
ir
ec
t
P
er
tu
rb
at
io
n

T
he

or
y)

in
te
gr
al
s:

Sm
al
l-c

om
po

ne
nt

on
e-
el
ec
tr
on

ov
er
la
p
in
te
gr
al
s.

C
on

ti
nu

ed
on

ne
xt

pa
ge

‡ _
S
in
di
ca
te
s
th
e
in
te
gr
al

m
at
ri
ce
s
ar
e
sy
m
m
et
ri
c,

_A
fo
r
an

ti
sy
m
m
et
ri
c,

w
hi
le

_N
fo
r
no

n-
sy
m
m
et
ri
c.

10 CHAPTER 2. PYTHON INTERFACE OF GEN1INT

T
ab

le
2.
2
–
co
nt
in
u
ed

fr
om

p
re
vi
ou

s
p
ag
e

K
ey
w
or
d

In
te
gr
al
s

L
ab

el
s

D
es
cr
ip
ti
on

*D
SU

SL
H

1 4
Q
M
N

〈 χ
κ

∣ ∣ r
rT
h
∣ ∣ χ

λ

〉 Q
M
N

XX
DS

US
LH

XY
DS

US
LH

XZ
DS

US
LH

YY
DS

US
LH

YZ
DS

US
LH

ZZ
DS

US
LH

T
he

co
nt
ri
bu

ti
on

to
di
am

ag
ne

ti
c
m
ag
ne

ti
za
bi
lit
y
in
te
gr
al
sf
ro
m

th
e

di
ffe

re
nt
ia
ti
on

of
th
e
Lo

nd
on

or
bi
ta
lp

ha
se
-f
ac
to
rs
,s

ee
R
ef
.[
8]
.

*D
SU

SN
L

1 4

〈 χ
κ

∣ ∣ r
2 N
I 3
×

3
−

r N
rT N
∣ ∣ χ

λ

〉
XX

DS
US

NL
XY

DS
US

NL
XZ

DS
US

NL
YY

DS
US

NL
YZ

DS
US

NL
ZZ

DS
US

NL

T
he

co
nt
ri
bu

ti
on

to
th
e
di
am

ag
ne
ti
c
m
ag
ne

ti
za
bi
lit
y
in
te
gr
al
s
us
-

in
g
Lo

nd
on

or
bi
ta
ls
bu

t
w
it
h
co
nt
ri
bu

ti
on

s
fr
om

th
e
di
ffe

re
nt
ia
ti
on

of
th
e
H
am

ilt
on

ia
n
on

ly
,s

ee
R
ef
.[
8]
.

*E
FG

CA
R

〈 χ
κ

∣ ∣ ∣3
r
K

r
T K
−

r
T K

r
K

I 3
×

3

r
5 K

∣ ∣ ∣χ
λ

〉
XY

EF
Ga

bc
C
ar
te
si
an

el
ec
tr
ic

fie
ld

gr
ad

ie
nt

in
te
gr
al
s.

W
he

re
X
an

d
Y
ar
e
th
e
C
ar
te
si
an

di
re
ct
io
ns
,a

bc
th
e
nu

m
be

r
of

th
e

sy
m
m
et
ry

in
de
pe

nd
en
t
ce
nt
er
,
an

d
c
th
at

ce
nt
er
s
c’
th

sy
m
m
et
ry
-

ge
ne

ra
te
d
at
om

.
*F

C
4
π
g
e

3
〈χ
κ
|δ

(r
K

)|
χ
λ
〉§

FC
_N

AM
ab

Fe
rm

i-c
on

ta
ct

in
te
gr
al
s,

se
e
R
ef
.[
10
].

W
he

re
NA

M
is

th
e
th
re
e
fir
st

le
tt
er
s
in

th
e
na

m
e
of

th
is

at
om

,
as

gi
ve
n
in

th
e
MO

LE
CU

LE
.I

NP
fil
e,

an
d
ab

is
th
e
nu

m
be

r
of

th
e

sy
m
m
et
ry
-a
da

pt
ed

nu
cl
eu

s.
*K

IN
EN

E
−

1 2

〈 χ
κ

∣ ∣ ∇
2
∣ ∣ χ

λ

〉
KI

NE
NE

RG
K
in
et
ic

en
er
gy

in
te
gr
al
s.

*L
ON

MO
M

1 2
Q
M
N
〈χ
κ
|rh
|χ

λ
〉¶

XL
ON

MO
M_

YL
ON

MO
M_

ZL
ON

MO
M_

C
on

tr
ib
ut
io
n
to

th
e
Lo

nd
on

m
ag
ne

ti
c
m
om

en
t
fr
om

th
e
di
ffe

re
nt
i-

at
io
n
w
it
h
re
sp
ec
t
to

m
ag

ne
ti
c
fie

ld
on

th
e
Lo

nd
on

or
bi
ta
l
ph

as
e

fa
ct
or
s,

se
e
R
ef
.[
8]
.

*M
AG

MO
M

1 2
〈χ
κ
|L
N

+
Q
M
N
rh
|χ

λ
〉

dh
/d

BX
__

dh
/d

BY
__

dh
/d

BZ
__

O
ne

-e
le
ct
ro
n
co
nt
ri
bu

ti
on

to
th
e
m
ag
ne
ti
c
m
om

en
t
ar
ou

nd
th
e
nu

-
cl
ei

to
w
hi
ch

th
e
at
om

ic
or
bi
ta
ls
ar
e
at
ta
ch
ed
.
T
hi
s
is
th
e
Lo

nd
on

at
om

ic
or
bi
ta
lm

ag
ne

ti
c
m
om

en
t
as

de
fin

ed
in

E
q.

(3
5)

of
R
ef
.[
11
].

T
he

in
te
gr
al

is
ca
lc
ul
at
ed

as
th
e
su
m

of
*L

ON
MO

M
an

d
*A

NG
LO

N.
C
on

ti
nu

ed
on

ne
xt

pa
ge

§ K
is

th
e
nu

cl
eu

s
of

in
te
re
st
.

¶
A
nt
is
ym

m
et
ri
c
m
at
ri
x
Q
M
N

=

2 4
0

−
Z
M
N

Y
M
N

Z
M
N

0
−
X
M
N

−
Y
M
N

X
M
N

0

3 5 ,w
hi
le
h
is

th
e
on

e-
el
ec
tr
on

H
am

ilt
on

ia
n
in

ab
se
nc

e
of

m
ag
ne

ti
c
fie

ld
(s
ee

*O
NE

HA
MI

L)
.

2.4. PRE-DEFINED PROPERTY INTEGRALS IN PYTHON INTERFACE 11
T
ab

le
2.
2
–
co
nt
in
u
ed

fr
om

p
re
vi
ou

s
p
ag
e

K
ey
w
or
d

In
te
gr
al
s

L
ab

el
s

D
es
cr
ip
ti
on

*M
AS

SV
E

α
2 8

〈 χ
κ

∣ ∣ ∇
2
·∇

2
∣ ∣ χ

λ

〉
MA

SS
VE

LO
M
as
s-
ve
lo
ci
ty

in
te
gr
al
s.

*N
EL

FL
D

〈 χ
κ

∣ ∣ ∣r
K r
3 K

∣ ∣ ∣χ
λ

〉 †
NE

F_
ab

c_
N
uc

le
ar

el
ec
tr
ic

fie
ld

in
te
gr
al
s.

W
he

re
ab

c
is

th
e
nu

m
be

r
of

th
e
sy
m
m
et
ry
-a
da

pt
ed

nu
cl
ea
r
co
or
-

di
na

te
.

*N
ST

1 2

〈 χ
κ

∣ ∣ ∣r
T N

r
K

I 3
×

3
−

r
N

r
T K

r
3 K

+
Q
M
N

r
L
T K

r
3 K

∣ ∣ ∣χ
λ

〉 †
ab

c_
NS

Td
C
al
cu

la
te

th
e
on

e-
el
ec
tr
on

co
nt
ri
bu

ti
on

to
th
e
di
am

ag
ne

ti
c
nu

cl
ea
r

sh
ie
ld
in
g
te
ns
or

in
te
gr
al
su

si
ng

Lo
nd

on
at
om

ic
or
bi
ta
ls
,s
ee

R
ef
.[
8]
.

It
is

ca
lc
ul
at
ed

as
th
e
su
m

of
NS

TL
ON

an
d
NS

TN
OL

.
W

he
re

ab
c
is

th
e
nu

m
be

r
of

th
e
sy
m
m
et
ry
-a
da

pt
ed

nu
cl
ea
r
m
ag
-

ne
ti
c
m
om

en
t
co
or
di
na

te
,a

nd
d
re
fe
rs

to
th
e
x
,y

,o
r
z
co
m
po

ne
nt

of
th
e
m
ag

ne
ti
c
fie

ld
.

*N
ST

CG
O

1 2

〈 χ
κ

∣ ∣ ∣r
T O
r
K

I 3
×

3
−

r
O
r
T K

r
3 K

∣ ∣ ∣χ
λ

〉 †
ab

cN
SC

Od
C
al
cu

la
te

th
e
di
am

ag
ne
ti
c
nu

cl
ea
r
sh
ie
ld
in
g
te
ns
or

in
te
gr
al
s
w
it
h-

ou
t
us
in
g
Lo

nd
on

at
om

ic
or
bi
ta
ls
.
N
ot
e
th
at

th
e
ga
ug

e
or
ig
in

is
co
nt
ro
lle

d
by

th
e
ke
yw

or
d
.G

AU
GE

O.
W

he
re

ab
c
is

th
e
nu

m
be

r
of

th
e
sy
m
m
et
ry
-a
da

pt
ed

nu
cl
ea
r
m
ag
-

ne
ti
c
m
om

en
t
co
or
di
na

te
,a

nd
d
re
fe
rs

to
th
e
x
,y

,o
r
z
co
m
po

ne
nt

of
th
e
m
ag

ne
ti
c
fie

ld
.
O

is
th
e
ga
ug

e
or
ig
in
.

*N
ST

LO
N

1 2
Q
M
N

〈 χ
κ

∣ ∣ ∣r
L
T K

r
3 K

∣ ∣ ∣χ
λ

〉 †
ab

cN
SL

Od
C
al
cu

la
te

th
e
co
nt
ri
bu

ti
on

to
th
e
Lo

nd
on

or
bi
ta
ln

uc
le
ar

sh
ie
ld
in
g

te
ns
or

fr
om

th
e
di
ffe

re
nt
ia
ti
on

of
th
e
Lo

nd
on

or
bi
ta
lp

ha
se
-f
ac
to
rs
,

se
e
R
ef
.[
8]
.

W
he

re
ab

c
is

th
e
nu

m
be

r
of

th
e
sy
m
m
et
ry
-a
da

pt
ed

nu
cl
ea
r
m
ag
-

ne
ti
c
m
om

en
t
co
or
di
na

te
,a

nd
d
re
fe
rs

to
th
e
x
,y

,o
r
z
co
m
po

ne
nt

of
th
e
m
ag

ne
ti
c
fie

ld
.

*N
ST

NO
L

1 2

〈 χ
κ

∣ ∣ ∣r
T N

r
K

I 3
×

3
−

r
N

r
T K

r
3 K

∣ ∣ ∣χ
λ

〉 †
ab

cN
SN

Ld
C
al
cu

la
te

th
e
co
nt
ri
bu

ti
on

to
th
e
nu

cl
ea
r
sh
ie
ld
in
g
te
ns
or

w
he

n
us
-

in
g
Lo

nd
on

at
om

ic
or
bi
ta
ls

fr
om

th
e
di
ffe

re
nt
ia
ti
on

of
th
e
H
am

il-
to
ni
an

al
on

e,
se
e
R
ef
.[
8]
.

W
he

re
ab

c
is

th
e
nu

m
be

r
of

th
e
sy
m
m
et
ry
-a
da

pt
ed

nu
cl
ea
r
m
ag
-

ne
ti
c
m
om

en
t
co
or
di
na

te
,a

nd
d
re
fe
rs

to
th
e
x
,y

,o
r
z
co
m
po

ne
nt

of
th
e
m
ag

ne
ti
c
fie

ld
.

C
on

ti
nu

ed
on

ne
xt

pa
ge

12 CHAPTER 2. PYTHON INTERFACE OF GEN1INT

T
ab

le
2.
2
–
co
nt
in
u
ed

fr
om

p
re
vi
ou

s
p
ag
e

K
ey
w
or
d

In
te
gr
al
s

L
ab

el
s

D
es
cr
ip
ti
on

*N
UC

PO
T

〈 χ
κ

∣ ∣ ∣1 r K

∣ ∣ ∣χ
λ

〉 †
PO

T.
E_

ab
C
al
cu

la
te

th
e
nu

cl
ea
r
po

te
nt
ia
le
ne
rg
y.

C
ur
re
nt
ly

th
is
ke
yw

or
d
ca
n

on
ly

be
us
ed

in
ca
lc
ul
at
io
ns

no
t
em

pl
oy
in
g
sy
m
m
et
ry
.

W
he

re
ab

ar
e
th
e
tw

o
fir
st

le
tt
er
s
in

th
e
na

m
e
of

th
is
nu

cl
eu

s.
T
hu

s
no

te
th
at

in
or
de

r
to

di
st
in
gu

is
h
be

tw
ee
n
in
te
gr
al
s,

th
e
fir
st

tw
o

le
tt
er
s
in

an
at
om

’s
na

m
e
m
us
t
be

un
iq
ue

.
*O

NE
HA

MI
L
−
〈 χ

κ

∣ ∣ ∣∑
K

Z
K
r K

+
1 2
∇

2
∣ ∣ ∣χ

λ

〉
ON

EH
AM

IL
O
ne

-e
le
ct
ro
n
H
am

ilt
on

ia
n.

*O
VE

RL
AP

〈χ
κ
|χ
λ
〉

OV
ER

LA
P_

O
ve
rl
ap

in
te
gr
al
s.

*P
SO

〈 χ
κ

∣ ∣ ∣L
K

r
3 K

∣ ∣ ∣χ
λ

〉 †
PS

O_
ab

c_
P
ar
am

ag
ne

ti
c
sp
in
-o
rb
it

in
te
gr
al
s,

se
e
R
ef
.[
10
].

W
he

re
ab

c
is

th
e
nu

m
be

r
of

th
e
sy
m
m
et
ry
-a
da

pt
ed

nu
cl
ea
r
m
ag
-

ne
ti
c
m
om

en
t
co
or
di
na

te
.

*S
1M

AG
1 2
Q
M
N
〈χ
κ
|r|
χ
λ
〉‡

dS
/d

BX
__

dS
/d

BY
__

dS
/d

BZ
__

C
al
cu

la
te

th
e
fir
st

de
ri
va
ti
ve

ov
er
la
p
m
at
ri
x
w
it
h
re
sp
ec
t
to

an
ex
-

te
rn
al

m
ag
ne

ti
c
fie

ld
by

di
ffe

re
nt
ia
ti
on

of
th
e
Lo

nd
on

ph
as
e
fa
ct
or
s,

se
e
R
ef
.[
8]
.

*S
EC

MO
M

〈 χ
κ

∣ ∣ r
rT
∣ ∣ χ

λ

〉
XX

SE
CM

OM
XY

SE
CM

OM
XZ

SE
CM

OM
YY

SE
CM

OM
YZ

SE
CM

OM
ZZ

SE
CM

OM

Se
co
nd

-m
om

en
t
in
te
gr
al
s.

*S
QH

DO
L

〈
∂
χ
κ

∂
R
a
b

∣ ∣ ∣χ
λ

〉
SQ

HD
La

bc
Sq

ua
re
,n

on
-s
ym

m
et
ri
ze
d
ha

lf
di
ffe

re
nt
ia
te
d
ov
er
la
p
in
te
gr
al
s
w
it
h

re
sp
ec
t
to

ge
om

et
ri
c
di
st
or
ti
on

s,
se
e
R
ef
.
[1
2]
.
D
iff
er
en
ti
at
io
n
on

th
e
br
a-
ve
ct
or
.

W
he

re
ab

c
is
th
e
nu

m
be

r
of

th
e
sy
m
m
et
ry
-a
da

pt
ed

co
or
di
na

te
be

-
in
g
di
ffe

re
nt
ia
te
d.

*S
QH

DO
R

〈 χ
κ

∣ ∣ ∣∂
χ
λ

∂
R
a
b

〉
SQ

HD
Ra

bc
Sq

ua
re
,n

on
-s
ym

m
et
ri
ze
d
ha

lf-
di
ffe

re
nt
ia
te
d
ov
er
la
p
in
te
gr
al
s
w
it
h

re
sp
ec
t
to

ge
om

et
ri
c
di
st
or
ti
on

s,
se
e
R
ef
.
[1
2]
.
D
iff
er
en
ti
at
io
n
on

th
e
ke
t-
ve
ct
or
.

W
he

re
ab

c
is
th
e
nu

m
be

r
of

th
e
sy
m
m
et
ry
-a
da

pt
ed

co
or
di
na

te
be

-
in
g
di
ffe

re
nt
ia
te
d.

C
on

ti
nu

ed
on

ne
xt

pa
ge

2.4. PRE-DEFINED PROPERTY INTEGRALS IN PYTHON INTERFACE 13
T
ab

le
2.
2
–
co
nt
in
u
ed

fr
om

p
re
vi
ou

s
p
ag
e

K
ey
w
or
d

In
te
gr
al
s

L
ab

el
s

D
es
cr
ip
ti
on

*T
HE

TA
1 2

〈 χ
κ

∣ ∣ 3
rr
T
−
r2

I 3
×

3

∣ ∣ χ
λ

〉
XX

TH
ET

A_
XY

TH
ET

A_
XZ

TH
ET

A_
YY

TH
ET

A_
YZ

TH
ET

A_
ZZ

TH
ET

A_

T
ra
ce
le
ss

qu
ad

ru
po

le
m
om

en
t
in
te
gr
al
s
as

de
fin

ed
by

B
uc
ki
ng

-
ha

m
[1
3]
.

*T
HI

RD
M

〈 χ
κ

∣ ∣ r
3
∣ ∣ χ

λ

〉
XX

X_
3M

OM
XX

Y_
3M

OM
XX

Z_
3M

OM
XY

Y_
3M

OM
XY

Z_
3M

OM
XZ

Z_
3M

OM
YY

Y_
3M

OM
YY

Z_
3M

OM
YZ

Z_
3M

OM
ZZ

Z_
3M

OM

T
hi
rd
-m

om
en
t
in
te
gr
al
s.

*2
ND

MM
〈 χ

κ

∣ ∣ r
p
T

+
p
rT
∣ ∣ χ

λ

〉
XX

2N
DM

M_
XY

2N
DM

M_
XZ

2N
DM

M_
YY

2N
DM

M_
YZ

2N
DM

M_
ZZ

2N
DM

M_

Se
co
nd

-m
om

en
t
in
te
gr
al
s
in

m
om

en
tu
m

sp
ac
e.

*3
RD

MM
〈χ
κ
|rr

p
+

rp
r

+
p
rr
|χ

λ
〉

XX
X3

RD
MM

XX
Y3

RD
MM

XX
Z3

RD
MM

XY
Y3

RD
MM

XY
Z3

RD
MM

XZ
Z3

RD
MM

YY
Y3

RD
MM

YY
Z3

RD
MM

YZ
Z3

RD
MM

ZZ
Z3

RD
MM

T
hi
rd
-m

om
en
t
in
te
gr
al
s
in

m
om

en
tu
m

sp
ac
e.

14 CHAPTER 2. PYTHON INTERFACE OF GEN1INT

2.5. MEMORY USAGE IN GEN1INT 15

The following equations will be merged into Table 2.2 ...
*2NDMM

XX2NDMM__A: xdx+ dxx = 2xdx+ 1, (2.2)
XY2NDMM__A: xdy + dyx, (2.3)
XZ2NDMM__A: xdz + dxz, (2.4)
YY2NDMM__A: ydy + dyy = 2ydy + 1, (2.5)
YZ2NDMM__A: ydz + dyz, (2.6)
ZZ2NDMM__A: zdz + dzz = 2zdz + 1. (2.7)

*3RDMM

XXX3RDMM_A: x2dx+ xdxx+ dxx2 = 3x2dx+ 3x, (2.8)
XXY3RDMM_A: x2dy + xdxy + dxxy = x2dy + 2xydx+ y, (2.9)
XXZ3RDMM_A: x2dz + xdxz + dxxz = x2dz + 2xzdx+ z, (2.10)
XYY3RDMM_A: xydy + xdyy + dxy2 = y2dx+ 2xydy + x, (2.11)
XYZ3RDMM_A: xydz + xdyz + dxyz = xydz + xzdy + yzdx, (2.12)
XZZ3RDMM_A: xzdz + xdzz + dxz2 = z2dx+ 2xzdz + x, (2.13)
YYY3RDMM_A: y2dy + ydyy + dyy2 = 3y2dy + 3y, (2.14)
YYZ3RDMM_A: y2dz + ydyz + dyyz = y2dz + 2yzdy + z, (2.15)
YZZ3RDMM_A: yzdz + ydzz + dyz2 = z2dy + 2yzdz + y, (2.16)
ZZZ3RDMM_A: z2dz + zdzz + dzz2 = 3z2dz + 3z. (2.17)

2.5 Memory Usage in Gen1Int

Temporary Integrals

1. loops over different AO sub-shells

2. loops over the xyz components of AO sub-shells

3. less temporary memory used during recurrence relations, for efficiency both in CPU
time and memory

We are going to find the maximum of

(l + 1− n)(l + 2− n)(l + 3− n)− (m− n)(m+ 1− n)(m+ 2− n)
6

(n+ 1)(n+ 2)
2

. (2.18)

Revision 49fcc2a0 ID 49fcc2a09b41f415428fe7218927efb1e6ac2371
Our experience has shown that Gen1Int may work incorrectly compiled with some compilers to-

gether with specific flags. For instance, the subroutines in src/hgto_to_cgto.F90 and src/hgto_to_lcgto.F90
do give wrong results when compiled on Stallo cluster (at University of Tromsø) using Intel Fortran com-
pilers version 10.1, 11.0, 11.1 and 11.1.072 with optimization flag either -O2 or -O3. They however work
with flag -O1, and that is the reason why we set default optimization flag as -O1 in CMakeLists.txt,
src/Makefile.am and test_f90/Makefile.am — fixed!

16 CHAPTER 2. PYTHON INTERFACE OF GEN1INT

Chapter 3

Fortran Interface of Gen1Int

3.1 “Hello World” in Fortran 90

In this section, we will give an typical use of Gen1Int in Fortran 90 code. Take the calculation of
Cartesian multipole moment integrals using contracted Cartesian Gaussians as an example, users may
need the following two subroutines by setting num_cents=0 (no total geometric derivatives)

! calculates the Cartesian multipole moment integrals using
! contracted Cartesian Gaussians
call contr_cgto_carmom(idx_bra, coord_bra, angular_bra, num_prim_bra, &

exponent_bra, num_contr_bra, contr_coef_bra, &
idx_ket, coord_ket, angular_ket, num_prim_ket, &
exponent_ket, num_contr_ket, contr_coef_ket, &
order_geo_bra, order_geo_ket, &
num_cents, idx_cent, order_cent, &
idx_diporg, dipole_origin, scal_const, &
order_geo_mom, order_mom, order_elec, &
num_cart_bra, num_cart_ket, num_opt, gen_ints)

! reorders the integrals of contracted Cartesian Gaussians
call reorder_cgto_ints(ang_bra, num_cgto_bra, power_bra, &

ang_ket, num_cgto_ket, power_ket, &
num_contr_bra, num_contr_ket, &
num_opt, gen_ints, contr_ints)

The results are returned in∗

contr_ints(num_cart_bra,num_contr_bra,num_cart_ket,num_contr_ket, &
num_elec,num_mom,num_geo_bra,num_geo_ket,num_geo_mom)

As regards spherical Gaussians, the following subroutines will be used

contr_sgto_carmom(...)
reorder_sgto_ints(...)

Other property integrals could also be calculated in a similar way, the related subroutines for con-
tracted integrals are given in Section 5.1.
∗Indeed, what is returned from Gen1Int is always a five-dimensional array; the xyz-components of both operators

and derivatives are in the fifth dimension.

17

18 CHAPTER 3. FORTRAN INTERFACE OF GEN1INT

The total geometric derivatives are controlled by the arguments num_cents, idx_cent and order_cent.
For instance

num_cents = 1; idx_cent = (/1/); order_cent = (/3/)

gives one-center third order total geometric derivatives on atom 1, while

num_cents = 2; idx_cent = (/1,2/); order_cent = (/3,4/)

gives two-center seventh order total geometric derivatives on atoms 1 (third order) and 2 (fourth order).
If you would like to use the sequence of total geometric derivatives as described in Section 4.3.1, you
may first need to call geom_total_tree_init to initialize the “full arithmetic N -ary tree”

call geom_total_tree_init(num_atoms, order_geo, max_num_cent, &
num_paths, visit_height, idx_node, &
wt_node, idx_cent, order_cent, num_geo_cent)

You also get the first path (saved in wt_node(order_geo), idx_cent and order_cent) from
geom_total_tree_init, which could be used when calling subroutines calculating the contracted inte-
grals. For instance, the total geometric derivatives of Cartesian multipole moment integrals

num_cents = wt_node(order_geo)
! calculates the Cartesian multipole moment integrals using
! contracted Cartesian Gaussians
call contr_cgto_carmom(idx_bra, coord_bra, angular_bra, num_prim_bra, &

exponent_bra, num_contr_bra, contr_coef_bra, &
idx_ket, coord_ket, angular_ket, num_prim_ket, &
exponent_ket, num_contr_ket, contr_coef_ket, &
order_geo_bra, order_geo_ket, num_cents, &
idx_cent(1:num_cents), order_cent(1:num_cents), &
idx_diporg, dipole_origin, scal_const, &
order_geo_mom, order_mom, order_elec, &
num_cart_bra, num_cart_ket, num_opt, gen_ints)

! reorders the integrals of contracted Cartesian Gaussians
call reorder_cgto_ints(ang_bra, num_cgto_bra, power_bra, &

ang_ket, num_cgto_ket, power_ket, &
num_contr_bra, num_contr_ket, &
num_opt, gen_ints, contr_ints)

The results are returned in

contr_ints(num_cart_bra,num_contr_bra,num_cart_ket,num_contr_ket, &
num_elec,num_mom,num_geo_bra,num_geo_ket,num_geo_mom, &
num_geo_total)

Other total geometric derivatives could be obtained by calling subroutine geom_total_tree_search
num_paths−1 times (num_paths is already got from subroutine geom_total_tree_init) as follows

do ipath = 2, num_paths
call geom_total_tree_search(num_atoms, order_geo, max_num_cent, &

visit_height, idx_node, wt_node, &
idx_cent, order_cent, num_geo_cent)

end do

3.2. USING FORTRAN 90 MODULE 19

Likewise, the information of total geometric derivatives is saved in wt_node(order_geo), idx_cent
and order_cent each time, which could be used to call the corresponding subroutine to calculate the
contracted integrals.

Finally, if users are interested in derivatives with respect to the magnetic field and/or total ro-
tational angular momentum at zero fields with (rotational) London atomic orbitals, the subroutines
lcgto_zero_xxxx and lsgto_zero_xxxx should be used for Cartesian and spherical Gaussians, respec-
tively. Here xxxx is the name of specific operator as shown in Section 5.1.

Still taking the Cartesian multipole moment integrals as an example, the mixed derivatives with
respect to the geometry perturbation, external magnetic field and total rotational angular momentum
at zero fields with (rotational) London Cartesian Gaussians could be obtained by

! calculates the Cartesian multipole moment integrals using
! contracted (rotational) London Cartesian Gaussians
call lcgto_zero_carmom(idx_bra, coord_bra, angular_bra, num_prim_bra, &

exponent_bra, num_contr_bra, contr_coef_bra, &
idx_ket, coord_ket, angular_ket, num_prim_ket, &
exponent_ket, num_contr_ket, contr_coef_ket, &
order_mag_bra, order_mag_ket, order_mag_total, &
order_ram_bra, order_ram_ket, order_ram_total, &
order_geo_bra, order_geo_ket, &
num_cents, idx_cent, order_cent, &
idx_diporg, dipole_origin, scal_const, &
order_geo_mom, order_mom, order_elec, &
num_cart_bra, num_cart_ket, num_opt, contr_ints)

The results will be returned in

contr_ints(num_cart_bra,num_contr_bra,num_cart_ket,num_contr_ket, &
num_elec,num_mom, &
num_mag_bra,num_mag_ket,num_mag_total, &
num_ram_bra,num_ram_ket,num_ram_total, &
num_geo_bra,num_geo_ket,num_geo_mom,num_geo_total)

3.2 Using Fortran 90 Module

We have also provided a Fortran 90 module src/gen1int.F90 to facilitate Fortran users, in which
we have introduced two public types one_prop_t and geom_tree_t for different pre-defined property
integrals and geometric derivatives, respectively.

3.2.1 Pre-defined Property Integrals in Fortran 90 Module

You may first define a variable containing the information of property integrals and other useful argu-
ments (you do not need all of them) as

use gen1int
... ...
! information of property integrals
type(one_prop_t) prop_operator
! number of property integral matrices

20 CHAPTER 3. FORTRAN INTERFACE OF GEN1INT

integer num_prop
! symmetry of property integral matrices (SYMM_INT_MAT, ANTI_INT_MAT or SQUARE_INT_MAT
! is respectively symmetric, anti-symmetric or square matrices)
integer prop_sym
! coordinates of dipole origin
real(REALK) dipole_origin(3)
! atomic centers of nuclei (<1 for non-atomic center)
integer idx_nuclei(NUM_NUCLEI)
! coordinates of nuclei
real(REALK) coord_nuclei(3,NUM_NUCLEI)
! charges of nuclei
real(REALK) charge_nucle(NUM_NUCLEI)
! order of geometric derivatives with respect to the potential center
integer order_geo_pot
! order of multipole integrals
integer order_mom
! atomic centers of Gaussian charge potential origins (<1 for non-atomic center)
integer idx_gauorg(NUM_GAUPOT)
! coordinates of Gaussian charge potential origins
real(REALK) gaupot_origin(3,NUM_GAUPOT)
! charges of Gaussian charge potential
real(REALK) gaupot_charge(NUM_GAUPOT)
! exponents used in the Gaussian broadening function of charges
real(REALK) gaupot_expt(NUM_GAUPOT)
! coordinates of grid points used by overlap distribution
real(REALK) grid_points(3,NUM_POINTS)
! logical unit number of the viewer
integer io_viewer
... ...

where NUM_NUCLEI is the number of nuclei, NUM_GAUPOT is the number of Gaussian charge potential
origins, and NUM_POINTS is the number of grid points. REALK is defined in src/xkind.h.

The information of the one-electron property integrals prop_operator needs to be initialized by
calling a public subroutine OnePropCreate with one of 8 pre-defined property integrals in this module.
More explicitly, you will get

1. overlap integrals

call OnePropCreate(prop_name=INT_OVERLAP, &
one_prop=prop_operator, &
info_prop=info_prop)

2. kinetic energy integrals

call OnePropCreate(prop_name=INT_KIN_ENERGY, &
one_prop=prop_operator, &
info_prop=info_prop)

3. one-electron potential energy integrals

3.2. USING FORTRAN 90 MODULE 21

call OnePropCreate(prop_name=INT_POT_ENERGY, &
one_prop=prop_operator, &
info_prop=info_prop, &
idx_nuclei=idx_nuclei, &
coord_nuclei=coord_nuclei, &
charge_nuclei=charge_nuclei, &
order_geo_pot=order_geo_pot)

4. one-electron Hamiltonian

call OnePropCreate(prop_name=INT_ONE_HAMIL, &
one_prop=prop_operator, &
info_prop=info_prop, &
idx_nuclei=idx_nuclei, &
coord_nuclei=coord_nuclei, &
charge_nuclei=charge_nuclei)

5. Cartesian multipole integrals

call OnePropCreate(prop_name=INT_CART_MULTIPOLE, &
one_prop=prop_operator, &
info_prop=info_prop, &
dipole_origin=dipole_origin, &
order_mom=order_mom)

6. spherical multipole integrals (not work)

call OnePropCreate(prop_name=INT_SPHER_MULTIPOLE, &
one_prop=prop_operator, &
info_prop=info_prop, &
dipole_origin=dipole_origin, &
order_mom=order_mom)

7. Gaussian charge potential integrals

call OnePropCreate(prop_name=INT_GAUSSIAN_POT, &
one_prop=prop_operator, &
info_prop=info_prop, &
idx_gauorg=idx_gauorg, &
gaupot_origin=gaupot_origin, &
gaupot_charge=gaupot_charge, &
gaupot_expt=gaupot_expt, &
order_geo_pot=order_geo_pot)

8. overlap distribution

call OnePropCreate(prop_name=INT_OVERLAP_DIST, &
one_prop=prop_operator, &
info_prop=info_prop, &
grid_points=grid_points)

22 CHAPTER 3. FORTRAN INTERFACE OF GEN1INT

The argument for keyword prop_name is 8 pre-defined character parameters in this module. The
information of property integrals has been successfully initialized if info_prop=0 (otherwise you may
either give some wrong input argument or the memory for the information of property integrals was
not successfully allocated).

Other subroutines related to set the information of property integrals include:

1. OnePropSetPartialGeom: sets the partial geometric derivatives.

2. OnePropSetMag: sets the magnetic derivatives.

3. OnePropSetRAM: sets the derivatives with respect to the total rotational angular momentum.

4. OnePropSetGTO: sets the type of GTOs.

Please refer to the comments in corresponding subroutine in src/gen1int.F90 for more details.
Later on, you may also need

call OnePropGetNumProp(one_prop=prop_operator, num_prop=num_prop)
call OnePropGetSymmetry(one_prop=prop_operator, prop_sym=prop_sym)

to get the number of property integral matrices returned from Gen1Int, and their symmetry informa-
tion: pre-defined integer parameters SYMM_INT_MAT, ANTI_INT_MAT and SQUARE_INT_MAT in this module,
represent th symmetric, anti-symmetric and square matrices, respectively.

The information of property integrals could be printed in a readable way by using

call OnePropView(one_prop=prop_operator, io_viewer=io_viewer)

The important public subroutine is to evaluate the integrals of prop_operator you created, which
could be done by

call OnePropGetIntegral(idx_bra, coord_bra, angular_bra, num_prim_bra, &
exponent_bra, num_contr_bra, contr_coef_bra, &
idx_ket, coord_ket, angular_ket, num_prim_ket, &
exponent_ket, num_contr_ket, contr_coef_ket, &
spher_gto, prop_operator, geom_tree, &
num_gto_bra, num_gto_ket, num_opt, contr_ints, &
mag_num_bra, mag_num_ket, powers_bra, powers_ket)

where idx_bra to contr_coef_bra provide and information of basis sets on bra center, and idx_ket
to contr_coef_ket on ket center, prop_operator is the property integrals created by OnePropCreate,
num_gto_bra and num_gto_ket describe the number Gaussian type orbitals on bra and ket center (for
instance, 3 for 2px, 2py and 2pz), num_opt is the number of operators including different derivatives,
contr_ints contains the calculated contracted integrals after OnePropGetIntegral is performed.

The left arguments are optional, geom_tree contains the information of total geometric derivatives,
and will be discussed in Section 3.2.2. The argument spher_gto indicates if basis sets on bra and ket
center are spherical or Cartesian GTOs. The arguments mag_num_bra to powers_ket are only needed
if the arrangement of your GTOs is different from that in Gen1Int (see Section 2.2), then the integrals
will be reordered before returning to you.

Last but not least, you may need

call OnePropDestroy(one_prop=prop_operator)

to free the space taken by the information of one-electron property integrals after all the evaluations
being done.

3.2. USING FORTRAN 90 MODULE 23

3.2.2 Total Geometric Derivatives in Fortran 90 Module

As will be discussed in Section 4.3, we have used the “full arithmetic N -ary tree” to search all unique
geometric derivatives, such information is contained in a type variable

type(geom_tree_t) geom_tree

and is initialed by

call GeomTreeCreate(num_atoms=num_atoms, &
order_geo=order_geo, &
max_num_cent=max_num_cent, &
geom_tree=geom_tree, &
num_paths=num_paths, &
info_geom=info_geom, &
path_num_unique=path_num_unique, &
path_num_redunt=path_num_redunt)

where other arguments except for geom_tree are integers. Input arguments num_atoms is the number
of atoms, order_geo is the order of total geometric derivatives, max_num_cent is the maximum number
of differentiated centers.

Output arguments num_paths is the total number of different paths, info_geom should be 0 if
the N -ary tree was successfully created. geom_tree contains all the information of total geometric
derivatives in further calculations (for instance when calling OnePropGetIntegral as in Section 3.2.1),
it will contain the information of the first path if the N -ary tree was successfully created, and could be
therefore used in OnePropGetIntegral to get the total geometric derivatives of property integrals on
the first path of N -ary tree.

Other two output arguments are optional: path_num_unique is the number of unique geometric
derivatives of the first path, and path_num_redunt is the number of redundant geometric derivatives of
the first path.

Other paths could be retrieved in an iterative way by calling

! loops over other paths
do ipath = 2, num_paths

call GeomTreeSearch(geom_tree=geom_tree, &
path_num_unique=path_num_unique, &
path_num_redunt=path_num_redunt)

end do

where the optional output arguments path_num_unique is the number of unique geometric derivatives
of current path, and path_num_redunt is the number of redundant geometric derivatives of current
path.

Similarly, the information of N -ary tree and its current path can also be printed in a readable
manner by

call GeomTreeView(geom_tree=geom_tree, io_viewer=io_viewer)

Other subroutines related to N -ary tree are:

1. GeomTreeGetNumAtoms: gets the number of atoms for a given N -ary tree.

2. GeomTreeGetOrder: gets the order of total geometric derivatives for a given N -ary tree.

24 CHAPTER 3. FORTRAN INTERFACE OF GEN1INT

3. GeomTreeGetMaxNumCenters: gets the maximum number of differentiated centers for a given N -
ary tree.

4. GeomTreeGetNumPaths: gets the total number of different allowed paths in N -ary tree.

5. GeomTreeGetNumGeo: gets the total number of unique total geometric derivatives in the N -ary
tree.

6. GeomPathGetIndex: gets the index of current path.

7. GeomPathGetNumCenters: returns the number of differentiated centers of current path for given
N -ary tree.

8. GeomPathGetOffset: returns the offset of unique derivatives of current path (or the number of
total geometric derivatives in all previous paths), which could be used to put the integral matrices
and expectation values into appropriate positions.

9. GeomPathGetNumUnique: gets the number of unique geometric derivatives of current path.

10. GeomPathGetNumRedunt: gets the number of redundant geometric derivatives of current path.

11. GeomPathGetReduntList: gets the list addresses of redundant total geometric derivatives for cur-
rent path. The output argument redunt_list is a 2 by path_num_redunt integer array, in which
redunt_list(1,:) is the address of unique total geometric derivatives getting from, for instance,
OnePropGetIntegral; while redunt_list(2,:) is the corresponding address of redundant total
geometric derivatives. This array could be used to get the redundant total geometric derivatives
after OnePropGetIntegral being performed.

12. GeomPathSetReduntExpt: will put the unique geometric derivatives from OnePropGetIntegral
into appropriate positions in an array of redundant total geometric derivatives.

Please refer to the comments in corresponding subroutine in src/gen1int_geom.F90 for more details.
Last, please do not forget to free the space taken by the N -ary tree

call GeomTreeDestroy(geom_tree=geom_tree)

3.3 Parallelization of Gen1Int

Take a molecule with 12 atoms as an example, the number of third order one-center geometric derivatives
is 120, and 2376 for the two-center geometric derivatives, 5940 the three-center’s — 8436 third order
geometric derivatives in total. Therefore, an efficient way of calculating the huge number of derivatives
must be considered.

In this section, we will describe a possible scheme of parallelization, we will use MPI
...

3.4 Mixed Spherical and Cartesian Gaussians

Notice that the transformation between Hermite, Cartesian and spherical Gaussians could be performed
on either bra or ket only, it may therefore be possible to calculate the integrals of mixed Spherical and
Cartesian Gaussians.

However, we are not sure if this functionality is useful in practice ...

Chapter 4

Framework of Gen1Int

The following two well-established theorems [14] will be extensively used to develop the workable recur-
rence relations:

Theorem 1, reversing the order of integration “Let f(x, y) be continuous function of constatnt
sign defined for a ≤ x < ∞, c ≤ y < ∞, and let the integrals J(y) :=

∫∞
a f(x, y)dx and

J∗(x) :=
∫∞
c f(x, y)dy regarded as functions of the corresponding parameter be, respectively,

continuous for c ≤ y < ∞ and a ≤ x < ∞. Then if at least one of the iterated integrals∫∞
c dy

(∫∞
a f(x, y)dx

)
and

∫∞
a dx

(∫∞
c f(x, y)dy

)
converges, the other integral also converges and

their values coincide.”

Theorem 2, the differentiation of integration “Let f(x, y) and ∂f(x,y)
∂y be continuous for a ≤ x <

∞, c ≤ y ≤ d, and let the integral J(y) :=
∫∞
a f(x, y)dx be convergent on c ≤ y ≤ d. Supose

that the integral
∫∞
a

∂f(x,y)
∂y dx converges uniformly on the interval c ≤ y ≤ d. Then J(y) is

differentiable on c ≤ y ≤ d and

dJ(y)
dy

=
∫ ∞

a

∂f(x, y)
∂y

dx.” (4.1)

4.1 Theoretical Background of Gen1Int

Since there are partial derivatives on bra and ket, and might be electronic derivatives in the operator
ÔK0L0
`β

, a straightforward way of evaluating Eq. (7) is to utilize the binomial theorem for the total

25

26 CHAPTER 4. FRAMEWORK OF GEN1INT

derivatives with respect to the magnetic field and total rotational angular momentum [1]

(O`β)κλ =
K−K0∑

K′=0

L−L0∑

L′=0

(
K −K0

K ′

)(
L−L0

L′

) Ng∏
∂

Lg
Rg

∫
∂Lκ

Rκ

[
∂K1+K′

B ∂L1+L′
J ω∗κ(r; B,J)

]
B,J=0

(4.2)

× ÔK0L0
`β

∂Lλ
Rλ

[
∂K2+K′′

B ∂L2+L′′
J ωλ(r; B,J)

]
B,J=0

dr,

=
K−K0∑

K′=0

L−L0∑

L′=0

(
K −K0

K ′

)(
L−L0

L′

) Ng∏
∂

Lg
Rg

(4.3)

×
(i

2

)|K1|+|K′| (−i)|L1|+|L′| (− i
2

)|K2|+|K′′| i|L2|+|L′′|

× ∂Lκ
Rκ

∂Lλ
Rλ

∫
(RκG × rP)K1+K′ [I−T (RκO × rP)

]L1+L′
χκ(r)

× ÔK0L0
`β

(RλG × rP)K2+K′′ [I−T (RλO × rP)
]L2+L′′

χλ(r)dr,

where K ′′ and L′′ are defined as

K ′′ = K −K0 −K ′, (4.4)
L′′ = L−L0 −L′. (4.5)

By introducing the following auxiliary integrals [1]

{K1K2L1L2LκLλN1N2lκlλ}K0L0 (4.6)

=
(i

2

)|K1| (−i)|L1| (− i
2

)|K2| i|L2|∂Lκ
Rκ

∂Lλ
Rλ

∫
rN1
P (RκG × rP)K1

[
I−T (RκO × rP)

]L1
χκ(r)

× ÔK0L0
`β

rN2
P (RλG × rP)K2

[
I−T (RλO × rP)

]L2
χλ(r)dr,

the integral (O`β)κλ could be further written as

(O`β)κλ =
K−K0∑

K′=0

L−L0∑

L′=0

(
K −K0

K ′

)(
L−L0

L′

)
(4.7)

×
Ng∏

∂
Lg
Rg
{K1+K ′,K2+K ′′,L1+L′,L2+L′′,LκLλ00lκlλ}K0L0 ,

where lκ and lλ are the orbital quantum numbers of bra and ket, respectively.
The total geometric derivative

∏Ng ∂
Lg
Rg

in Eq. (4.7) could be transferred to the partial geometric

derivatives on bra (∂Lκ
Rκ

), ket (∂Lλ
Rλ

), or the centers in operator ÔK0L0
`β

. This requires the exact form

of the operator ÔK0L0
`β

, and the translational invariance may also be used to reduce the computational
cost. See Ref. [1] and Section 4.3 for details.

The auxiliary integral {K1K2L1L2LκLλN1N2lκlλ}K0L0 as defined in Eq. (4.6) could then be
reduced to {0000LκLλN1N2lκlλ}K0L0 by using the recurrence relations for both contracted spherical
and Cartesian Gaussians [1, 3]∗

{K1+eξ,LκN1}K0L0 = i
2

[
(RκG)ξ+1{K1Lκ,N1+eξ−1}K0L0 (4.8)

− (RκG)ξ−1{K1Lκ,N1+eξ+1}K0L0

+ (Lκ)ξ+1{K1,Lκ−eξ+1,N1+eξ−1}K0L0

− (Lκ)ξ−1{K1,Lκ−eξ−1,N1+eξ+1}K0L0

]
,

∗The derivatives with respect to total rotational angular momentum are evaluated in a coordinate system in which the
coordinate axes are chosen as principal axes, so that the inertia tensor I is diagonal.

4.1. THEORETICAL BACKGROUND OF GEN1INT 27

{K2+eξ,LλN2}K0L0 = − i
2

[
(RλG)ξ+1{K2Lλ,N2+eξ−1}K0L0 (4.9)

− (RλG)ξ−1{K2Lλ,N2+eξ+1}K0L0

+ (Lλ)ξ+1{K2,Lλ−eξ+1,N2+eξ−1}K0L0

− (Lλ)ξ−1{K2,Lλ−eξ−1,N2+eξ+1}K0L0

]
,

{L1+eξ,LκN1}K0L0 = −i
(
I−T

)
ξξ

[
(RκO)ξ+1{L1Lκ,N1+eξ−1}K0L0 (4.10)

− (RκO)ξ−1{L1Lκ,N1+eξ+1}K0L0

+ (Lκ)ξ+1{L1,Lκ−eξ+1,N1+eξ−1}K0L0

− (Lκ)ξ−1{L1,Lκ−eξ−1,N1+eξ+1}K0L0

]
,

and

{L2+eξ,LλN2}K0L0 = i
(
I−T

)
ξξ

[
(RλO)ξ+1{L2Lλ,N2+eξ−1}K0L0 (4.11)

− (RλO)ξ−1{L2Lλ,N2+eξ+1}K0L0

+ (Lλ)ξ+1{L2,Lλ−eξ+1,N2+eξ−1}K0L0

− (Lλ)ξ−1{L2,Lλ−eξ−1,N2+eξ+1}K0L0

]
.

The transformation of N1 and N2 to Lκ, lκ, and Lλ, lλ however depends on the type of basis
functions χκ(r) and χλ(r). As mentioned in Preface, after the transformation (6) or (12), the basis
functions used in the integral evaluation are either contracted Cartesian or Hermite Gaussians. For
Cartesian Gaussians, the recurrence relations by transferring N1 to lκ, and N2 to lλ directly work on
the contracted integrals [3]

{Lκ,N1+eξ, lκ}K0L0,Cart = (RκP)ξ{LκN1lκ}K0L0,Cart + (Lκ)ξ{Lκ−eξ,N1lκ}K0L0,Cart

+ {LκN1, lκ+eξ}K0L0,Cart, (4.12)

and

{Lλ,N2+eξ, lλ}K0L0,Cart = (RλP)ξ{LλN2lλ}K0L0,Cart + (Lλ)ξ{Lλ−eξ,N2lλ}K0L0,Cart

+ {LλN2, lλ+eξ}K0L0,Cart, (4.13)

which give the following contracted Cartesian integrals

{0000LκLλ00lκlλ}K0L0,Cart =
∑

ij

wiκwjλ {LκLλlκlλ}K0L0/ij,Cart , (4.14)

with the primitive Cartesian integrals defined as [1, 3]

{LκLλlκlλ}K0L0/ij,Cart = ∂Lκ
Rκ

∂Lλ
Rλ

∫
rlκ
κ e−aiκr

2
κÔK0L0

`β
rlλ
λ e−bjλr

2
λdr. (4.15)

We could further transfer lκ to Lκ, and lλ to Lλ using

{Lκ, lκ+eξ}K0L0/ij,Cart =
1

2aiκ

[
{Lκ+eξ, lκ}K0L0/ij,Cart + (lκ)ξ{Lκ, lκ−eξ}K0L0/ij,Cart

]
, (4.16)

{Lλ, lλ+eξ}K0L0/ij,Cart =
1

2bjλ

[
{Lλ+eξ, lλ}K0L0/ij,Cart + (lλ)ξ{Lλ, lλ−eξ}K0L0/ij,Cart

]
, (4.17)

28 CHAPTER 4. FRAMEWORK OF GEN1INT

and arriving at

{LκLλ00}K0L0/ij,Cart = ∂Lκ
Rκ

∂Lλ
Rλ

∫
e−aiκr

2
κÔK0L0

`β
e−bjλr

2
λdr. (4.18)

As regards the contracted Hermite integrals, we first have

{0000LκLλN1N2lκlλ}K0L0,Herm (4.19)

=
∑

ij

wiκwjλ {LκLλN1N2lκlλ}K0L0/ij,Herm

=
∑

ij

wiκwjλ(2aiκ)|Lκ|(2bjλ)|Lλ| {00N1N2, lκ+Lκ, lλ+Lλ}K0L0/ij,Herm ,

by transferring Lκ to lκ, and Lλ to lλ, using the following simple relations [1, 3]

{Lκlκ}K0L0/ij,Herm = (2aiκ)|Lκ|{0, lκ+Lκ}K0L0/ij,Herm, (4.20)

{Lλlλ}K0L0/ij,Herm = (2bjλ)|Lλ|{0, lλ+Lλ}K0L0/ij,Herm. (4.21)

The transformation of N1 and N2 also has to work on the primitive Hermite Gaussians [3]

{N1+eξ, lκ}K0L0/ij,Herm = (RκP)ξ{N1lκ}K0L0/ij,Herm +
(lκ)ξ
2aiκ

{N1, lκ−eξ}K0L0/ij,Herm (4.22)

+ {N1, lκ+eξ}K0L0/ij,Herm,

{N2+eξ, lλ}K0L0/ij,Herm = (RλP)ξ{N2lλ}K0L0/ij,Herm +
(lλ)ξ
2bjλ

{N2, lλ−eξ}K0L0/ij,Herm (4.23)

+ {N2, lλ+eξ}K0L0/ij,Herm,

and arriving at [3]

{0000lκlλ}K0L0/ij,Herm =
∫

∂lκ
Rκ

(2aiκ)|lκ|
e−aiκr

2
κÔK0L0

`β

∂lλ
Rλ

(2bjλ)|lλ|
e−bjλr

2
λdr. (4.24)

Therefore, the final basic integral to be evaluated, for both primitive Cartesian and Hermite Gaus-
sians, is [1, 3]

[
lκlλ

∣∣∣ÔK0L0
`β

]
ij

=
∂lκ

Rκ

(2aiκ)|lκ|
∂lλ

Rλ

(2bjλ)|lλ|

∫
exp(−aiκr2κ)ÔK0L0

`β
exp(−bjλr2λ)dr, (4.25)

and apparently



{LκLλ00}K0L0/ij,Cart = (2aiκ)|Lκ|(2bjλ)|Lλ|

[
LκLλ

∣∣∣ÔK0L0
`β

]
ij
,

{0000lκlλ}K0L0/ij,Herm =
[
lκlλ

∣∣∣ÔK0L0
`β

]
ij
.

(4.26)

The recurrence relations of evaluating
[
lκlλ

∣∣∣ÔK0L0
`β

]
ij
depends on the knowledge of operator ÔK0L0

`β
.

In our recent work [1–3], we have developed such recurrence relations for the different operators in
Eq. (9). The implementation of these recurrence relations will be discussed in Section 4.6.

Based on the aforementioned analysis, we have divided Gen1Int into the following steps in order
to get the integral (7):

4.1. THEORETICAL BACKGROUND OF GEN1INT 29

1. Geometric derivatives

(a) Generating the total geometric derivatives
∏Ng ∂

Lg
Rg

in Eq. (7) according to the given Ng and
number of atoms, avoiding repetition and omission, and arranging these geometric derivatives
in a required sequence (Section 4.3.1);

(b) For both contracted spherical and Cartesian Gaussians, transferring the above generated∏Ng ∂
Lg
Rg

to ∂Lκ
Rκ

, ∂Lλ
Rλ

, or geometric derivatives of the centers in operator ÔK0L0
`β

(Sec-
tion 4.3.2)†;

2. Magnetic and total rotational angular momentum derivatives

(a) For both contracted spherical and Cartesian Gaussians

i. Performing the sum (4.7) and calling the next step to calculate individual
{K1+K ′,K2+K ′′,L1+L′,L2+L′′,LκLλ00lκlλ}K0L0 (Section 4.4)‡;

ii. Recovering {K1K2L1L2LκLλ00lκlλ}K0L0 from {0000LκLλN1N2lκlλ}K0L0 (Section 4.4)§;

(b) For contracted spherical Gaussians¶

i. Performing the transformation (12) to contracted Hermite Gaussians (Section 4.8.3);
ii. For primitive Hermite Gaussians

A. Using Eqs. (4.20) and (4.21) to recover the partial geometric derivatives on bra and
ket (Section 4.8.4);

B. Recovering {00N1N2lκlλ}K0L0/ij,Herm from {0000lκlλ}K0L0/ij,Herm using Eqs. (4.22)
and (4.23) (Section 4.4);

(c) For contracted Cartesian Gaussians

i. Recovering {0000LκLλN1N2lκlλ}K0L0,Cart from {0000LκLλ00lκlλ}K0L0,Cart by us-
ing Eqs. (4.12) and (4.13) (Section 4.4);

ii. For primitive Cartesian Gaussians, using Eqs. (4.16) and (4.17) to recover the orbital
quantum numbers and partial geometric derivatives on bra and ket (Section 4.8.5);

3. Evaluation of different
[
lκlλ

∣∣∣ÔK0L0
`β

]
ij
for primitive Hermite Gaussians, quadrature is needed for

diamagnetic spin-orbit coupling, and effective core potential integrals (Section 4.6);

4. Evaluation of auxiliary functions, including Boys function (Section 4.9.1), function Gn(T) (Sec-
tion 4.9.2), and scaled modified spherical Bessel function of the first kind (Section 4.9.3).

As regards the use of normal atomic orbitals in Eq. (3) instead LAOs, only steps (b)i and ii.A are
needed for contracted spherical Gaussians, and step (c)ii is needed for contracted Cartesian Gaussians
in step 2.

In Fig. 4.1, we have given an illustration of the framework of Gen1Int, and the relationships
between the aforementioned different steps.

Last but not least, one of the most important part for a library is the test suite, we have prepared
tests (Fortran 90 and Python) for all the subroutines in Gen1Int. Please see Section 4.10 for more
details.
†This step needs the exact form of the operator ÔK0L0

`β
.

‡Like previous step, the sum (4.7) is implemented in each subroutine related to different form of operator ÔK0L0
`β

.
§This step and the following steps for magnetic and total rotational angular momentum derivatives are independent of

the exact form of operator, and implemented as individual subroutines.
¶We could also use the transformation (6) to contracted Cartesian Gaussians, and go to next step.

30 CHAPTER 4. FRAMEWORK OF GEN1INT

Primitive integrals

(
∂LM

M rm
M

)
∂n

r

(
∂LM

M rm
M

) [
∂LC

C δ(rC)
]
∂n

r

(
∂LM

M rm
M

) [
∂LC

C r−1
C

]
∂n

r

(
∂LM

M rm
M

) [
∂LC

C r−2
C

]
∂n

r

(
∂LM

M rm
M

)[
∂LC

C

erf(√%rC)
rC

]
∂n

r ∂
LC1
C1

∂
LC2
C2

r−1
C1
r−1
C2

∂n
r ECP

MCP
(Version 1)

quadrature

partial geometric
derivatives

partial B and J
derivatives HGTOs to SGTOs HGTOs to CGTOs

Contracted integrals

contracted
London SGTOs

contracted
London CGTOs contracted SGTOs contracted CGTOs

Figure 4.1: Illustration of the framework of Gen1Int.

4.2 Data Structure in Gen1Int

As aforementioned, we have divided Gen1Int into the following steps to get the contacted integrals (7).
Before discussing the individual step in detail, we first consider one of the most important left problem—
the data structure in these steps. More explicitly, we need to design the ordering of the returned
contracted integrals, i.e., the angular parts (or xyz powers), sub-shells, the xyz components of operators
and different derivatives, which one is more consecutive in memory? The factors affecting our choice
are:

1. complexity of the code by using the chosen data structure,

2. efficiency of the code by the data structure and,

3. complexity of further using the integrals by the data structure.

As regards the third factor, it is apparent that we usually need to either contract these integrals with
density matrix, perform matrix operations with other integrals, or write them into file. Therefore, the
angular parts (or xyz powers) and sub-shells should be the most consecutive ones. In Gen1Int, the
final contracted integrals is hence always given in a five-dimensional array as

contr_ints(num_gto_bra,num_contr_bra,num_gto_ket,num_contr_ket,num_opt)

where the first and third dimensions are the angular parts (or xyz powers) on bra and ket centers,
respectively. The second and fourth dimensions are respectively the sub-shells with the same azimuthal
quantum number (but different principal quantum numbers) on bra and ket centers. The fifth dimension
num_opt represents all the xyz components of different operators and derivatives. In order to give

4.2. DATA STRUCTURE IN GEN1INT 31

a reasonable arrangement of these xyz components, we consider the steps of evaluating contracted
integrals, where the ranks with underlines/overline are those involved in current step‖:

1. Recovering the total geometric derivatives


lκ, contrbra, lλ, contrket,n,m,K1,K2,K−K0,L1,L2,L−L0︸ ︷︷ ︸

consecutive

,Lκ,Lλ,Lα,LM ,Lg





from


lκ, contrbra, lλ, contrket,n,m,K1,K2,K−K0,L1,L2,L−L0︸ ︷︷ ︸

consecutive

,Lκ,Lλ,Lα,LM



 ;

2. Recovering the geometric derivatives on dipole origin rM




lκ, contrbra, lλ, contrket,n︸ ︷︷ ︸
consecutive

,m,K1,K2,K−K0,L1,L2,L−L0,Lκ,Lλ,Lα︸ ︷︷ ︸
outer loop

,LM





from




lκ, contrbra, lλ, contrket,n︸ ︷︷ ︸
consecutive

,m−LM ,K1,K2,K−K0,L1,L2,L−L0,Lκ,Lλ,Lα︸ ︷︷ ︸
outer loop





;

3. Recovering the total derivatives with respect to magnetic field and total rotational angular mo-
mentum by




lκ, contrbra, lλ, contrket,n,m−LM︸ ︷︷ ︸
consecutive

,K1,K2,K−K0,L1,L2,L−L0,Lκ,Lλ,Lα︸ ︷︷ ︸
outer loop





=
K−K0∑

K′=0

L−L0∑

L′=0

(
K −K0

K ′

)(
L−L0

L′

)

×





lκ, contrbra, lλ, contrket,n,m−LM︸ ︷︷ ︸
consecutive

,K1+K ′,K2+K ′′,L1+L′,L2+L′′,Lκ,Lλ,Lα︸ ︷︷ ︸
outer loop





;

4. Recovering


lκ, contrbra, lλ, contrket,n,m−LM︸ ︷︷ ︸

consecutive

,K1+K ′,K2+K ′′,L1+L′,L2+L′′,Lκ,Lλ, Lα︸︷︷︸
outer loop





‖We would like to mention that there are usually nested loops in the recurrence relations. It is said that it would be
better make the number of iterations of outer loop be fewer, whilst that of inner loop be more. This depends on the cache,
pipelining and predetermination of CPUs. However, the later two depend on specific CPUs. We therefore mainly focus
on increasing the CPU caching, i.e., we choose the data structure with more consecutive data during each step.

32 CHAPTER 4. FRAMEWORK OF GEN1INT

from 

lκ, contrbra, lλ, contrket,n,m−LM︸ ︷︷ ︸

consecutive

,N1,N2,Lκ,Lλ, Lα︸︷︷︸
outer loop



 ;

5. For contracted spherical Gaussians

(a) Getting the contracted spherical Gaussian integrals from contracted Hermite Gaussian inte-
grals by

∑

|lκ|=lκ

∑

|lλ|=lλ
Slκmκlκ

Slλmλlλ

∑

ij

wiκwjλ {lκ, lλ,n,m−LM ,N1,N2,Lκ,Lλ,Lα, i, j}Herm ,

(b) Recovering primtive Hermite Gaussian integrals




lκ, lλ,n,m−LM ,N1,N2,Lκ,Lλ, Lα, i, j︸ ︷︷ ︸
outer loop





Herm

from 



lκ+Lκ, lλ+Lλ,n,m−LM ,N1,N2, Lα, i, j︸ ︷︷ ︸
outer loop





Herm

,

(c) Recovering 



lκ, lλ,n,m−LM ,N1,N2, Lα, i, j︸ ︷︷ ︸
outer loop





Herm

from 



lκ, lλ,n,m−LM , Lα, i, j︸ ︷︷ ︸
outer loop





Herm

;

6. For contracted Cartesian Gaussians

(a) Recovering


lκ, contrbra, lλ, contrket,n,m−LM ,N1,N2,Lκ,Lλ, Lα︸︷︷︸

outer loop





from


lκ, contrbra, lλ, contrket,n,m−LM ,Lκ,Lλ, Lα︸︷︷︸

outer loop





=
∑

ij

wiκwjλ {lκ, lλ,n,m−LM ,Lκ,Lλ,Lα, i, j}Cart ,

4.3. GEOMETRIC DERIVATIVES 33

(b) Recovering primitive Cartesian Gaussian integrals




lκ, lλ,n,m−LM ,Lκ,Lλ, Lα, i, j︸ ︷︷ ︸
outer loop





Cart

from primitive Hermite Gaussian integrals




Lκ,Lλ,n,m−LM , Lα, i, j︸ ︷︷ ︸
outer loop





Herm

;

7. Recovering different primitive Hermite Gausssin integrals {lκ, lλ,n,m−LM ,Lα, i, j}Herm.

Therefore, the fifth dimension is arranged in the order of

num_elec, num_mom,
num_mag_bra, num_mag_ket, num_mag_total,
num_ram_bra, num_ram_ket, num_ram_total,
num_geo_bra, num_geo_ket, num_geo_opt, num_geo_total,

As regards the total geometric derivatives, the xyz components of the first differentiated center is the
most consecutive part, followed by the second, third, ..., and the last differentiated center.

4.3 Geometric Derivatives

As mentioned previously, there are two tasks for geometric derivatives:

1. Generating the total geometric derivatives
∏Ng ∂

Lg
Rg

according to the given Ng and number of
atoms, avoiding repetition and omission, and arranging these geometric derivatives in a required
sequence;

2. Transferring the above generated total geometric derivatives to partial geometric derivatives on
centers bra, ket, and/or centers in operator ÔK0L0

`β
.

These questions will be addressed in the following two sections.

4.3.1 Sequence of Total Geometric Derivatives

We first consider the question of generating all possible total geometric derivatives in a required sequence.
Let us consider the g-center L-th order total geometric derivatives (of an N -atom system)

∂L1
R1

∂L2
R2
· · ·∂Lg

Rg

∫
ω∗κ(r; B,J)Ô`β

(
{rCα} ,∂n

r ; B,J
)
ωλ(r; B,J)dr, (4.27)

where {
|Lg′ | ≥ 1, (1 ≤ g′ ≤ g),∑g

g′=1 |Lg′ | = L.
(4.28)

The sequence of the total geometric derivatives represents by the sequence of the indices (denoted
as Rg′ , 1 ≤ g′ ≤ g) of centers. We use an ascending order of the indices in Gen1Int

1 ≤ R1 ≤ R2 ≤ . . . Rg ≤ N. (4.29)

34 CHAPTER 4. FRAMEWORK OF GEN1INT

In Ref. [1], we have developed a procedure to generate all the possible total geometric derivatives
by using the conception “full arithmetic N -ary tree”. Taking fourth order total geometric derivatives as
an example, as shown in Fig. 4.2, the task of finding required total geometric derivatives could be done
by the following steps:

1. For a given path {R1, . . . , Rv−1, Rv, Rv+1, . . . , RL} and “height” v∗∗, we replace Rv with its sibling
Rv + 1. Here Rv should be the highest node which could be replaced, i.e., Rv+1 = · · · = RL = N .

2. We then set Rv+1 = · · · = RL = Rv + 1. If the number of different centers in path
{R1, . . . , Rv−1, Rv + 1, . . . , Rv + 1} is less than or equal to Nα + 2††, we then choose this path‡‡

and set v = L (Rv + 1 < N) or v = v − 1 (Rv + 1 = N); otherwise, we set v = v − 1 and back to
previous step to generate satisfied path.

This procedure could start from the leftmost path {11 . . . 1︸ ︷︷ ︸
L

} and v = L, and end at the path {NN . . .N︸ ︷︷ ︸
L

}.

All required total geometric derivatives could be generated, without repetition and omission.

1(1)

1(1)

0

2(2)

1

3(2)

1

1(1)

0

2(2)

1

3(2)

1

2(2)

0

3(3)

1

3(2)

0

1(1)

0

2(2)

1

3(2)

1

2(2)

0

3(3)

1

3(2)

0

2(2)

0

3(3)

1

3(3)

0

3(2)

0

H = 3
L ≡ H + 1 = 4

1 1︸ ︷︷ ︸
|L1|=2

2 2︸ ︷︷ ︸
|L2|=2

(|L1|+ 2
2

)
∂

∂X1

∂

∂X1

∂

∂X1

∂

∂Y1

∂

∂X1

∂

∂Z1

∂

∂Y1

∂

∂Y1

∂

∂Y1

∂

∂Z1

∂

∂Z1

∂

∂Z1

(|L2|+ 2
2

)
∂

∂X2

∂

∂X2

∂

∂X2

∂

∂Y2

∂

∂X2

∂

∂Z2

∂

∂Y2

∂

∂Y2

∂

∂Y2

∂

∂Z2

∂

∂Z2

∂

∂Z2

γ=2∏

k=1

(|Lk|+ 2
2

)

∂

∂X1

∂

∂X1

∂

∂X2

∂

∂X2

∂

∂X1

∂

∂Y1

∂

∂X2

∂

∂X2

· · · · · · · · · · · · · · · · · ·

∂

∂Z1

∂

∂Z1

∂

∂Z2

∂

∂Z2

Figure 4.2: A typical “full arithmetic 3-ary tree” with height H = 3 started from the first atom. The
numbers in the parentheses, and along with the arrows (paths between two nodes) are the weights of
the corresponding node and path. The selected path from the “root” to the “leaf” node (denoted as red
color) represents the generated differentiated geometric centers, while the red triangles and flag are the
generated two center fourth order total geometric derivatives.

This procedure has been implemented in file geom_total.F90 with the subroutines detailed in
∗∗The height should be v − 1.
††Nα is the number of centers in operator ÔK0L0

`β
.

‡‡Differentiated centers are in the reverse order of this path.

4.3. GEOMETRIC DERIVATIVES 35

Table 4.1, where “Public” subroutines could be called by users in their own codes, and “Private”
subroutines are usually not be called by the users.

Table 4.1: Subroutines of total geometric derivatives in Gen1Int.

Public
geom_total_tree_init Returns the total number of different paths, and generates the first

path.
In num_atoms number of atoms (N)

order_geo order of total geometric derivatives (L)
max_num_cent maximum number of differentiated centers (g)

Out num_paths total number of different paths
visit_height “height” of atom to visit (v)
idx_node indices of the selected atom nodes

({R1, R2, . . . , RL})
wt_node weights of the selected atom nodes
idx_cent indices of generated differentiated centers
order_cent order of derivatives of the differentiated cen-

ters
num_geo_cent number of all geometric derivatives for this

generated path (
∏g
g′=1

(|Lg′ |+2
2

)
)

geom_total_tree_search Searches for the next satisfied path from a given path, could be
called recursively.
In num_atoms number of atoms (N)

order_geo order of total geometric derivatives (L)
max_num_cent maximum number of differentiated centers (g)

InOut visit_height “height” of atom to visit (v)
idx_node indices of the selected atom nodes

({R1, R2, . . . , RL})
wt_node weights of the selected atom nodes
idx_cent indices of generated differentiated centers
order_cent order of derivatives of the differentiated cen-

ters
Out num_geo_cent number of all geometric derivatives for this

generated path (
∏g
g′=1

(|Lg′ |+2
2

)
)

Private
geom_total_num_paths Computes the total number of different paths.

In num_atoms number of atoms (N)
order_geo order of total geometric derivatives (L)
max_num_cent maximum number of differentiated centers (g)

Out num_paths total number of different paths
(
∑min(Ng ,L)

g′=1

(
N
g′
)(
L−1
g′−1

)
)

geom_total_new_path Generates a new path of differentiated centers from a given path,
the first path will return for giving the last path.
In num_atoms number of atoms (N)

order_geo order of total geometric derivatives (L)
Continued on next page

36 CHAPTER 4. FRAMEWORK OF GEN1INT

Table 4.1 – continued from previous page
InOut visit_height “height” of atom to visit (v)

idx_node indices of the selected atom nodes
({R1, R2, . . . , RL})

wt_node weights of the selected atom nodes

Last but not least, the number of redundant total geometric derivatives for a given path in Fig. 4.2
could be calculated as

3L
g∏

g′=1

(
L−∑g′−1

n=1 |Ln|
|Lg′ |

)
, (4.30)

as implemented in subroutine geom_total_num_redunt.

4.3.2 Partial Geometric Derivatives

After generating the differentiated centers {R1,R2, · · · ,Rg} and their orders of total geometric deriva-
tives {|L1|, |L2|, · · · , |Lg|}, the left problems are

1. transferring the generated total geometric derivatives to partial geometric derivatives on centers
of bra, ket and/or operator ÔK0L0

`β
;

2. after calculations, retrieving the total geometric derivatives from these partial geometric deriva-
tives.

Suppose the centers of bra, ket and/or operator ÔK0L0
`β

are {Rκ,Rλ,Rα, · · · }. In the first step, we
could compare the indices of these centers with those of differentiated centers {R1,R2, · · · ,Rg} when
g ≤ Nα+2. If there are identical centers in those of bra, ket and/or operator ÔK0L0

`β
, let us say there are

Nβ identical centers
{

Rβ1 ,Rβ2 , · · · ,RβNβ

}
, which are also identical with the differentiated center Rβ

in the total geometric derivatives, and order |Lβ|. We then have, according to the multinomial theorem
(http://en.wikipedia.org/wiki/Multinomial_theorem), the following partial geometric derivatives

∑

PNβ
k=1 |lk|=|Lβ |

(|Lβ|
|l1|, |l2|, · · · , |lNβ |

) Nβ∏

k=1

∂lk
Rβk

, (4.31)

where
(|Lβ|
|l1|, |l2|, · · · , |lNβ |

)
=

|Lβ|!
|l1|!|l2|! · · · |lNβ |!

(4.32)

=
(|l1|
|l1|

)(|l1|+ |l2|
|l2|

)
· · ·
(|l1|+ |l2|+ · · ·+ |lNβ |

|lNβ |

)
(4.33)

=
Nβ∏

k=1

(∑k
k′=1 |lk′ |
|lk|

)
, (4.34)

is the multinomial coefficient. The sum of all multinomial coefficients is
∑

PNβ
k=1 |lk|=|Lβ |

(|Lβ|
|l1|, |l2|, · · · , |lNβ |

)
= N

|Lβ |
β , (4.35)

http://en.wikipedia.org/wiki/Multinomial_theorem

4.4. MAGNETIC AND TOTAL ROTATIONAL ANGULAR MOMENTUM DERIVATIVES 37

and the number of multinomial coefficients (or the number of terms in multinomial sum) #|Lβ |,Nβ is

#|Lβ |,Nβ =
(|Lβ|+Nβ − 1

Nβ − 1

)
=
(|Lβ|+Nβ − 1

|Lβ|

)
. (4.36)

As pointed out in our recent work [1], sometimes this expansion is however not efficient, further
simplifications could be made by using the translational invariance [15, 16]. In Ref. [1], we have given
the possible partial geometric derivatives for operators with the number of centers Nα ≤ 2 and in the
case of Rκ = Rλ. These results are also shown here in Table 4.2.

Table 4.2: Possible partial geometric derivatives for Rκ = Rλ and the operator with the number of
centers Nα ≤ 2.

Identical centers Possible partial geometric derivatives
Nα = 0 Rκ = Rλ 0
Nα = 1 Rκ = Rλ = C1 0

Rκ = Rλ 6= C1 (−1)|Lκ|∂
LC1

+Lκ
C1

Nα = 2 Rκ = Rλ = C1 = C2 0
Rκ = Rλ = C1 6= C2 (−1)|Lκ|∂

LC2
+Lκ

C2

(Rκ = Rλ) 6= (C1 = C2) (−1)|Lκ|
∑Lκ+LC1

l1=0

(Lκ+LC1
l1

)
∂l1

C1
∂

Lκ+LC1
−l1

C2

Rκ = Rλ 6= C1 6= C2
∑Lκ

lκ=0

(
Lκ
lκ

)
∂lκ

Rκ
∂Lκ−lκ

Rλ
∂

LC1
C1

∂
LC2
C2

Being aware of that most operators in one-electron integrals have two centers at maximum, we
therefore only consider the operators with Nα ≤ 2 centers in current version of Gen1Int by hand coding
implementation of Table 4.2. The subroutines related to partial geometric derivatives are implemented
in files geom_part_zero.F90, geom_part_one.F90 and geom_part_two.F90.

Describe shell_scatter.F90 and shell_gather.F90 ... The procedure of scattering shells is
given in Fig. 4.3, and implemented in file shell_scatter.F90 ...

|m|+ |n|+ 1 < (|n|+ 1)
(|m|+ 1)(|m|+ 2)

2
(4.37)

4.4 Magnetic and Total Rotational Angular Momentum Derivatives

We assume that K0 and L0 in the operator ÔK0L0
`β

could run all the xyz components in the triangle
...

In order to evaluate

∂Lκ
Rκ

∂Lλ
Rλ

∫ [
∂K1

B ω∗κ(r; B)
]
B=0

Ô
(
{rCα} ,∂n

r

) [
∂K2

B ωλ(r; B)
]
B=0

dr (4.38)

to any order K1 and K2, we introduce the following auxiliary integral

∂Lκ
Rκ

∂Lλ
Rλ

∫
rN1
P

[
∂K1

B ω∗κ(r; B)
]
B=0

Ô
(
{rCα} ,∂n

r

)
rN2
P

[
∂K2

B ωλ(r; B)
]
B=0

dr, (4.39)

Describe how to perform this recurrence relations and sum

38 CHAPTER 4. FRAMEWORK OF GEN1INT

dxx

dxy

dyy

dxz

dyz

dzz

|m| = 2

fxxx fxxy fxyy fyyy fxxz fxyz fyyz fxzz fyzz fzzz

|n| = 3

gxxxxx

gxxxxy

gxxxyy

gxxyyy

gxyyyy

gyyyyy

gxxxxz

gxxxyz

gxxyyz

gxyyyz

gyyyyz

gxxxzz

gxxyzz

gxyyzz

gyyyzz

gxxzzz

gxyzzz

gyyzzz

gxzzzz

gyzzzz

gzzzzz

|m + n| = 5

s
|n| = 0

smn = smn + |m|

wmn = wmn + in

Algorithm

smn = 0
! loops over the xyz components of n-shell
wn = 0
do in = |n|, 0, −1

do jn = 0, in
smn = smn + 1
wn = wn + 1
! loops over the xyz components of m-shell
wm = 0
wmn = smn

do im = |m|, 0, −1
do jm = 0, im

wm = wm + 1
wmn = wmn + 1
{wm, wn} = {wmn}

end do
wmn = wmn + in

end do
end do
smn = smn + |m|

end do

Figure 4.3: Procedure of scattering shells.

4.5. CONTRACTED INTEGRALS 39

4.5 Contracted Integrals

Describe subroutine const_contr_ints in file const_contr_ints.F90 which performs the contrac-
tions (4.14) and (4.19) ...

Describe all the subroutines related to contracted integrals ...

4.6 One-electron Operators in Gen1Int

We first discuss the evaluation of basic integral
[
lκlλ

∣∣∣ÔK0L0
`β

]
ij
with the operator ÔK0L0

`β
being the form

ÔK0L0
`β

(
{rCα} ,∂n

r

)
= C̄f ({rCα}) ∂n

r . The cases of effective core potential and model core potential
(Version 1) could be obtained in the similar way. By substituting the explicit form of the operator into
the basic integral (4.25), we get [1–3]

[
lκlλ

∣∣∣ÔK0L0
`β

]
ij

= C̄(−2bjλ)|n|
∂lκ

Rκ

(2aiκ)|lκ|
∂lλ+n

Rλ

(2bjλ)|lλ|+|n|

[
e−uijR

2
κλ

∫
f ({rCα}) e−pijr

2
γdr

]
(4.40)

≡ C̄(−2bjλ)|n|
[
lκ, lλ+n

∣∣∣f ({rCα})
]
ij
,

where we have introduced the quantities

pij = aiκ + bjλ, uij =
aiκbjλ
pij

, Rγ =
aiκRκ + bjλRλ

pij
. (4.41)

The recurrence relations of C̄(−2bjλ)|n|
[
lκ, lλ+n

∣∣∣f ({rCα})
]
ij

for different f ({rCα}) have been

discussed in Ref. [1–3]. We will, in the following sections, discuss the implementation of these recurrence
relations.

4.6.1 Electronic Derivatives

The electronic derivatives could be recovered through

C̄
[
lκlλ

∣∣∣f ({rCα}) ∂n
r

]
ij
≡ C̄(−2bjλ)|n|

[
lκ, lλ+n

∣∣∣f ({rCα})
]
ij
, (4.42)

or in a more compact form
{lλ,n} = {lλ+n} . (4.43)

The electronic derivatives could be recovered by calling the subroutine shell_scatter (see
Section 4.3.2) ...

4.6.2 Cartesian Multipole Moments

The operator of Cartesian multipole moments can be written as follows

ÔK0L0
`β

= C̄
(
∂LM

M rm
M

)
∂n

r . (4.44)

The electronic derivatives have been discussed in previous section 4.6.1. We will, in current section,
discuss in detail about the evaluation of the integrals of the operator C̄(−2bjλ)|n|

(
∂LM

M rm
M

)
.

By gluing the subroutines together, we get the subroutine prim_hgto_carmom which returns
the Cartesian multipole moment integrals of given primitive Hermite Gaussians on bra and ket centers.
Describe prim_hgto_carmom in detail ...

40 CHAPTER 4. FRAMEWORK OF GEN1INT

Geometric Derivatives of Dipole Origin

The geometric derivatives of dipole origin rM can be further written as

∂LM
M rm

M =
(−1)|LM |m!
(m−LM)!

rm−LM
M , (4.45)

where we have required that
m ≥ LM . (4.46)

Therefore, the integrals of geometric derivatives of dipole origin ∂LM
M rm

M in a multi-dimensional
array {1:NLM , 1:Nm}, could be retrieved from the integrals of lower order Cartesian multipole moments
rm−LM
M in an array {1:Nm−LM }, where

NLM =
(|LM |+ 1)(|LM |+ 2)

2
, (4.47)

Nm =
(|m|+ 1)(|m|+ 2)

2
, (4.48)

Nm−LM =
(|m| − |LM |+ 1)(|m| − |LM |+ 2)

2
, (4.49)

as illustrated in Table 4.3. The procedure of retrieving the integrals of geometric derivatives of dipole
origin ∂LM

M rm
M has been implemented in file carmom_deriv.F90.

Table 4.3: Retrieving integrals of ∂3
Mr5

M through those of r2
M .

∂xxx ∂xxy ∂xyy ∂yyy ∂xxz ∂xyz ∂yyz ∂xzz ∂yzz ∂zzz
rxxxxx rxx 0 0 0 0 0 0 0 0 0
rxxxxy rxy rxx 0 0 0 0 0 0 0 0
rxxxyy ryy rxy rxx 0 0 0 0 0 0 0
rxxyyy 0 ryy rxy rxx 0 0 0 0 0 0
rxyyyy 0 0 ryy rxy 0 0 0 0 0 0
ryyyyy 0 0 0 ryy 0 0 0 0 0 0
rxxxxz rxz 0 0 0 rxx 0 0 0 0 0
rxxxyz ryz rxz 0 0 rxy rxx 0 0 0 0
rxxyyz 0 ryz rxz 0 ryy rxy rxx 0 0 0
rxyyyz 0 0 ryz rxz 0 ryy rxy 0 0 0
ryyyyz 0 0 0 ryz 0 0 ryy 0 0 0
rxxxzz rzz 0 0 0 rxz 0 0 rxx 0 0
rxxyzz 0 rzz 0 0 ryz rxz 0 rxy rxx 0
rxyyzz 0 0 rzz 0 0 ryz rxz ryy rxy 0
ryyyzz 0 0 0 rzz 0 0 ryz 0 ryy 0
rxxzzz 0 0 0 0 rzz 0 0 rxz 0 rxx
rxyzzz 0 0 0 0 0 rzz 0 ryz rxz rxy
ryyzzz 0 0 0 0 0 0 rzz 0 ryz ryy

rxzzzz 0 0 0 0 0 0 0 rzz 0 rxz
ryzzzz 0 0 0 0 0 0 0 0 rzz ryz

rzzzzz 0 0 0 0 0 0 0 0 0 rzz

4.6. ONE-ELECTRON OPERATORS IN GEN1INT 41

Recovering the Cartesian Multipole Moments

After removing the geometric derivatives on dipole origin, what left for us becomes

C̄(−2bjλ)|n| [lκlλm]ij = C̄(−2bjλ)|n|
∂lκ

Rκ

(2aiκ)|lκ|
∂lλ

Rλ

(2bjλ)|lλ|

[
e−uijR

2
κλ

∫
rm
Me−pijr

2
γdr

]
, (4.50)

the Cartesian multipole moments could be recovered through the following recurrence relation [7]

[lκlλ,m+eξ]ij = (RγM)ξ [lκlλm]ij +
1

2pij

{
(lκ)ξ [lκ−eξ, lλm]ij (4.51)

+ (lλ)ξ [lκ, lλ−eξ,m]ij +mξ [lκlλ,m−eξ]ij

}
,

which has been implemented in file carmom_moment.F90.

Horizontal Recurrence Relation on Ket Center

The HGTOs on ket center could be recovered by the “horizontal” recurrence relation (HRR) [7]

[lκ, lλ+eξ,0]ij = −aiκ
bjλ

[lκ+eξ, lλ0]ij , (4.52)

which has been implemented in file carmom_hrr_ket.F90.

Recovering the HGTOs on Bra Center

The HGTOs on bra center could be obtained through the following recurrence relation [7]

[lκ+eξ,00]ij = (Rγκ)ξ [lκ00]ij −
1

2pij

(lκ)ξbjλ
aiκ

[lκ−eξ,00]ij , (4.53)

starting from the integrals

C̄(−2bjλ)|n| [000]ij = C̄(−2bjλ)|n|e−uijR
2
κλ

∫
e−pijr

2
γdr = C̄(−2bjλ)|n|e−uijR

2
κλ

(
π

pij

) 3
2

. (4.54)

The recurrence relation (4.53) has been implemented in file carmom_hbra.F90.

4.6.3 δ-function

The operator of δ-function takes the form

ÔK0L0
`β

= C̄
(
∂LM

M rm
M

) [
∂LC

C δ(rC)
]
∂n

r (4.55)

=
(−1)|LM |m!
(m−LM)!

C̄(−2bjλ)|n|rm−LM
M

(
∂LC

C δ(rC)
) ∂lλ

Rλ

(2bjλ)|lλ|
,

such that
[
lκlλLCLMmn

∣∣∣ÔK0L0
`β

]
ij

=
(−1)|LM |m!
(m−LM)!

C̄(−2bjλ)|n| (4.56)

×
∂lκ

Rκ

(2aiκ)|lκ|
∂lλ+n

Rλ

(2bjλ)|lλ|+|n|
∂LC

C

[
e−uijR

2
κλ

∫
rm−LM
M δ(rC)e−pijr

2
γdr

]

≡ (−1)|LM |m!
(m−LM)!

[lκ, lλ+n,LC ,m−LM]ij ,

42 CHAPTER 4. FRAMEWORK OF GEN1INT

where

[
l′κl
′
λL
′
Cm′

]
ij

= C̄(−2bjλ)|n|
∂

l′κ
Rκ

(2aiκ)|l′κ|
∂

l′λ
Rλ

(2bjλ)|l
′
λ|

∂
L′C
C

[
e−uijR

2
κλ

∫
rm′
M δ(rC)e−pijr

2
γdr

]
(4.57)

= C̄(−2bjλ)|n|
∂

l′κ
Rκ

(2aiκ)|l′κ|
∂

l′λ
Rλ

(2bjλ)|l
′
λ|

∂
L′C
C

(
e−uijR

2
κλe−pijR

2
CγRm′

CM

)
.

Therefore,
[
lκlλLCLMmn

∣∣∣ÔK0L0
`β

]
ij

will be zero if centers C and M are the same.

Recovering the Cartesian Multipole Moments

The Cartesian multipole moments could be easily recovered (if there is any) via [2]

[
l′κl
′
λL
′
C ,m

′+eξ
]
ij

= (RCM)ξ
[
l′κl
′
λL
′
Cm′

]
ij

+ (L′C)ξ
[
l′κl
′
λ,L

′
C−eξ,m

′]
ij
, (4.58)

by starting from
[
l′κl
′
λL
′
C0
]
ij
, and implemented in file delta_moment.F90.

Recovering the HGTOs on Bra and Ket Centers

The recurrence relations of l′κ and l′λ take the same form [2]

[
l′κ+eξ, l

′
λL
′
C0
]
ij

= (RCκ)ξ
[
l′κl
′
λL
′
C0
]
ij

+ (L′C)ξ
[
l′κl
′
λ,L

′
C−eξ,0

]
ij

(4.59)

− (l′κ)ξ
2aiκ

[
l′κ−eξ, l

′
λL
′
C0
]
ij
,

[
l′κ, l

′
λ+eξ,L

′
C0
]
ij

= (RCλ)ξ
[
l′κl
′
λL
′
C0
]
ij

+ (L′C)ξ
[
l′κl
′
λ,L

′
C−eξ,0

]
ij

(4.60)

− (l′λ)ξ
2bjλ

[
l′κ, l

′
λ−eξ,L

′
C0
]
ij
,

and implemented in delta_hket.F90.

Recovering the Geometric Derivatives of δ-function

The recurrence relation of geometric derivatives of Dirac delta function could be easily obtained from

[
00L′C0

]
ij

= C̄(−2bjλ)|n|∂L′C
C

(
e−uijR

2
κλe−pijR

2
Cγ

)
, (4.61)

as [
00,L′C+eξ,0

]
ij

= −2pij
{

(RCγ)ξ
[
00L′C0

]
ij

+ (L′C)ξ
[
00,L′C−eξ,0

]
ij

}
, (4.62)

and

[0000]ij = C̄(−2bjλ)|n|e−uijR
2
κλe−pijR

2
Cγ , (4.63)

which is implemented in delta_geom.F90.

4.6. ONE-ELECTRON OPERATORS IN GEN1INT 43

4.6.4 Nuclear Attraction Potential

The operator involved in nuclear attraction potential is

ÔK0L0
`β

= C̄
(
∂LM

M rm
M

)(
∂LC

C r−1
C

)
∂n

r (4.64)

=
(−1)|LM |m!
(m−LM)!

C̄(−2bjλ)|n|rm−LM
M

(
∂LC

C r−1
C

) ∂lλ
Rλ

(2bjλ)|lλ|
,

such that
[
lκlλLCLMmn

∣∣∣ÔK0L0
`β

]
ij

=
(−1)|LM |m!
(m−LM)!

C̄(−2bjλ)|n| (4.65)

×
∂lκ

Rκ

(2aiκ)|lκ|
∂lλ+n

Rλ

(2bjλ)|lλ|+|n|
∂LC

C

[
e−uijR

2
κλ

∫
rm−LM
M

rC
e−pijr

2
γdr

]

≡ (−1)|LM |m!
(m−LM)!

[lκ, lλ+n,LC ,m−LM ; 0]ij ,

where

[
l′κl
′
λL
′
Cm′; 0

]
ij

= C̄(−2bjλ)|n|
∂

l′κ
Rκ

(2aiκ)|l′κ|
∂

l′λ
Rλ

(2bjλ)|l
′
λ|

∂
L′C
C

[
e−uijR

2
κλ

∫
rm′
M

rC
e−pijr

2
γdr

]
. (4.66)

Recovering the Cartesian Multipole Moments

The recrement in Cartesian multipole moments is

[
l′κl
′
λL
′
C ,m

′+eξ; 0
]
ij

= C̄(−2bjλ)|n|
∂

l′κ
Rκ

(2aiκ)|l′κ|
∂

l′λ
Rλ

(2bjλ)|l
′
λ|

∂
L′C
C

[
e−uijR

2
κλ

∫
r

m′+eξ
M

rC
e−pijr

2
γdr

]
(4.67)

= C̄(−2bjλ)|n|
∂

l′κ
Rκ

(2aiκ)|l′κ|
∂

l′λ
Rλ

(2bjλ)|l
′
λ|

∂
L′C
C

[
e−uijR

2
κλ

∫
rm′
M (RγM + rγ)ξ

rC
e−pijr

2
γdr

]

= C̄(−2bjλ)|n|
∂

l′κ
Rκ

(2aiκ)|l′κ|
∂

l′λ
Rλ

(2bjλ)|l
′
λ|

∂
L′C
C

×
[

(RγM)ξe−uijR
2
κλ

∫
rm′
M

rC
e−pijr

2
γdr − e−uijR

2
κλ

∫
rm′
M

rC

(
∂

eξ
r

2pij
e−pijr

2
γ

)
dr

]
,

by taking (RγM)ξ outside and noticing that
∫
f(x)g′(x)dx = f(x)g(x)−

∫
f ′(x)g(x)dx, (4.68)

we get the following recurrence relation to recover the Cartesian multipole moments

[
l′κl
′
λL
′
C ,m

′+eξ; 0
]
ij

= (RγM)ξ
[
l′κl
′
λL
′
Cm′; 0

]
ij

+
1

2pij

{
(l′κ)ξ

[
l′κ−eξ, l

′
λL
′
Cm′; 0

]
ij

(4.69)

+ (l′λ)ξ
[
l′κ, l

′
λ−eξ,L

′
Cm′; 0

]
ij

+m′ξ
[
l′κl
′
λL
′
C ,m

′−eξ; 0
]
ij
−
[
l′κl
′
λ,L

′
C+eξ,m

′; 0
]
ij

}
,

where we require a range of different orders HGTOs on bra and ket centers returned.

44 CHAPTER 4. FRAMEWORK OF GEN1INT

Recovering the HGTOs on Bra and Ket Centers

The recurrence relation of l′κ is [2]

[
l′κ+eξ, l

′
λL
′
C0; 0

]
ij

= (Rγκ)ξ
[
l′κl
′
λL
′
C0; 0

]
ij
− 1

2pij

{
(l′κ)ξbjλ
aiκ

[
l′κ−eξ, l

′
λL
′
C0; 0

]
ij

(4.70)

− (l′λ)ξ
[
l′κ, l

′
λ−eξ,L

′
C0; 0

]
ij

+
[
l′κl
′
λ,L

′
C+eξ,0; 0

]
ij

}
,

and that of l′λ [2]

[
0, l′λ+eξ,L

′
C0; 0

]
ij

= (Rγλ)ξ
[
0l′λL

′
C0; 0

]
ij
− 1

2pij

{
(l′λ)ξaiκ
bjλ

[
0, l′λ−eξ,L

′
C0; 0

]
ij

(4.71)

+
[
0l′λ,L

′
C+eξ,0; 0

]
ij

}
,

which are implemented in file nucpot_hbra.F90 and nucpot_hket.F90, respectively.

Recovering the Geometric Derivatives of Nuclear Potential Center

Finally, the geometric derivatives on operator center C

[
00L′C0; 0

]
ij

= C̄(−2bjλ)|n|∂L′C
C

[
e−uijR

2
κλ

∫
e−pijr

2
γ

rC
dr

]
(4.72)

= C̄(−2bjλ)|n|e−uijR
2
κλ

2π
pij

∂
L′C
C F0

(
pijR

2
Cγ

)
,

and
∂

eξ
C Fn0

(
pijR

2
Cγ

)
= (RCγ)ξ(−2pij)Fn0+1

(
pijR

2
Cγ

)
, (4.73)

so that

[
00,L′C+eξ,0;n0

]
ij

= (RCγ)ξ
[
00L′C0;n0+1

]
ij

+ (L′C)ξ
[
00,L′C−eξ,0;n0+1

]
ij
, (4.74)

and

[0000;n0]ij = C̄(−2bjλ)|n|e−uijR
2
κλ

2π
pij

(−2pij)n0Fn0

(
pijR

2
Cγ

)
, (4.75)

where Fn0(T) is the n0th order Boys function.
The recurrence relation (4.74) could be performed in a similar manner to those in Fig. 4.5 and

4.6, what we need to take into account is that recurrence relations for odd and even |L′C |min are a bit
different at n0 + 1 = |L′C |min+ mod (|L′C |min,2)

2 , as shown in Fig. 4.4. Such a recurrence relation (4.74) has
been implemented in nucpot_geom.F90.

4.6.5 Inverse Square Distance Potential

ÔK0L0
`β

= C̄
(
∂LM

M rm
M

)(
∂LC

C r−2
C

)
∂n

r (4.76)

4.6. ONE-ELECTRON OPERATORS IN GEN1INT 45

Order of Boys functions

|L′
C |min+1

2
|L′

C |min

O
rd

e
r

o
f
g
e
o
m

e
tr

ic
d
e
ri

v
a
ti

v
e
s

|L
′ C

| m
in

mod (|L′
C |min, 2) = 1

Order of Boys functions

|L′
C |min
2

|L′
C |min

O
rd

e
r

o
f
g
e
o
m

e
tr

ic
d
e
ri

v
a
ti

v
e
s

|L
′ C

| m
in

mod (|L′
C |min, 2) = 0

Figure 4.4: Procedure of recurrence relation (4.74) for odd and even |L′C |min.

4.6.6 Gaussian Charge Potential

The operator involved in Gaussian charge potential is

ÔK0L0
`β

= C̄
(
∂LM

M rm
M

)[
∂LC

C

erf
(√
%rC

)

rC

]
∂n

r (4.77)

=
(−1)|LM |m!
(m−LM)!

C̄(−2bjλ)|n|rm−LM
M

[
∂LC

C

erf
(√
%rC

)

rC

]
∂lλ

Rλ

(2bjλ)|lλ|
,

such that
[
lκlλLCLMmn

∣∣∣ÔK0L0
`β

]
ij

=
(−1)|LM |m!
(m−LM)!

C̄(−2bjλ)|n| (4.78)

×
∂lκ

Rκ

(2aiκ)|lκ|
∂lλ+n

Rλ

(2bjλ)|lλ|+|n|
∂LC

C

[
e−uijR

2
κλ

∫
rm−LM
M erf

(√
%rC

)

rC
e−pijr

2
γdr

]

≡ (−1)|LM |m!
(m−LM)!

[lκ, lλ+n,LC ,m−LM ; 0]ij ,

where

[
l′κl
′
λL
′
Cm′; 0

]
ij

= C̄(−2bjλ)|n|
∂

l′κ
Rκ

(2aiκ)|l′κ|
∂

l′λ
Rλ

(2bjλ)|l
′
λ|

∂
L′C
C

[
e−uijR

2
κλ

∫
rm′
M erf

(√
%rC

)

rC
e−pijr

2
γdr

]
. (4.79)

The evaluation of
[
l′κl
′
λL
′
Cm′; 0

]
ij
could be performed as the case of nuclear attraction potential in

Section 4.6.4, and we finally need to consider the geometric derivatives on operator center C

[
00L′C0; 0

]
ij

= C̄(−2bjλ)|n|∂L′C
C

[
e−uijR

2
κλ

∫
e−pijr

2
γerf

(√
%rC

)

rC
dr

]
. (4.80)

46 CHAPTER 4. FRAMEWORK OF GEN1INT

By noticing that

erf (
√
%rC) =

2√
π

∫ √%rC
0

e−t
2
dt, (4.81)

we get ∫
e−pijr

2
γerf

(√
%rC

)

rC
dr =

2π
%
F̃0

(
pij
%
, pijR

2
Cγ

)
, (4.82)

where we have introduced (n0 ≥ 0, τ > 0, T ≥ 0)

F̃n0 (τ, T) =
∫ 1

0

u2n0

(τ + u2)n0+ 3
2

e−T
u2

τ+u2 du (4.83)

=
1

τ
√

1 + τ(1 + τ)n0
Fn0

(
T

1 + τ

)

with Fn0(T) being the n0th order Boys function.
We notice the same relation of F̃n0 (τ, T) as that of Boys function

∂
eξ
C F̃n0

(
pij
%
, pijR

2
Cγ

)
= (RCγ)ξ(−2pij)F̃n0+1

(
pij
%
, pijR

2
Cγ

)
, (4.84)

so that
[
00,L′C+eξ,0;n0

]
ij

= (RCγ)ξ
[
00L′C0;n0+1

]
ij

+ (L′C)ξ
[
00,L′C−eξ,0;n0+1

]
ij
, (4.85)

and

[0000;n0]ij = C̄(−2bjλ)|n|e−uijR
2
κλ

2π
%

(−2pij)n0F̃n0

(
pij
%
, pijR

2
Cγ

)
(4.86)

= C̄(−2bjλ)|n|e−uijR
2
κλ

2π
pij

√
%

%+ pij

(
−2

%pij
%+ pij

)n0

Fn0

(
%pij
%+ pij

R2
Cγ

)
.

4.6.7 Diamagnetic Spin-Orbit Coupling

ÔK0L0
`β

= C̄
(
∂

LC1
C1

r−1
C1

)(
∂

LC2
C2

r−1
C2

)
∂n

r (4.87)

4.6.8 Effective Core Potential

Effective core potential

ÔK0L0
`β

= UL(rC) +
L−1∑

l=0

l∑

m=−l
|Ylm〉[Ul(rC)− UL(rC)]〈Ylm|, (4.88)

where Ylm(θC , ϕC) are real spherical harmonics centered on C, UL(rC) and Ul(rC) − UL(rC) (l =
0, . . . , L− 1) are expressed as combinations of Gaussians

UL(rC) =
Ncore

rC
+
∑

k

dkLr
nkL
C e−ckLr

2
C , (4.89)

Ul(rC)− UL(rC) =
∑

k

dklr
nkl
C e−cklr

2
C . (4.90)

4.6. ONE-ELECTRON OPERATORS IN GEN1INT 47

The evaluation of integral over Ncore
rC

has been discussed in our recent work [2]. Therefore, the new
types of integrals arising from the geometric derivative of integral (4.25) over the ECP operator (4.88)
are [17?]

χκλ = 4π
∫ +∞

0

∑

k

dkL 〈lκlλLC ;nkL+2, 0〉 dr, (4.91)

and

γκλ = 4π
L−1∑

l=0

l∑

m=−l

l∑

µ1,µ2=−l


 ∑

|l1|,|l2|=l
ulµ1

l1
ulµ2

l2
vlml1 v

lm
l2



∫ +∞

0

∑

k

dkl 〈lκlλLC ; ll, nkl+2〉 dr, (4.92)

where

〈
lκlλLC ;nn′

〉
=

∂lκ
Rκ

(2aκ)|lκ|
∂lλ

Rλ

(2bλ)|lλ|
∂LC

C

[
e−aκR

2
Cκ−bλR2

Cλrn
′+ne−αkLr

2Mn(RSr)
(RSr)n

]
, (4.93)

RS = −2(aκRCκ + bλRCλ), (4.94)
αkL = aκ + bλ + ckL, (4.95)

and

〈
lκlλLC ;n1n2n

′〉 = 4π
∂lκ

Rκ

(2aκ)|lκ|
∂lλ

Rλ

(2bλ)|lλ|
∂LC

C

[
e−aκR

2
Cκ−bλR2

CλYn1µ1

(
θRSκ , ϕRSκ

)
(4.96)

× Yn2µ2

(
θRSλ , ϕRSλ

)
rn
′
e−αklr

2
Mn1(RSκr)Mn2(RSλr)

]
,

RSκ = −2aκRCκ, (4.97)
RSλ = −2bλRCλ, (4.98)
αkl = aκ + bλ + ckl. (4.99)

ulµ1

l1
, ulµ2

l2
, vlml1 and vlml2 in the integral γκλ are the transform coefficients between real spherical harmonics

and unitary sphere polynomials, and could be evaluated analytically [17].
The function Mn(x) in the integrands 〈lκlλLC ;nn′〉 and 〈lκlλLC ;n1n2n

′〉 is a modified spherical
Bessel function of the first kind

Mn(x) = xn
(

1
x

d
dx

)n sinhx
x

. (4.100)

Notice the relationship between the real solid-harmonics Slm(r, θ, ϕ) and real spherical harmonics [6]

Slm(r, θ, ϕ) = (−1)m
√

4π
2l + 1

rlYlm(θ, ϕ), (4.101)

the function e−aκR
2
CκYn1µ1

(
θRSκ , ϕRSκ

)
in the integrand 〈lκlλLC ;n1n2n

′〉, for instance, could be written
as

e−aκR
2
CκYn1µ1

(
θRSκ , ϕRSκ

)
= (−1)µ1

√
2n1 + 1

4π
1
Rn1
Sκ

Sn1µ1(RSκ)e−
1

4aκ
R2
Sκ (4.102)

= (−1)n1+µ1

√
2n1 + 1

4π
1
Rn1
Sκ

∑

|n′1|=n1

Sn1µ1

n′1

(
∂

n′1
Rκ

e−aκR
2
Cκ

)
,

48 CHAPTER 4. FRAMEWORK OF GEN1INT

where we have transformed the real solid-harmonics to the sum of Hermite Gaussians, and Sn1µ1

n′1
are

the the transformation coefficients between Cartesian and real solid-harmonic Gaussians [7]. Therefore,
we could rewrite 〈lκlλLC ;n1n2n

′〉 as
〈
lκlλLC ;n1n2n

′〉 = (−1)n1+µ1+n2+µ2
√

(2n1 + 1)(2n2 + 1) (4.103)

×
∑

|n′1|=n1

∑

|n′2|=n2

Sn1µ1

n′1
Sn2µ2

n′2

〈
lκlλLCn′1n

′
2;n1n2n

′〉 ,

where

〈
lκlλLCn′1n

′
2;n1n2n

′〉 =
∂lκ

Rκ

(2aκ)|lκ|
∂lλ

Rλ

(2bλ)|lλ|
∂LC

C

[(
∂

n′1
Rκ

e−aκR
2
Cκ

)(
∂

n′2
Rλ

e−bλR
2
Cλ

)
(4.104)

× rn′+n1+n2e−αklr
2Mn1(RSκr)

(RSκr)n1

Mn2(RSλr)
(RSλr)n2

]
.

We next discuss the evaluation of the integrands 〈lκlλLC ;nn′〉 and 〈lκlλLCn′1n
′
2;n1n2n

′〉. Notice
that [?] (

1
x

d
dx

)m Mn(x)
xn

=
Mn+m(x)
xn+m

, (4.105)

we have, for instance

∂
eξ
Rκ

[
Mn(RSr)
(RSr)n

]
= aκr

2(RS)ξ
Mn+1(RSr)
(RSr)n+1

. (4.106)

The recurrence relations of 〈lκlλLC ;nn′〉 and 〈lκlλLCn′1n
′
2;n1n2n

′〉 could thus be obtained using the
translational invariance [15, 16], Eq. (??), Eqs. (4.106) and (??)

〈
lκlλ,LC+eξ;nn′

〉
= −2aκ

〈
lκ+eξ, lλLC ;nn′

〉
− 2bλ

〈
lκ, lλ+eξ,LC ;nn′

〉
, (4.107)

〈
lκ+eξ, lλLC ;nn′

〉
=
〈
lκ, lλ+eξ,LC ;nn′

〉
− (Rκλ)ξ

〈
lκlλLC ;nn′

〉
(4.108)

− (lκ)ξ
2aκ

〈
lκ−eξ, lλLC ;nn′

〉
+

(lλ)ξ
2bλ

〈
lκ, lλ−eξ,LC ;nn′

〉
,

〈
lκ, lλ+eξ,LC ;nn′

〉
= (RCλ)ξ

〈
lκlλLC ;nn′

〉
− (lλ)ξ

2bλ

〈
lκ, lλ−eξ,LC ;nn′

〉
(4.109)

+ (LC)ξ
〈
lκlλ,LC−eξ;nn′

〉
+

(RS)ξ
2

〈
lκlλLC ;n+1, n′+1

〉

+
(lκ)ξ

2
〈
lκ−eξ, lλLC ;n+1, n′+1

〉
+

(lλ)ξ
2
〈
lκ, lλ−eξ,LC ;n+1, n′+1

〉

− (LC)ξ(aκ + bλ)
〈
lκlλ,LC−eξ;n+1, n′+1

〉
,

and

〈
lκlλ,LC+eξ,n

′
1n
′
2;n1n2n

′〉 = − 2aκ
〈
lκ+eξ, lλLCn′1n

′
2;n1n2n

′〉 (4.110)
− 2bλ

〈
lκ, lλ+eξ,LCn′1n

′
2;n1n2n

′〉 ,

4.6. ONE-ELECTRON OPERATORS IN GEN1INT 49

〈
lκ+eξ, lλLCn′1n

′
2;n1n2n

′〉 =
1

2aκ

〈
lκlλLC ,n

′
1+eξ,n

′
2;n1n2n

′〉 (4.111)

+
(RSκ)ξ

2
〈
lκlλLCn′1n

′
2;n1+1, n2, n

′+1
〉

+ (lκ)ξ
〈
lκ−eξ, lλLCn′1n

′
2;n1+1, n2, n

′+1
〉

− 2aκ(LC)ξ
〈
lκlλ,LC−eξ,n

′
1n
′
2;n1+1, n2, n

′+1
〉
,

〈
lκ, lλ+eξ,LCn′1n

′
2;n1n2n

′〉 =
1

2bλ

〈
lκlλLC ,n

′
1,n

′
2+eξ;n1n2n

′〉 (4.112)

+
(RSλ)ξ

2
〈
lκlλLCn′1n

′
2;n1, n2+1, n′+1

〉

+ (lλ)ξ
〈
lκ, lλ−eξ,LCn′1n

′
2;n1, n2+1, n′+1

〉

− 2bλ(LC)ξ
〈
lκlλ,LC−eξ,n

′
1n
′
2;n1, n2+1, n′+1

〉
,

〈
lκlλLC ,n

′
1+eξ,n

′
2;n1n2n

′〉 = 2aκ(RCκ)ξ
〈
lκlλLCn′1n

′
2;n1n2n

′〉 (4.113)
− (lκ)ξ

〈
lκ−eξ, lλLCn′1n

′
2;n1n2n

′〉

+ 2(LC)ξaκ
〈
lκlλ,LC−eξ,n

′
1n
′
2;n1n2n

′〉

− 2(n′1)ξaκ
〈
lκlλLC ,n

′
1−eξ,n

′
2;n1n2n

′〉 ,

〈
lκlλLC ,n

′
1,n

′
2+eξ;n1n2n

′〉 = 2bλ(RCλ)ξ
〈
lκlλLCn′1n

′
2;n1n2n

′〉 (4.114)
− (lλ)ξ

〈
lκ, lλ−eξ,LCn′1n

′
2;n1n2n

′〉

+ 2(LC)ξbλ
〈
lκlλ,LC−eξ,n

′
1n
′
2;n1n2n

′〉

− 2(n′2)ξbλ
〈
lκlλLC ,n

′
1,n

′
2−eξ;n1n2n

′〉 .

The integrals χκλ and γκλ could finally be evaluated using adaptive quadrature with the knowledge
of the values of integrands

〈
000;nn′

〉
= e−aκR

2
Cκ−bλR2

Cλrn
′+ne−αkLr

2Mn(RSr)
(RSr)n

(4.115)

=
rn
′ (
R−1
S

)n

eaκ(r−RCκ)2+bλ(r−RCλ)2+ckLr2e(RSκ+RSλ−RS)r
Mn(RSr)e−RSr

and

〈
00000;n1n2n

′〉 = e−aκR
2
Cκ−bλR2

Cλrn
′+n1+n2e−αklr

2Mn1(RSκr)
(RSκr)n1

Mn2(RSλr)
(RSλr)n2

(4.116)

=
rn
′ (
R−1
Sκ

)n1
(
R−1
Sλ

)n2

eaκ(r−RCκ)2+bλ(r−RCλ)2+cklr2
Mn1(RSκr)e

−RSκrMn2(RSλr)e
−RSλr

at quadrature points [17]. The evaluation of the scaled modified spherical Bessel function of the first
kind Mn(z)e−z has been discussed in Ref. [17].

4.6.9 Model Core Potential (Version 1)

Model core potential (Version 1)
ÔK0L0
`β

= Vmp(rC) + Ω̂, (4.117)

50 CHAPTER 4. FRAMEWORK OF GEN1INT

where
Vmp(rC) = −Z −Ncore

rC

∑

l

Alr
nl
C e−αlr

2
C , (4.118)

and
Ω̂ = −

∑

k

fkεk |ϕk(rC)〉 〈ϕk(rC)| , (4.119)

with 1 ≤ fk ≤ 2 being adjustable parameters, and εk the eigenvalue of the k’th core orbital. ϕk(rC) is
the k’th core orbital, represented by real solid-harmonic Gaussian functions.

4.6.10 Overlap Distribution

Starting from Eq. (4.2), we could get the total and/or partial derivatives (evaluated at zero fields) of
overlap distribution of two contracted rotational LAOs (2) as

Ωκλ(r) =
K∑

K′=0

L∑

L′=0

(
K

K ′

)(
L

L′

) Ng∏
∂

Lg
Rg

{
∂Lκ

Rκ

[
∂K1+K′

B ∂L1+L′
J ω∗κ(r; B,J)

]
B,J=0

(4.120)

× ∂Lλ
Rλ

[
∂K2+K′′

B ∂L2+L′′
J ωλ(r; B,J)

]
B,J=0

}
,

=
K∑

K′=0

L∑

L′=0

(
K

K ′

)(
L

L′

) Ng∏
∂

Lg
Rg

(i
2

)|K1|+|K′| (−i)|L1|+|L′| (− i
2

)|K2|+|K′′| i|L2|+|L′′|

× ∂Lκ
Rκ

∂Lλ
Rλ

{
(RκG × rP)K1+K′ [I−T (RκO × rP)

]L1+L′
χκ(r)

× (RλG × rP)K2+K′′ [I−T (RλO × rP)
]L2+L′′

χλ(r)
}
,

which, by applying the recurrence relations (4.8)-(4.23), could be obtained from the product of two
Hermite Gaussians

[
lκlλ

∣∣∣Ω
]
ij

=
∂lκ

Rκ

(2aiκ)|lκ|
∂lλ

Rλ

(2bjλ)|lλ|
[
exp(−aiκr2κ) exp(−bjλr2λ)

]
= Hlκ

iκ (r)Hlλ
jλ(r). (4.121)

The recurrence relations of Hlκ
iκ (r) and Hlλ

jλ(r) are trivial [7]

H
lκ+eξ
iκ (r) = (rκ)ξHlκ

iκ (r)− (lκ)ξ
2aiκ

H
lκ−eξ
iκ (r), (4.122)

H
lλ+eξ
jλ (r) = (rλ)ξH

lλ
jλ(r)− (lλ)ξ

2bjλ
H

lλ−eξ
jλ (r), (4.123)

which are implemented in prim_hgto_odist.F90 by starting from

H0
iκ(r)H0

jλ(r) = exp(−aiκr2κ) exp(−bjλr2λ). (4.124)

The value of individual HGTOs could also be easily evaluated from above recurrence relation, which
is implemented in prim_hgto_value.F90.

4.7 Quadrature in Gen1Int

Quadrature is used by diamagnetic spin-orbit coupling, and effective core potential ...

4.8. BASIS SETS IN GEN1INT 51

4.8 Basis Sets in Gen1Int

4.8.1 Normalization of Contracted Spherical Gaussians

Change the notations later on and adds a table for the subroutine ...

χκ(r) = θκ(rκ)ρκ(rκ), (4.125)

where ρκ(rκ) is a contracted Gaussian

ρκ(rκ) =
∑

i

wiκ exp(−aiκr2κ), (4.126)

This section mainly follows the book [6]. We rewrite the spherical Gaussian as

χαnllm = Rαnll(r)Ylm(θ, φ), (4.127)

Rαnll(r) = Nαnll(
√

2αnlr)l exp(−αnlr2), (4.128)

where Rαnll(r) is the radial function. Ylm are spherical-harmonic angular functions, with l and m the
total- and z-projected angular momentum quantum numbers, respectively

Ylm(θ, φ) =

√
2l + 1

4π
(l −m)!
(l +m)!

Pml (cos θ) exp(imφ) (4.129)

which are orthonormal ∫ π

θ=0

∫ 2π

φ=0
YlmY

∗
l′m′ sin θdθdφ = δll′δmm′ , (4.130)

The complex solid harmonics in Racah’s normalization

Clm(r, θ, φ) =

√
4π

2l + 1
rlYlm(θ, φ), (4.131)

and ∫ π

θ=0

∫ 2π

φ=0
ClmC

∗
lm sin θdθdφ =

4π
2l + 1

r2l (4.132)

The following expression defines the real-valued solid harmonics
(
Slm
Sl,−m

)
=

1√
2

(
(−1)m 1
−(−1)mi i

)(
Clm
Cl,−m

)
, m > 0, (4.133)

and for m = 0
Sl0 = Cl0. (4.134)

Therefore, the normalization constant of real-valued solid harmonics is 1
2

√
2l+1
π .

The normalization constant Nαnll is

Nαnll =
2(2αnl)3/4

π1/4

√
2l

(2l + 1)!!
. (4.135)

For contracted spherical Gaussians, we have

Rcontr
l (r) =

∑

αnl

Nαnll(
√

2αnlr)lC(αnl) exp(−αnlr2), (4.136)

52 CHAPTER 4. FRAMEWORK OF GEN1INT

where the summation runs over the set of (primitive) Gaussian exponents αnl, and C(αnl) is the corre-
sponding contraction coefficient.

The radial overlap between two spherical Gaussians is

Sα1α2l =
∫ ∞

0
Rα1l(r)Rα2l(r)r

2dr =
(√

4α1α2

α1 + α2

)l+3/2

, (4.137)

we then get the norm of Rcontr
l (r) as

√∫ ∞

0
[Rcontr

l (r)]2r2dr =

√√√√√
∑

αi,αj

C(αi)C(αj)

(√
4αiαj

αi + αj

)l+3/2

. (4.138)

Therefore, the normalized radical part is

R̄contr
l (r) =

∑

αnl

Nαnll(
√

2αnlr)lC(αnl)√
∑

αi,αj
C(αi)C(αj)

(√
4αiαj

αi+αj

)l+3/2
exp(−αnlr2). (4.139)

In other words, the normalized contraction coefficient is

C̄(αnl) =
Nαnll(

√
2αnl)lC(αnl)√

∑
αi,αj

C(αi)C(αj)
(√

4αiαj
αi+αj

)l+3/2
(4.140)

=
(

2
π

)1/4 (4αnl)l/2+3/4

√
(2l + 1)!!

C(αnl)√
∑

αi,αj
C(αi)C(αj)

(√
4αiαj

αi+αj

)l+3/2
. (4.141)

The normalization of contracted spherical Gaussians has been implemented in subroutine
norm_contr_sgto.

4.8.2 Normalization of Contracted Cartesian Gaussians

Change the notations later on and adds a table for the subroutine ...
In subroutine norm_contr_cgto, we have provided the normalization of contracted Cartesian Gaus-

sians following the same procedure in Dalton subroutine NRMORB (so that the diagonal elements of
overlap matrix scales as (2l + 1)!!). After that, the normalized contraction coefficient of contracted
Cartesian Gaussians is

C̄(αnl) =
(

1
2π

)3/4

(4αnl)l/2+3/4 C(αnl)√
∑

αi,αj
C(αi)C(αj)

(√
4αiαj

αi+αj

)l+3/2
, (4.142)

seems to replace Nαnll(
√

2αnl)l with (2αnl
π)3/4(4αnl)l/2 in Eq. (4.140).

4.8. BASIS SETS IN GEN1INT 53

4.8.3 Transformation between Spherical and Hermite Gaussians

This section is not readable yet ...
Describe subroutine hgto_to_sgto ...
solid harmonics (or harmonic polynomials)

Ylm(r, θ, φ) = rlYlm(θ, φ) (4.143)

as the product of spherical harmonics with the monomials rl.
Email from Andreas ...

They were no easy task, I remember. I think I eventually figured them out
by inspecting Mathematica’s SphericalHarmonicY (t=theta, p=phi):

Ylm(t,p) = sqrt[(2l+1)/4pi * (l-m)!/(l+m)!] Plm(cos(t)) exp(imp)

where the first factor is the normalization constant, Plm is the
"associated Legendre function", and the replacements cos(t) =>
z/sqrt(xx+yy+zz), exp(imp) => (x+iy)^m. I’ve attached the Mathematica
"notebook" I worked in back then (warning: very messy).

and

There *may* be some tric involved, yes, because the spherical harmonic
polynomials satisfy

(d2/dx2 + d2/dy2 + d2/dz2) r^l Ylm(r/|r|) = 0,

thus that contribution to <a|E_kin|b> disappears (There will still be
contributions involing the radial factor exp(-a r^2)).

The transformation of kinetic energy integrals need special consideration ...

4.8.4 Recovering Partial Geometric Derivatives from Hermite Gaussians

Describe how to perform Eqs. (4.20) and (4.21) as ...

{Lκlκ}K0L0/ij,Herm = (2aiκ)|Lκ|{0, lκ+Lκ}K0L0/ij,Herm, (4.144)

{Lλlλ}K0L0/ij,Herm = (2bjλ)|Lλ|{0, lλ+Lλ}K0L0/ij,Herm. (4.145)

4.8.5 Transformation between Cartesian and Hermite Gaussians

The integrals using primitive Cartesian Gaussians (4.15) could be recovered using Eqs. (4.16) and (4.17),
which could be written as the following general form

{i+eξ, j} = a ({i, j+eξ}+ iξ{i−eξ, j}) . (4.146)

The procedure of evaluating the above recurrence relation is given in Fig. 4.5, in which (a) describes
the procedure of returning a specific order Cartesian and Hermite Gaussians (geometric derivative),
while (b) depicts the procedure for a range of orders of Cartesian and Hermite Gaussians. These two
different procedures are respectively used for non London atomic orbitals (non-LAOs) and LAOs, and
implemented in files hgto_to_cgto.F90 and hgto_to_lcgto.F90.

Furthermore, a more detailed version of {i, j+eξ} ⇒ {i+eξ, j} is given in Fig. 4.6.

54 CHAPTER 4. FRAMEWORK OF GEN1INT

(a)

s p d f g
s
p

d

f

g

sub-recurrence relations

Hermite (minHerm = maxHerm = 0)

C
ar

te
si

an
(m

in
C

a
rt

=
m

ax
C

a
rt

=
4)

(b)

s p d f g
s
p

d

f

sub
-rec

urr
enc

e rela
tion

s

Hermite (minHerm = 0, maxHerm = 1)

C
ar

te
si

an
(m

in
C

a
rt

=
2,

m
ax

C
a
rt

=
3)

{i+eξ, j} = a ({i, j+eξ}+ iξ{i−eξ, j})

dxxdxydyydxz dyz dzz

px
py
pz

fxxx

fxxy

fxyy

fyyy

fxxz

fxyz

fyyz

fxzz

fyzz

fzzz

dxx
dxy
dyy
dxz
dyz
dzz

dxxdxydyydxz dyz dzz

fxxx
fxxy
fxyy
fyyy
fxxz
fxyz
fyyz
fxzz
fyzz
fzzz

px

px
py

px
py
pz

dxx
dxx
dxy
dyy

dxx
dxy

dyy

dxz
dyz

dzz

fxxz

fyyy

fxyy

fxxy

fxxx

fxyz

fyyz
fxzz
fyzz
fzzz

xrecurrence

yrecurrence

yrecurrence

yrecurrence

zrecurrence

zrecurrence

zrecurrence

zrecurrence

zrecurrence

zrecurrence

Algorithm (j major)

do nrecur = 0, maxCart−1
do |j| = minHerm, maxCart + maxHerm−nrecur − 1

do nj = |j|, 0, −1
do n′

j = 0, nj

xrecurrence with ix = nrecur

do ni = 0, nrecur

yrecurrence with iy = ni

end do
do ni = 0, nrecur

do n′
i = 0, nrecur − ni

zrecurrence with iz = ni

end do
end do

end do
end do

end do

end do

Figure 4.5: Procedure of transformation between Cartesian and Hermite Gaussians.

4.8. BASIS SETS IN GEN1INT 55

{i+eξ, j}′ ⇐ {i, j+eξ} and/or iξ and/or jξ

fxxx fxxy fxyy fyyy fxxz fxyz fyyz fxzz fyzz fzzz

dxx

dxy

dyy

dxz

dyz

dzz

dxx dxy dyy dxz dyz dzz

fxxx

fxxy

fxyy

fyyy

fxxz

fxyz

fyyz

fxzz

fyzz

fzzz

dxx
dxx
dxy
dyy

dxx
dxy

dyy

dxz
dyz

dzz

fxxz

fyyy

fxyy

fxxy

fxxx

fxyz

fyyz
fxzz
fyzz
fzzz

xrecurrence

yrecurrence

yrecurrence

yrecurrence

zrecurrence

zrecurrence

zrecurrence

zrecurrence

zrecurrence

zrecurrence

j

i

Algorithm (i major)

wiξ
= 1

wi = 1
wjξ

= 0

wj = 0
do nj = |j|, 0, −1

do n′
j = nj , 0, −1

wjξ
= wjξ

+ 1

wj = wj + 1

{wjξ
, wi}

xrecurrence⇒ {wj , wiξ
}′ with ix = |i| and jx = n′

j

end do
wjξ

= wjξ
+ 1

end do
do ni = 0, |i|
wiξ

= wiξ
+ 1

wjξ
= 1

wj = 0
do nj = |j|, 0, −1

do n′
j = 0, nj

wjξ
= wjξ

+ 1

wj = wj + 1

{wjξ
, wi + ni}

yrecurrence⇒ {wj , wiξ
}′ with iy = ni and jy = n′

j

end do
wjξ

= wjξ
+ 1

end do
end do
wi = wi − 1
do ni = 0, |i|

do n′
i = 0, |i| − ni

wi = wi + 1
wiξ

= wiξ
+ 1

wjξ
= |j|+ 2

wj = 0
do nj = 0, |j|

do n′
j = nj , |j|

wjξ
= wjξ

+ 1

wj = wj + 1

{wjξ
, wi}

zrecurrence⇒ {wj , wiξ
}′ with iz = ni, and jz = nj

end do
end do

end do

end do

Algorithm (j major)

wjξ
= 0

wj = 0
do nj = |j|, 0, −1

do n′
j = 0, nj

wjξ
= wjξ

+ 1

wj = wj + 1
wi = 1
wiξ

= 1

{wi, wjξ
} xrecurrence⇒ {wiξ

, wj}′
with ix = |i| and jx = nj − n′

j

do ni = 0, |i|
wiξ

= wiξ
+ 1

{wi + ni, wjξ
+ 1} yrecurrence⇒ {wiξ

, wj}′
with iy = ni and jy = n′

j
end do
wi = 0
do ni = 0, |i|

do n′
i = 0, |i| − ni

wi = wi + 1
wiξ

= wiξ
+ 1

{wi, wjξ
+ nj + 2} zrecurrence⇒ {wiξ

, wj}′
with iz = ni and jz = |j| − nj

end do
end do

end do
wjξ

= wjξ
+ 1

end do

Figure 4.6: Procedure of {i, j+eξ} ⇒ {i+eξ, j}.

56 CHAPTER 4. FRAMEWORK OF GEN1INT

4.9 Auxiliary Functions in Gen1Int

As shown in Section 4.6, the integrals of some operators needs the knowledge of special functions. We
will therefore focus on the evaluation of auxiliary functions in Gen1Int. In particular, we will also
discuss the limitations of current routines in Gen1Int, which may point out further development.

4.9.1 Boys function

Boys function is defined as

Fn(T) =
∫ 1

0
exp[−Tu2]u2ndu, (4.147)

which is used for nuclear attraction potential, Gaussian charge potential, diamagnetic spin-orbit cou-
pling, and model core potential (Version 1) ...

Describe subroutines in aux_boys_vec.F90 ...

4.9.2 Function Gn(T)

The function Gn(T) (n ≥ 0, T ≥ 0) is defined as

Gn(T) =
∫ 1

0
exp[−T (1− u2)]u2ndu, (4.148)

which is used for inverse square distance potential ...
Describe subroutines in aux_boys_gfun.F90 ...

4.9.3 Scaled Modified Spherical Bessel Function of the First Kind

The scaled modified spherical Bessel function of the first kind is defined as

e−xMn(x) = e−xxn
(

1
x

d
dx

)n sinhx
x

, (4.149)

where Mn(x) is the so-called modified spherical Bessel function of the first kind. The scaled modified
spherical Bessel function of the first kind is used when calculating the integrals of effective core potential.
Its evaluation has been discussed in Ref. [17] ...

Describe subroutines in aux_msphi_vec.F90 ...

4.10 Test Suite of Gen1Int

There are around 30,000 lines source code in Gen1Int, and most of them are designed for different
recurrence relations. Therefore, a “complete” and “thorough” test suite of all the subroutines is vital
for Gen1Int. The source codes of Fortran 90 test suite are in the directory test_f90, and those of
Python test suite are in tests. The tests of recurrence relations are usually performed by comparing
the results from Gen1Int and those from recursive functions in Fortran 90 and Python. Other tests
are normally carried out by comparing with the predefined referenced results. Please see the comments
of individual source code for further details.

Fortran 90 test suite will generate an HTML log file called test_gen1int.html, please check it
carefully if there is any error (marked in red color). You could also report the errors together with the
information of operating system and compilers to the authors.

4.10. TEST SUITE OF GEN1INT 57

We should however emphasize that we release Gen1Int WITHOUT ANY WARRANTY as claimed
in the copyright page. We will nonetheless do our best to make Gen1Int be useful and the functionalities
have been tested to the best of our ability.

Adding finite difference tests (order by order to 10?) using primitive and contracted
GTOs (moving bra and operator center), with different situations: (1) bra, ket, operator
centers are quite close, (2) bra center is far away from the other two, (3) ket center is
far away from the other two, (4) operator center is far away from the other two, (5) all
of them are far away from each other.

4.10.1 Testing Dashboard of Gen1Int

1. Create a file cmake/Tests.cmake in which tools/runtest.sh returns a 0 if the test passes and 1
(or something nonzero) if it fails;

2. Create CTestConfig.cmake;

3. Set up CDash and CTest in CMakeLists.txt;

4. Try make test, make Experimental or make Nightly (put it into crontab);

5. Check http://repo.ctcc.no/CDash/index.php?project=Gen1Int.

http://repo.ctcc.no/CDash/index.php?project=Gen1Int

58 CHAPTER 4. FRAMEWORK OF GEN1INT

Chapter 5

Gen1Int Subroutines

In this section, we give the list of all public and private Gen1Int subroutines according to their
categories. need to add more implemented subroutines ...

5.1 Public Gen1Int Subroutines

“Public” subroutines are those that could be called by users in their own codes.

1. Utilities

(a) norm_contr_cgto, see Table ;

(b) norm_contr_sgto, see Table ;

(c) reorder_sgtos, see Table 2.1;

(d) reorder_sgto_ints, see Table 2.1;

(e) reorder_cgtos, see Table 2.1;

(f) reorder_cgto_ints, see Table 2.1;

(g) trace_sgto_ints, see Table ;

(h) trace_cgto_ints, see Table ;

(i) trace_gto_ints, see Table ;

2. Geometric derivatives

(a) geom_total_tree_init, see Table 4.1;

(b) geom_total_tree_search, see Table 4.1;

3. Contracted integrals with Cartesian or spherical Gaussians

(a) Cartesian multipole moments

i. contr_cgto_carmom, see Table ;
ii. contr_sgto_carmom, see Table ;

(b) δ-function

i. contr_cgto_delta, see Table ;
ii. contr_sgto_delta, see Table ;

59

60 CHAPTER 5. GEN1INT SUBROUTINES

(c) nuclear attraction potential

i. contr_cgto_nucpot, see Table ;
ii. contr_sgto_nucpot, see Table ;

(d) inverse square distance potential

i. contr_cgto_isdpot, see Table ;
ii. contr_sgto_isdpot, see Table ;

(e) Gaussian charge potential

i. contr_cgto_gaupot, see Table ;
ii. contr_sgto_gaupot, see Table ;

(f) diamagnetic spin-orbit coupling

i. contr_cgto_dso, see Table ;
ii. contr_sgto_dso, see Table ;

(g) effective core potential

i. contr_cgto_ecp_local, see Table ;
ii. contr_cgto_ecp_non, see Table ;
iii. contr_sgto_ecp_local, see Table ;
iv. contr_sgto_ecp_non, see Table ;

(h) model core potential (Version 1)

i. contr_cgto_mcp1_pot, see Table ;
ii. contr_cgto_mcp1_core, see Table ;
iii. contr_sgto_mcp1_pot, see Table ;
iv. contr_sgto_mcp1_core, see Table ;

4. Contracted integrals with rotational London atomic orbitals

(a) Cartesian multipole moments

i. lcgto_zero_carmom, see Table ;
ii. lsgto_zero_carmom, see Table ;

(b) δ-function

i. lcgto_zero_delta, see Table ;
ii. lsgto_zero_delta, see Table ;

(c) nuclear attraction potential

i. lcgto_zero_nucpot, see Table ;
ii. lsgto_zero_nucpot, see Table ;

(d) inverse square distance potential

i. lcgto_zero_isdpot, see Table ;
ii. lsgto_zero_isdpot, see Table ;

(e) Gaussian charge potential

i. lcgto_zero_gaupot, see Table ;
ii. lsgto_zero_gaupot, see Table ;

(f) diamagnetic spin-orbit coupling

5.2. PRIVATE GEN1INT SUBROUTINES 61

i. lcgto_zero_dso, see Table ;
ii. lsgto_zero_dso, see Table ;

(g) effective core potential

i. lcgto_zero_ecp_local, see Table ;
ii. lcgto_zero_ecp_non, see Table ;
iii. lsgto_zero_ecp_local, see Table ;
iv. lsgto_zero_ecp_non, see Table ;

(h) model core potential (Version 1)

i. lcgto_zero_mcp1_pot, see Table ;
ii. lcgto_zero_mcp1_core, see Table ;
iii. lsgto_zero_mcp1_pot, see Table ;
iv. lsgto_zero_mcp1_core, see Table ;

5.2 Private Gen1Int Subroutines

“Private” subroutines are usually not be called by the users, but used inside Gen1Int.

1. Utilities

(a) subroutines xtimer_set and xtimer_view in file xtimer.F90, print the CPU elapsed time
of individual Gen1Int subroutine∗, enabled by -DXTIME in compiler option;

(b) subroutines dump_gto_deriv, dump_gen_opt, dump_ecp, dump_mcp1_pot, and dump_mcp1_core
in file dump_info.F90 print the information of basis sets, operators and derivatives during
calculations, enabled by -DDEBUG in compiler option;

(c) subroutines dbinom_coeff and pascal_triangle† in file binom_coeff.F90 computes the
binomial coefficient and Pascal’s triangle, respectively;

(d) subroutines sort_gen_cents and sort_atom_cents in file sort_cents.F90 sort the given
centers in descending order, sort_gen_cents accepts non-atomc centers (such as dipole ori-
gin) whose indices are greater than defined variable MAX_IDX_NON (= 0) in max_idx_non.h;

(e) shell_scatter, see Section 4.3.2;

(f) shell_gather, see Section 4.3.2;

(g) subroutine const_contr_ints in file const_contr_ints.F90 performs the contractions (4.14)
and (4.19);

2. Basis sets transformations

(a) hgto_to_cgto, see Section 4.8.5;

(b) hgto_to_cgto_p, see Section 4.8.5;

(c) hgto_to_cgto_d, see Section 4.8.5;

(d) sub_hgto_to_cgto, see Section 4.8.5;

(e) hgto_to_lcgto, see Section 4.8.5;
∗The CPU elapsed time is got from the intrinsic function cpu_time.
†The numbers of Pascal’s triangle are real type.

62 CHAPTER 5. GEN1INT SUBROUTINES

3. Geometric derivatives

(a) geom_total_num_paths, see Table 4.1;

(b) geom_total_new_path, see Table 4.1;

(c) geom_part_zero_param, see Section 4.3.2;

(d) geom_part_zero_scatter, see Section 4.3.2;

(e) geom_part_one_param, see Section 4.3.2;

(f) geom_part_one_scatter, see Section 4.3.2;

(g) geom_part_two_param, see Section 4.3.2;

4. Geometric derivatives of dipole origin, carmom_deriv, see Section 4.6.2;

5. Cartesian multipole moment integrals

(a) contr_cgto_carmom_recurr, see Table ;

(b) prim_hgto_carmom, see Table ;

(c) carmom_hrr_ket, see Section 4.6.2;

(d) sub_carmom_hrr_ket, see Section 4.6.2;

(e) carmom_hbra, see Section 4.6.2;

(f) carmom_moment, see Section 4.6.2;

(g) carmom_moment_p, see Section 4.6.2;

(h) sub_carmom_moment, see Section 4.6.2;

6. δ-function

(a) xxxx, see Table ;

(b) xxxx, see Table ;

7. Nuclear attraction potential

(a) nucpot_geom, see Section 4.6.4;

(b) sub_nucpot_geom_d, see Section 4.6.4;

8. Inverse square distance potential

(a) xxxx, see Table ;

(b) xxxx, see Table ;

9. Gaussian charge potential

(a) xxxx, see Table ;

(b) xxxx, see Table ;

10. Diamagnetic spin-orbit coupling

(a) xxxx, see Table ;

(b) xxxx, see Table ;

5.2. PRIVATE GEN1INT SUBROUTINES 63

11. Effective core potential

(a) xxxx, see Table ;

(b) xxxx, see Table ;

12. Model core potential (Version 1)

(a) xxxx, see Table ;

(b) xxxx, see Table ;

13. Quadrature

(a) xxxx, see Table ;

(b) xxxx, see Table ;

14. Auxiliary functions

(a) Boys function

i. xxxx, see Table ;
ii. xxxx, see Table ;

(b) Function Gn(T)

i. xxxx, see Table ;
ii. xxxx, see Table ;

(c) Scaled Modified Spherical Bessel Function of the First Kind

i. xxxx, see Table ;
ii. xxxx, see Table ;

64 CHAPTER 5. GEN1INT SUBROUTINES

Chapter 6

Files and Directories of Gen1Int

We will list all the files and directories of Gen1Int, with a brief description ...

6.1 Header Files in Gen1Int

We will describe the header files in directory src, some of them may be modified to satisfy the
requirement of users ...

1. xkind.h: kind type parameter of real numbers

2. stdout.h: IO unit of standard output

3. pi.h: constant π

4. tag_cent.h: marking the sequence of bra, ket and operator centers

5. hgto_to_sgto.h: parameters related to the transformation between HGTOs and SGTOs

6. max_idx_non.h: maximum index of non-atomic centers

7. boys_power.h: used by power series expansion of Boys function (generated by tools/GenHeader.py)

8. max_gen_order.h: maximum order for Gen1Int (generated by tools/GenHeader.py)

9. tab_boys.h: pretabulated Boys functions (generated by tools/GenHeader.py)

65

66 CHAPTER 6. FILES AND DIRECTORIES OF GEN1INT

Chapter 7

Limitations of Gen1Int

The limitations of Gen1Int may come from the accuracy of auxiliary functions, the huge number
of derivatives (lots of memory consumed), the accuracy due to large distance between basis set centers
and operator center (will it be a problem?) ...

Gen1Int might not be efficient ...
We describe our future long- and short-term developments in file TODO ...
When C is far away from P , Eq. (4.75) are really some small numbers (unless we

have large total exponent), positive and negative, one by one. Therefore, we might have
two small number subtraction in Eq. (4.74) (remind that Boys function decays quickly, so
multiplied by a large XCP might still result in a small number), which as you know may
be unstable.

Another thing is related to the evaluation of Boys function, for the time being, Gen1Int
provides the Boys function with accuracy, at least, around 10−12 or 10−13 (for some argu-
ments it might be even better). For your information, although we have encountered such
problem, Gen1Int will stop with error message if the argument and order of Boys function
can not be calculated with required accuracy.

Therefore, based on the above two points (small numbers in recurrence relations and
the accuracy of Boys functions), Gen1Int might have problem to give accurate enough
results when EFG center is far away from the product center.

Instead of first recovering derivatives on EFG center C, we could also first recover
GTOs on bra and ket center, and get the derivatives on EFG center at last. However, this
is more or less the same as what is implemented in Dalton now. And, we can say it is
not stable from your tests.

Therefore, to summarize, although Gen1Int might have problem but its current solution
is better than EFGINT in Dalton, and we have to trust it ;-)

P.S: Further improvement of Gen1Int could be:
(1) return zero integrals when bra and ket centers are far away;
(2) improve the accuracy of Boys functions, which could be done, and I also have some

idea (for instance, increasing the accuracy of pretabulated table of Boys functions, improve
the accuracy of modified asymptotic series expansion and upward recurrence relation–
which is the key point);

(3) uses more stable recurrence relations or reduce the chance of two small or two big
number operations, which I have no idea for the time being.

67

68 CHAPTER 7. LIMITATIONS OF GEN1INT

Bibliography

[1] Bin Gao and Kenneth Ruud. Gen1Int: An object-oriented library to evaluate one-electron integrals and
their derivatives, 2011. In manuscript.

[2] Bin Gao, Andreas J. Thorvaldsen, and Kenneth Ruud. Gen1Int: a unified procedure for the evaluation of
one-electron integrals over Gaussian basis functions and their geometric derivatives. Int. J. Quantum Chem.,
111(4):858–872, 2010.

[3] Bin Gao, Kenneth Ruud, and Trygve Helgaker. Evaluating one-electron integrals and their geometric
derivatives II: magnetic properties, relativistic corrections, and pseudopotential, 2011. In manuscript.

[4] Xavier Saint Raymond. Elementary introduction to the theory of pseudodifferential operators. CRC Press,
Boca Raton, Florida, 1991.

[5] Jürgen Gauss, Kenneth Ruud, and Trygve Helgaker. Perturbation-dependent atomic orbitals for the calcu-
lation of spin-rotation constants and rotational g tensors. J. Chem. Phys., 105(7):2804–2812, 1996.

[6] Trygve Helgaker, Poul Jørgensen, and Jeppe Olsen. Molecular Electronic-Structure Theory. John Wiley &
Sons Ltd, Chichester, 2000.

[7] Simen Reine, Erik Tellgren, and Trygve Helgaker. A unified scheme for the calculation of differentiated and
undifferentiated molecular integrals over solid-harmonic Gaussians. Phys. Chem. Chem. Phys., 9:4771–4779,
2007.

[8] Trygve Helgaker and Poul Jørgensen. An electronic Hamiltonian for origin independent calculations of
magnetic properties. J. Chem. Phys., 95(4):2595–2601, 1991.

[9] Sheela Kirpekar, Jens Oddershede, and Hans Jørgen Aagaard Jensen. Relativistic corrections to molecular
dynamic dipole polarizabilities. J. Chem. Phys., 103(8):2983–2990, 1995.

[10] Olav Vahtras, Hans Ågren, Poul Jørgensen, Hans Jørgen Aa. Jensen, Søren B. Padkjær, and Trygve Helgaker.
Indirect nuclear spin–spin coupling constants from multiconfiguration linear response theory. J. Chem. Phys.,
96(8):6120–6125, 1992.

[11] Kenneth Ruud, Trygve Helgaker, Keld L. Bak, Poul Jørgensen, and Hans Jørgen Aa. Jensen. Hartree–Fock
limit magnetizabilities from London orbitals. J. Chem. Phys., 99(5):3847–3859, 1993.

[12] Keld Lars Bak, Poul Jørgensen, Hans Jørgen Aa. Jensen, Jeppe Olsen, and Trygve Helgaker. First-
order nonadiabatic coupling matrix elements from multiconfigurational self-consistent-field response theory.
J. Chem. Phys., 97(10):7573–7584, 1992.

[13] A. D. Buckingham. Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces.
Adv. Chem. Phys., 12:107, 1967.

[14] M. Aslam Chaudhry and Syed M. Zubair. On a class of incomplete gamma functions with applications.
CRC Press, Boca Raton, 2002.

69

70 BIBLIOGRAPHY

[15] Andrew Komornicki, Kazuhiro Ishida, Keiji Morokuma, Robert Ditchfield, and Morgan Conrad. Efficient de-
termination and characterization of transition states using ab-initio methods. Chem. Phys. Lett., 45(3):595–
602, 1977.

[16] Luis R. Kahn. Relationships among derivatives of the integrals in the calculation of the gradient of the
electronic energy with respect to the nuclear coordinates. J. Chem. Phys., 75(8):3962–3966, 1981.

[17] Roberto Flores-Moreno, Rodrigo J. Alvarez-Mendez, Alberto Vela, and Andreas M. Köster. Half-Numerical
Evaluation of Pseudopotential Integrals. J. Comput. Chem., 27(9):1009–1019, 2005.

Index

Python Gen1Int.Tools, 6
F90-public ANTI_INT_MAT, 22
F90-public GeomPathGetIndex, 24
F90-public GeomPathGetNumCenters, 24
F90-public GeomPathGetNumRedunt, 24
F90-public GeomPathGetNumUnique, 24
F90-public GeomPathGetOffset, 24
F90-public GeomPathGetReduntList, 24
F90-public GeomPathSetReduntExpt, 24
F90-public GeomTreeCreate, 23
F90-public GeomTreeDestroy, 24
F90-public GeomTreeGetMaxNumCenters, 24
F90-public GeomTreeGetNumAtoms, 23
F90-public GeomTreeGetNumGeo, 24
F90-public GeomTreeGetNumPaths, 24
F90-public GeomTreeGetOrder, 23
F90-public GeomTreeSearch, 23
F90-public GeomTreeView, 23
F90-public OnePropCreate, 20, 21
F90-public OnePropDestroy, 22
F90-public OnePropEvaluate, 22
F90-public OnePropGetNumProp, 22
F90-public OnePropGetSymmetry, 22
F90-public OnePropSetGTO, 22
F90-public OnePropSetMag, 22
F90-public OnePropSetPartialGeom, 22
F90-public OnePropSetRAM, 22
F90-public OnePropView, 22
F90-public SQUARE_INT_MAT, 22
F90-public SYMM_INT_MAT, 22
F90-public geom_tree_t, 19, 23
F90-public one_prop_t, 19
private geom_total_new_path, 35
private geom_total_num_paths, 35
private geom_total_num_redunt, 36
public geom_total_tree_init, 35
public geom_total_tree_search, 35
public norm_contr_cgto, 52
public norm_contr_sgto, 52
public reorder_cgto_ints, 7

public reorder_cgtos, 7
public reorder_sgto_ints, 7
public reorder_sgtos, 6

71

	Notation
	Preface
	Acknowledgments
	1 Installation
	1.1 CMake
	1.2 GNU Autotools
	1.3 Python
	1.4 Compiler and Flags

	2 Python Interface of Gen1Int
	2.1 ``Hello World'' in Python
	2.2 What You Get from Gen1Int
	2.3 Tools in Gen1Int
	2.4 Pre-defined Property Integrals in Python Interface
	2.5 Memory Usage in Gen1Int

	3 Fortran Interface of Gen1Int
	3.1 ``Hello World'' in Fortran 90
	3.2 Using Fortran 90 Module
	3.2.1 Pre-defined Property Integrals in Fortran 90 Module
	3.2.2 Total Geometric Derivatives in Fortran 90 Module

	3.3 Parallelization of Gen1Int
	3.4 Mixed Spherical and Cartesian Gaussians

	4 Framework of Gen1Int
	4.1 Theoretical Background of Gen1Int
	4.2 Data Structure in Gen1Int
	4.3 Geometric Derivatives
	4.3.1 Sequence of Total Geometric Derivatives
	4.3.2 Partial Geometric Derivatives

	4.4 Magnetic and Total Rotational Angular Momentum Derivatives
	4.5 Contracted Integrals
	4.6 One-electron Operators in Gen1Int
	4.6.1 Electronic Derivatives
	4.6.2 Cartesian Multipole Moments
	4.6.3 Dirac delta Function
	4.6.4 Nuclear Attraction Potential
	4.6.5 Inverse Square Distance Potential
	4.6.6 Gaussian Charge Potential
	4.6.7 Diamagnetic Spin-Orbit Coupling
	4.6.8 Effective Core Potential
	4.6.9 Model Core Potential (Version 1)
	4.6.10 Overlap Distribution

	4.7 Quadrature in Gen1Int
	4.8 Basis Sets in Gen1Int
	4.8.1 Normalization of Contracted Spherical Gaussians
	4.8.2 Normalization of Contracted Cartesian Gaussians
	4.8.3 Transformation between Spherical and Hermite Gaussians
	4.8.4 Recovering Partial Geometric Derivatives from Hermite Gaussians
	4.8.5 Transformation between Cartesian and Hermite Gaussians

	4.9 Auxiliary Functions in Gen1Int
	4.9.1 Boys function
	4.9.2 Function Gn(T)
	4.9.3 Scaled Modified Spherical Bessel Function of the First Kind

	4.10 Test Suite of Gen1Int
	4.10.1 Testing Dashboard of Gen1Int

	5 Gen1Int Subroutines
	5.1 Public Gen1Int Subroutines
	5.2 Private Gen1Int Subroutines

	6 Files and Directories of Gen1Int
	6.1 Header Files in Gen1Int

	7 Limitations of Gen1Int

