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On Bessel's Functions, and Relations conne-cting them with
Hyper-Spherical and Spherical Harmonics. By E. W,
Hosson, Sc.D. Received und read December 14th, 1893,

The Bessel's functions J,, () of positive integral order m make
their appearance in the product €8 m@.J, (r), which is a particular
sin

integral of the differential equation

‘where z=rcosf, y=rsiné.

‘The Bessel’s functions Jwsy (r) of order half an odd integer (known
sometimes as spherical functions) make their appearance in the pro-
duct 1

'7;']-""1 (’) . Ym (0, ?)!
which satisfies the equation V¥V +V =0,

Y,, denoting -a surface harmonic of order m. There is, however,
another mode in which both kinds of functions may be considered to
arise; it appears that, if we consider the equation in p variables
corresponding to VW4V =0,

the function ﬂﬂ,—v‘s—r) plays the same part in relation to this equation
"
that J, (r) does in relation to the equation

eV oV

2=+ - +V =0,

oz oy

and thus that JLL:Z may be considered to be the Bessel’s function of
r

‘zero order when there are 2m+2 variables, and also that

Ty (7
e

the number of variables. In the present paper, various properties of

the functions are developed from this point of view, the method

having the advantage of dealing with both classes of functions at

once. A considerable number of relations connecting the functions of
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will be the Bessel's function of zero order when 2m+3 is
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different orders, both amongst themselves and with the correspond-
ing hyper-spherical harmonics, are obtained, many of which are
believed to be new. Many of these theorems arise from a comparison
of different ways of expressing the same solution of one of the

équations V=0, VW4V =0,
the number of variables being unrestricted. Expressions are

obtained for the zonal and tesseral harmonics as definite integrals
involving Bessel's functions.

A Theorem concerning a certarn Differential Operator.

1. In a paper*® “ On a Theorem in Differentiation and its Applica-
tion to Spherical Harmonics,” I proved a theorem which may be
‘stated thus :—If f, (@, @, ... 2,) denote a rational integral function
of degree = of the p variables z,, a, ... z,, then

; (a%. ai, - 2)50

— " -2—‘: d"-l¢ on- -2 dar- 2¢ }
{ 2 d (,J)n + 2 d('r’)"" 2,4 d (Ti)n-ﬂ v +... f.(zu-'v,,...z,)
(),
where r=d+zH+... +a,
'3 v} q
d 7 — a a i .
an v, aa, aw +.+ X
Now suppose that f, satisfies the differential equation
v;f“ = 01

8o that f, is a spherical or hyper-spherical harmonic; in the above
theorem the series on the right-hand side reduces to its first term,
and we have, denoting by 8, (#,, #;, ... z,) such a value of f,,

0 LA (r .
(axl aw, a ‘,) ¢ (T) =2 #i'l Sn (z" Lyy o a:,,? ,_.(2)_

In this paper, I shall make use of the theorem (2), and I give here
two examples of its application to the differential equations of
physics. -

* See Proc. Lond, Math, Sco., Vol. xx1v., p. 67.
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- (a) It is well known that the real part of — 1 e (at=n) represents the

potential due to a simple sorvce of vibrations in a gas, the expression
V = _l. e (atxr)
r
satisfying the differential equation
oV _ (a’V oV oV )

o \od 5; * !’

it follows from the linear character of the equation that

| (2,2, 2) Lyeture
S.(5 5 5 [reer)

where S, (2, ¥, z) is a solid harmonic of degree =, also satisfies the
differential equation; applying the theorem (1), we see that the

function 1
= palatgr)
S. (= 9,2) d(-’)"[ e¥ ],

and therefore also S, (z, y, z) e Tl)i..ﬂ? ’
T *

satisfies the differential equation.; It has been remarked by Lord
Rayleigh* that ‘the potential of a multiple source, which is of the

form o g (at=r)

OhOhy...0k, T

does not in general contain a spherical harmonic S, (z,y,2) as a
factor, as it does in the case x =0, of the gravitation potential ; the

reason of this is that 0 differs from some operator of the
Oh,Oh, ... Oh,
form ,
0 0 0
Sll ~ I N I ]
. . o an
by a multiple of 3 3y a _,,
et sy (K7

and thus S, (=, 9,2) e Trl)g“_’_‘l

* Theory of Sound, Vol. 11., p. 216.
‘ E 2
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is the potential due to a combination of sources of degrees n,n -2, &c.,
wheren.s, in the case x = 0, we have, since

31

T

————L ‘l = S ( a a_. ._a) .1_ = _S" (""v 1,[’ Z)
ah.ah,,.,ahu r " a‘», ay’ oz/ r 2o el ’

-
omitting numerical factors.

(b) It is well known that the equation
v orV OV oV
—_— = +
ot ( ay’ )

1 f (A) e r’f[dg[l—x))dA

tisfied by . V = {
is satisfied by . {2~/ﬂ(t )\)}‘

in fact this is the temperature at a point of an infinite solid of
conductivity &, due to a source of intensity f(f), commencing at
time t = 0. We see that
s, (8 a 9 ) v
aJ az

satisfies the differential equation; thus the expression -

1

(t
satisfies the.differential equation; putting

s 7
T4 (t=N)'
we see that the function

S.@p) [* e f (- ) da

,r'-’;u-l 4ka

o rid

satisfies the differential equation, S, denoting any solid harmonic.
The particular case » = 1 gives the class of solutions which I have
applied, in my paper*® on * Synthetic Solutions in the Conduction of
Heat,” to certain problems of conduction.

* See Proe. Lond, Math. Soc., Vol. xi1x., p. 289.
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Bessel’'s Functions of rank p.

ion (& 4+2 o
2. The equation (aw. aa:,+ aa:,,)v 0. creeeenenn(3),
or v, V=0,
has p(pt+]).. (p+n—1) _p(@+D..(p+n=8)
n! (n_Z)'
or @ntp—2) E=DR(tD . (p4n=9),

distinct solutions which are rational integral functions of z,, #,, ... 2,
of degree n; we shall denote such a solution by 8, (z,, #, ... z,). 4

Consider the equation V:,V+V= | O PSRPTPRRPRN C: ) B

Suppose z,, @, ... z, to be expressed in terms of the usual hyper-polar
system of variables », 6,, 6,, ... 0,_,, and suppose V to be a function of
r only ; the equation (3) reduces in this case to

‘Z’V+Ll ——+V 0.

Now, in Bessel’s equation of order m,

d’u+ 1 d“+(1—1'£)u=0,

,,.l
Put 9§ = T'"v H
then we have dg, +— Im+1 d” i =0;
dr T

thus we see that (4) is satisfied by
V: I"':'E,‘_(IZ) or le_.n 1"’
TS

ple-t 0

where Jy,_1, Y;,_1 are the two Bessel’s functions of order {p—1.

For simplicity we shall for the most part consider the function J
only ; many of the theorems will apply equally to Y.

The solutions of (4) which contain 7 only I shall call the Bessel's
functions of zero order and rank p; thus the ordinary Bessel's
functions J, (v), Y, (+) are of rank 2. These solutions of (4) may be

donoted by L Yalp ),
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where I, (p,7) = J;;;_# Y, (p, 7) =‘1’1ﬁ'-—'@ e (5)

we thus have.

B (@, 1)=dy(m), Jy(3,7) .._Lf_l v ' 2 sm'r

J, @m, 1) ==t () Jo @m+1, 1y =Tos (),

m—l ""l )

it thus appears that Bessel's functions of even rank are expressible in
terms of the ordinary Bessel's functions of integral order, and that
those of odd rank are expressible in terms of the ordinary functions
of ‘order half an odd integer.

3. In order-to -ebtain- unsymmetrical solutions of (3), the theorem
(2) may be applied; thus ’

0o 0 0 — on a° .
S, (a—la 5;’1 oo a—m)']o (2,7 = 2 Sn("”nwsa--'wp)m—p'fo (2 7);

dn Jm-l!"‘[ _J,,,m_]!’r!
now d( l)nJ (P’ ) d (,rx),. -1 e PEXYTR ?

leaving out a numerical factor, as the form only of the result is -
required.

We see therefore that (4) is satisfied by

V=_8.(x, gy oue Tp) ::Ap::’

that is, a solution of (4) is obtained by multiplying a solution S, of
(3) by Tn10p. (1) . The cases p = 2, p =3 of this theorem are well-

g -ledp

known; thus, when p = 2, we have
A cos
@xg)y2l), o Doup.7, ),

as a solution of the equation

v . oV
% a’

where e=rcosg, y=psing

+V =0,
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again, when p = 3, we have

S" (w’ Y, z) L".‘Q

u+i ’

as a solution of the equation

vViV+V=0.

4. Wo have considered only the case in which S, is & rational
algebraical solution of (3); it may, however, be shown that, if S, is

Ju ) os
any solution of (3) of degree » in the p variables, S, . *f{%gl—z is a
solution of (4).

In (4), put V = 8,%; the equation then becomes, on the assumption
that » is a function of = only,

2 on aS,. aS,. aS,,
a' ( aml + Ty aa; + + p ax ) +Sllvﬂu+snu -
or, using the theorem
88’ 0S8
— 4. vtz e = uS,,
" 3 * 3,
this becomes (3 +B-4—'2n—1— du +u =0,
) T

of which the solution is

w=Aduw1 () L p Your (1),

" [ u+‘p 1

thus, whatever the nature of a function S, of the n'® degree may be,

which is a solution of (2), if it be multiplied by -ﬁ”—'—j—, we

nv‘p-

obtain a solution of (3). It will be observed that » may be negative,

so that S-,.Lﬂﬂﬂ— satisfies (3), S., denoting a harmonic of

—n+ip-1

negative degree.

5. In a paper* on * Systems of Spherical Harmonics,” I have given
a table of some spherical harmonics of degree zero ; any one of these,

* See Proc., Vol xxur., p. 435.
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when multiplied by _s_:}n_'/", or c:)/s ”, is a solution of the equation
r r
VW+V=0;

we obtain, for example, as solutions of this equation

@ sinr ® COST (r£2)" cos 1 gin ”

4z T4 S @rgPein ™ Vrcos

1 log
JVr r+2 cos

r—z 8in 1 1 Yy sin
- 7, — - tan~t LS 4
7 z cos

The most general harmonic of degree # is

rmugz% fLy(z2v)1;

r rt+z

we obtain therefore, as solutions of

vVV+V =0,
the expressions 1"‘“68:,:‘ {%f (%) } Tny (1)
o 0 (1 ¢ (zdey } :
r az"{ - f(r+z) x.ol (")’

where f denotes any function.

Zional and Tesseral Hyper-Spherical Harmonics.

6. The systems of zonal and tesseral harmonics for p variables
have been discussed by various writers; as, however, some of their
properties are needed below, I give what appears to me to be a
simple method of investigating their forms.

The potential equation (3) is satisfied by

1
V= ,
{ (m~a)' +(@—a)’+... + ("”p"al')!} ot

when p > 2; and by

V=—jlog, { (m—a)'+ ("’2_“2)2} )
when p =2
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Denoting the zonal harmonic of rank p by P, (p, cos 8), we have,
as in the case p = 3,

(1—2h cos 4 R?)ie-!
—3log,(1-2kcosb+A*) = Z1"P, (2, cos 0)

1 = 3K"P, (p, cos ")} (> )

Also, as in the ordinary case p = 3, we find, if p 2 3,

_ (_l)n g2n+t -Ql 1
Pu (p’ cos 0) = I (n) aa;: (m':+w:+..-+a?:)”°',

where . a:,/'ri; cos = p.

Performing the differentiation by means of the theorem (1), we have

at once

I (n4ip—2

P.(p,u)=2"
® =T T Gp-2)

o n(n=1) ., n(n—=1)(n—2)(n=8)  ..4_ }

X {" Tontp—d" T2 4Cntp-B@ntp-06"

In the case p =2, we have

P, (2, cosf) = —l-cos n ;
n

thus P,(2,p)
o On-1 n_7n (”—1) ne2y M ("_ 1) (n—2)(n_3) n-é__ } .
=2 {" 2o T o don—2om—8 * —fi

thus the factor of P, (2, u) in the bracket agrees with the series
factor in (7).

7. The potential equation (3) may be written

v, ov v (3
—_+'—,+... P +('—' V=0,
o o 3 ax,,)_

go that when a—a— is treated as a quantity, this equation is of the
Tp

form (4) with p—1 variables; we see therefore that

J'.u(y-a-.( Jﬁm 0 )

-|a_
V= S.(-T-,&‘ ...33_|) = ff x(-‘l},,),
(LR ] (4 (“/m—-——,+w,+_'.+w¢_,_a__) [T72D))
LI ? a:c,
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where x (z,) is any fuﬁction of z,, and a is any integer, satisfies the
above equation. Let x (z,) =, °, and suppose a < n; we thus have,
as a solution of (3), ‘

f~a L] ! —_ !( —_— —1’ n-a=3
S. (@, gy . Tp1) {w,, — (@, + 2+ ... +251) n2.;a:-pil T+ },

where S, denotes any solid hyper-harmonic of rank p—1. S, may
itself be expressed as the product of a harmonic of rank p—2, and a
series ; thus, proceeding in this way, we obtain, as a solution of (3),
an expression of the form of the product

L (p,n,a,2,) L(p—1,a,B,z,.,) ... L (3, x, \, z;) (z, F15)*........ (8),

where L (p—r, 0,0, z,_,) denotes the series

i )L k) P % P, FUPU N

RO T Fe—

(=0 (n—0-1)(n—0-2)(n=0—3) a-0-4,3, 2 2 .
S =120 p—rt1 P @tot . )=

If different integral values are assigned to a, 8, ... x; A, such that
n_i_a;ﬁ vee ;‘;Aa

the form (8) expresses various hyper-spherical harmonics of degree .
It is easy to show that (8) gives a complete set of harmonics of
degree n; the p—1 quantities n—a, a=f, ... k=X, A, are capable of
all positive integral values (including zero) which are such that their
sum is 7 ; corresponding to any choice of these numbers we have two
harmonics given by (8), except when A =0, in which case only one
harmonic is given; the number of solutions in which A =0'is the
number of ways in which the p—2 numbers n—a, a—f3 ... ¥ may be
chosen so that their sum is n; it follows that the formula (8)
represents

g(@=1p (p+l)'--- (p+n=2) _ (p—2)(p-1) it (p+n—3)
n.

n.

distinct harmonics ; this number is equal to

(p+20—2) (p=Dp (p+i)! . (p+n—3)

which, as we have seen in Section 2, is the number of independent
harmonics of degree # and rank p. It has thus been shown that all
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the hyper-spherical harmonics of degree = are included in (8) ; these
correspond to the system of zonal, tesseral, and sectorial harmonics
in the ordinary case p = 3.

Expansion of an Exponential Function.
9. The differential equation (4) is satisfied by
. V —_ et:ry = e.rco’sv;
it follows that e"**° can be expanded in the form

ia,.'r" P, (p, cos8) Tusp-1(r)
4]

ru.np-l ?

since Bessel’s functions of the second kind are infinite when r= 0,
and therefore cannot occur. We have therefore

ereosd — ?a"Pn (p, cos 0) M

- 9
rir-1

where a, are constants to be determined ; substituting the value for
P, (p, cos §) given by (7), and equating the coefficients of 7" cos"6 on
both sides of the equation, we obtain.

o 1 on M (n+ip—2) .
MG~ T TH (=D © L(m) T(p—2)’

thus ay= .20 (n+3p—1) I (3p—2),

whence we obtain the result

eret = 1T (3p—2) 3 ¢ (n+3p—1) P,(p,cos 6) ——:5,,—@ e (9)-
nal

Two cases of (9) are well known ; putting p = 3, we have

erent — s/‘l—;% * (n+3) P, (cos §) J—’———':‘/ST) 3

again, putting p = 2, and taking account of the exceptional form of
P, (2, cos §), we have

eret? = S"cosnb.J, (r)._
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Addition Theorems for Bessel's Functions.
10. Since J, (p, ) satisfies lfhe equation (4), it follows that
Iy (p, VP +17—2rr" cos 6)
satisfies the same equation, for
417 =2 cos§ = 2]+ &+ ... + (z,— )"
We see that if Jy (p, VP +71=2r7 cos )

i8 expanded in a series of the functions P, (p, cos 8), the coefficients

must contain JM'rl%”- 1 (1) and J‘"‘j’l;'_l(r) as factors ; thus
r

-1

Jo (p, VP +77—2r" cos 0)

=J(p, 1) % (P 7)+ 3 B, "'""-‘((’)){;:{M ) p, (p, cos 6),

where B, is a constant to be determined. Write

B =V 4+r"—2r1"cos 9,
and differentiate both sides of the equation n times with respect to
cos 6, remembering that

d (R') = —2m'd (cos b) ;
thus

( ?ﬂ.’,)n a’ J‘g-l SR} —_ / nﬂg—l g"'anng g"' ! ..! y 2 cos0g
d (R')" Rv-! ()t d (cos 8)"

divide both sides of the equation by ™, and then put »'= 0; we get
J!p_| !’I‘ !

( 2”) d (,’1).. TH
= ;3 Yn+ip=? (:,-) 1 2 (n+%P—2)
ST T T (e 3p—1) | U (p—2)
_ 00 a* J.,--l (7) — nA]g—l g"’)
Now ( 27') d (1_3)1. ,r|p- rir=1 i

hence we find B, = 2! (n+}p—1) 1 (3p—2);
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we thus obtain the theorem

Ipp-l

+2¢-'II (3p—2) % (n+3p—1) Jusip-1 (7) Javip-1 () P (p, cos 6) }
SRR ¢ (1) §

‘IL’"‘_‘(_'.@ = .('r_'r';_‘;:l {J‘p-l (’r) Jiv-l )

This theorem has been proved by other methods by Glegenbauer and
by Sonnine.

If we put, in (10), p = 2, we obtain C. Neumann’s addition theorem
Jo (B)= Uy (r) J, () +2 37, (r) T, () cos b

Putting p = 3, we obtain the addition theorem for the spherical

functions, 7. (R)
: R
= (T:—), {7 () Zi()+ 2T (=) 2 (n+13) Jayy () Juyy (1) Pa(cost) },
or sin R
B

sinrsin?’ | & nw @4 sinr d* sins’ .

— smr 1 " Sinr & siny .
i + }l‘. (2n+1)(4pp") i@ r A6y 7 P, (cos6)
‘It will be observed that the formula (10) is a general addition

theorem for the functions %ﬂg} , ._T%,;gf_i_)_ .

The Evaluation of a Surface Integral.

11. It can be shown by means of the differential equation (2), in
the same way as in the case p = 3, that, if §,,, S, are hyper-spherical
harmonics of degrees m and =,

js,.. 8, duw =0,

provided m and » are unequal, the integration being taken over the .
surface of a sphere of unit radius, the centre being at the origin.
‘We shall have occasion to use the value of

IP" (p, cos ) S, de,
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which I proceed to calculate. Using the system of hyper-polar
coordinates, given by

%, = rsin@sing¢, sin ¢, ... 8in ¢,_;,

@y = r8inf 8in ¢, sin ¢, .., COBP,_3,

“ee

z,., =rsinf cos ¢,,
z, =rcosb, -
we find, for an elementary volume, the expression
r°~gin?~?0 sin”~* ¢, ... 8in ¢,_s drdidg,dg, ... dg,._,,
and thus dw = 8in®~*08in®?¢, ... 8in ¢,_;dOdp,dg, ... dp,_s.
Using the equation
1 :
(1—2h cos § +R¥)ie-2

= % P, (p, cos ) h",

ned
we find
’ 1-r}
(p-2) (1—2h cos 9+ R?)ir
multiplying both sides of this equ;mtion by S,, and integrating over
the surface of the sphere of unit radius, we have

_ p=2 ' 1-12
jl’n (pr c08) Sudo =725 [(1_2hcos o+ Ry

where, on the right-hand side, the expression has its limiting value
when A= 1; we therefore have

=3 (2n+p—-2) P, (p, cos6) r*;

Sﬂ d‘l”

- -2 1-—#
I P, (p, cos 6) S,dw 2—1’————n+p_2 8, (I)J A=2hcos o1 )" dw,

where S, (1) is the value of S, at the pole of P,.

1 1
= k® (2 -
Further,_I(l_zhcoso_’_h,)”dw P_2j'z @1 +p—2) P, du

=2
m (25°)
thas we obtain the theorem
. —_— i
fP,,(p,coso)s,.du= p=2 _ 2 g 1) ...QAL).
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A particular case of this theorem is
[(2acosty i —ptyo-nan
—g)ym (223
e

= ntp—2 V" M(») IO (%2-) o (p—3)

12. Next, let us evaluate | e ¥+ ~+2#% §_du over the sphere of
unit radius; this integral is, by changing the variables, reducible to
an integra.]; efc»? S dw, where

B =al+aj+... +d].
Substitute for e#*** its value given by putting —¢8 for r in the
expansion (9); then, remembering that

[S..P,,. (p, cos 0) dw =0,

except when ni = n, we have ‘
~ f e Sy do = 2 (p—2). (nip—1) Tt () f 5P du

=1 OGp—2)(ntip—1) ]’
- 9n n (”4";7?—1) Su-Pnd“’

xﬁ”{l+ g+ p +}
2.2n+p  2.4.2n4p.20+p+2 7

If f(x, %, ...2,) be a function which is finite and continuous
throughout the volume of the hyper-sphere, we have

f (zu g ‘." mp) = ez,. 3/351+z,. B/B£,+ et Zp. b/az,,f (f]v e” . Ep)i
where &, &, ... § are put equal to zero after the operation is performed,

et =, gz, .0=2;
1 af,’ (] afq,". 'p a&,,

we then have

_1 N@p—2) _p=2 _ %
[0t Gumoa e = g ey B2 n(25?)
2

2 0 0)\( v v
xS, (ag" o afp)( + 2.2n+p+2.4.2n+p.2n+p+2)

Fll e &) covee i, 13),
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120,22, +2

8&’: o¢, o8
and where £, &, ... §, are put equal to zero after the operations on
the right-hand side are performed.

where v

13. A large number of integrals are included as particular cases of
(13) ; an important one for our purpose is the case in which

8,= P, (p,cost), f=(z}+z+.. -i-a;2 ks

-l
we then have, supposing n even, keeping the only term which does
not vanish,
IP,. (p, cos 6) sin™.6 do

(22

(B k1) () (5 -2) (k- 3)

ad L d- @\ (s N
x (am: e +az,,_.) (ﬁ+m,+...+a;_,) .

=2 (—ym

It can easily be shown that

s : sy n(re 223
ai’.+5a‘-+ A+ ?,'_')'(z3+x;+...+ &)= - ?;-) 2 );

hence the value of the surface integral is
)\ (PL*'—” -'2)11 *) II(k +E:§)
n®gzee-n)n (5)n(3-9)n (- 5)1C7)

> [ P ma—ppae-ra,
-1

(=1)» 2

1 (E;—”-z) (%) I (k+£—;—3)

n(ZE +i-1)u(5)u(g —2)n(s—3)

where 7 is an even Integer.

= (=1)i* g

e (14),
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In the particular case p = 3, we have

f_lP..(y)a-u*)'dp
o 2)H(k)n(k)
o (2t +)m(3) vrn(e-3)

PR TOLAC) 2o o0 (G +k)

T rermon ()
m()n (k+%)n(k)n(k)
(- e

The particular case (15) agrees with the value obtained by Mr. W. D.
Niven*

= (-Dpn

. (15).

= (=1)irgnn

Ezpansions in Zonal Hyper-Harmonics.

14. Since e J,(p—1, \/a:’+m +o+2),
or exr e J (p—1, rsiné),
satisfies the equation v,V =0,

it is clear that this function must be capable of being exhibited in a
series of zonal hyper-harmonics of rank p of positive integral
degrees; thus

ereone _ur;!)!'_sm_o) .,", P, (p, cosb);
-0

(rsin G-
putting 6 = 0, we have
L =" WrP(p D)

e'

* Seo Phil. Tvans. for 1879, p. "8,
VOL. XXV.—No. 479. ¥
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_ 1
- 21(1'-8)n(?;f‘) I (1) P, (p, 1)

thus a,

_ 11 (p—3) |
2“:'-”11(?’_-—-;3) I (p+u—3)

we therefore obtain the theorem

reons ) = Lp=)@rsing)e-d &
€],z (r8inb) = : 2 7y P (P c0s 6
je-n ( ) 0k(-9) {1 (2—3) neo I (p+n—3) (® )
2 verreenenen. (16)

on changing r into —7, we have

. rcont . _ I(p—3)(rsinf)ir-? (=D

Ty o 0) = P, (p, cos b

e i(r 3)("'5“'1 ) 21— (]’ 3) ‘I (P b 3) (P‘l )
2 creeneneeenn(17).

In the particular case p =3, we have

T (rsin0) = 3 F'P,. (c088) vorrverrnnnenn(18),
ned N

e T (rsing) = 3 L‘_i'ﬁ.“P,. (€08 8) vunvrnnen(19)..
n=0 H

On multiplying the series (18), (19) together, we have

{7, (rsin0)}* = {1+%P,(cos€)+%P.(cosd)+...}
}’

- {TP, (cos 8) + ,-?'P, (cos 6) +...

Relations connecting Bessel’'s Functions of Different Orders.

15. The equation - VIVAV =0 ceieveeiee e eeeereneens “)
is satisfied by Job(p——l, s/a::+a:;+ @)y

which is independent of :u;,; it is therefore clear that J, (p—1, r8in )
can be exhibited in a series of the functions

P“ (P’ cos 9) "Lﬁlﬂ‘_ﬁ) ;

et
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thus Jip-g(reint) _ io B.P, (p, cos 6) L:‘::_Jl’_)

(rsin 6)ie-® !

where /3, denotes constants which must be determined.

‘Maultiply both sides of the equation by P, (p, cos 8)(1—cos® §)}*-2,
and integrate with respect to cos§ between the limits 1; we have
then, in virtue of (12),

- (p=3
o3 I (p+n—8) I { 2) T o

/;u _ ‘\/‘” — p-~1
2n +p—2 H(n)H(%‘z)ﬂ(p—& it

= gl Jyip-9(78in6) P, (p, cos 0)(1—cos*8)*-3d (cos ) ;

_1 (rsin G)ilr-9

equating the coefficients of +” on both sides of this equation, we sce
that B, is zero when # is odd, and that, when # is even,

-y «/wH/(p+n—-3)‘l'I(L_2'—3) )

WP mayn (B n -y T HC+HE-D

= (~DF ——— :
Foenm () n (B

x jl P, (p, cos 8) (1— cos? §)4*-2+* g (cos 6)
-1

Jr 2

=,2...mo=>h (”"'2%3—2) U (%) I (2%*)

I (L"‘ﬂ _2)

» by (14);

(n-i- E—E—g) nmx»)n (.p-3) n (’-’—;—”—2) ‘

jue (L;ﬁ) H(—;—' ) I (p+n-3)

hence pg3.=v2

on changing % into 2x, we have

Jie-n (rsin6) _ ,/2H_(.g___3_l $ (2"'*-?;2_2) I(2x) 1 (u+ 2’%3)

(r8in §)-2 sl I (1’_'2:_§)1'[(n)ﬂ(2»+p—3)

x Py, (p, cos 6)) Jrp1 () i e weee (20).
F2
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In-(20), put p = 3; we obtain

Jy(r8in6) = \/ 2. E @n+ g(ll)(n— 1) P;, (cos 6) Jyuy;y (7)

= \/271’ 3 &)@ D (0056) Ty () woo.nn (21).

Qi+l pl gl

Again, put p = 4; we have then

Jy(rsin8) _ 2,/2 1
(rsin o) = n

E-PR" (4’ cos 0) 'Iﬂutl ('I‘)

In the theorem (20), put 0 = —; we then have

2
Jip-n (1) = \/2 t (p—3)(2:§) :_i: -
2

(2n+7’%2) (%) TT (n+1;i—2) m(n+2-2)

x I () T () 1 (20 +p—3) Forrip-1(r)... (22);

this expresses a Bessel’'s function of integral order in a series of
Bessel’s functions of order half an odd integer, and conversely.

A particular case of (22) is when p = 3;

Lo = 2% (-1 {ﬂ”_:)z) }’ @0 H+1) Toney (7) ... (23).

Again, when p = 4, we have
gine = 2"5: (=1)" T () evevreererene e (24).

16. It is interesting to obtain an expansion corresponding to (23),
by another method ; on comparing the results obtained by the two
methods, the evaluation of certain definite integrals is obtained.

We have
© o (Udr) © fo
J, () & du:J I e~ I (w) dudt ;
‘o o )‘u+"' 0do ’ ’

on carryihg out the integration with respect to u, the right hand
becomes, by a known theorem, equal to

® e( _‘), D -fr
t, or e’ ]
j \/1+(t—«)’ L V=2t
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putting t—t =,

e (ier) . ] !’r
we have j gy (u) e du = —f s/t"—l —dt’;

dt is one of a class of integrals which repre-

the integral j

¢

other writers. Using a result obtained by Hankel, we have

.(u+r)

] J(u) du=——Y(fr)+"'J(o),

on equating the real and imaginary parts on both sides of this equa-
tion, we obtain the formule

Jo(r) = fL ‘E%L(__';iilJ () Qoo (25),

Y, () = — 2r 2%_’;%2% (W)t aenreveeeeenn(26).

These formule were first obtained, by a  different method, by
Sonnine.

On substituting in (25), the value of %:‘-TM)’ given by the

addition formula of Section 10, we have

J()—B_IE_T%I J, (u )smu

+'3 (-1 @e+1) 2 (—2ry - (T:)“E‘_Tﬁ

f T (=2 7 :)"%L‘du,

which may be written
L) =2 0() [ % ) 2 g

+3 (=1 @n41) L) j J(u)iﬂii'.tdu.

* See Mathematische Annalen, Vol. 1.
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On comparing this expansion with (23), we see that
2Ty () Jayy (w) 5
I 0 vu du =0

when # is odd; and when = is even, writing 2z for #, we have

IL&L_&_‘M —\/2 2n +§ _@L%-)}i'.'........(zv).

T 3n+l I (n)

It is clear that, by using the addition theorem for ﬂs—g?—r)‘, the
utr

equation (26) could be applied to obtain a development of ¥, (r) in
Bessel’s functions of the second kind, and of orders equal to half
an odd integer.

Definite Integral Relations between Bessel's Functions. .
17. Since r8in 0 = (z}+a]+...+2)_ )},
we see that. Jy (p—1, 7 sin 0) satisfies the equation
v,V+V =0,

being a solution which is independent of z,; it follows that the mean
value of J,(p—1, rsin ) taken over the sphere of radius r is a

solution of V: V+V =0,

which is such that it depends only on 7, and is therefore, except for a
constant factor, equal to J,(p, r), as it is clear that the Bessel’s
function of the second kind cannot be involved.

(]
We have j Jy (p—1, 78in 8) sin"-* 6 40
(1]

I _i.(L_g_._w Sln"" 8do

(7 sin g)it#=9

1 I" 7 8in'0 sin*0 } N
=— - —... 8in""?0d0
2“‘,_3)11(8—3) 0 ( 2.?—1 2.4.p"l.p+1
2

— Jm {1_.i+-———-————-——-—-r‘ —}
9ite=1 T (2—2) 2.p 2.4.p(pt+2)
2

T
=5 2l = [T ;s
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it follows that

Jg—jl' J“p_g) ('r Bin 9) ain“"‘“ﬂdo = M .-..nn.(28)o
T Jo Vr

Putting p = 2rn+3, we have
2 (" i 0) sin™* 6 48 = Tari (1)
\/7 L Srsind)sintnodo=Tb) o (9.

Again, putting p = 2142, we have
jv
\/—?—r— g ey (r8in 0) Bin"*4 6 = L() . t....(30).
1]

A particular case of (29) is

(13 H
I J,(rsin®) sinfdo=S0T G31);
0 T

thus we have relations connecting Bessel's functions of orders
differing by 1.

when p is not restricted to be a positive integer.

Expressions for Zonal and Tesseral Harmonics as Definite Integrals
involving Bessel's Functions.

18. Let PP=al+al+.. +2)

pe1
then we have the well known theorem
1_ 1 (-
Differentiating both sides of this equation m times with respect
to p%, we have

1 1 2’"11 (m) —M mw JLI(M
’nnl @ +ma)mq I (2m) [ ?A " di......(32).

In order to find a corresponding expression for the even powers
1

of —, we have
r

—];_= 11 =rc-'\z “i"A":lX
T 2, +p° Jo

—\/2I -Mp)\')li_ld)(
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on differentiation m times with respect to 4*, we have

14 1 2".»0Il @’L+‘D -. ’p g,,,HJ,,.ﬂ! !dA.. 33 ;
mnl (z +Pi)mn H (zm_*_ l) A (Ap)"ﬂ ( )

both the equations (32), (33) are included in the formula

§(n-1) n—1
1 1 __z H( 2 )
o @)t H(s—1)

f e~Mp N (n-1) '_’uu-_'!i_l dX...(34) ;
0

(l)

the most important case of this theorem is obtained by putting

n=p-2,
in which case we have

2i(r-3 1 (Z’__;_:;)

;"T’=—HGT3)_[ e 01 . (p—1, 2p) dAverevn.nn(35).

0

From the equation (35), we find, by dlﬁerentxa.tmg n times with
respect to z,,

ir-3 1 &3)
o 1 _ (2 > " =AZy ap-3 - .
o P‘?*—"H(P—ﬁ)—f]’., (=A™ N2, (p—1, Ap) dA 5
hence
gie-a 1y (2=3
P.(p 1) _ ( 2 )rxw A% Jo (p—1, Ap) dA...(36) ;

e I(p-3)O(n)

this is the expression for the zonal hyper-harmonic of degree
—(n+p—2), in terms of Bessel’s functions. In particular we have

P,, —_— LIPS .
a0 = ot )!' Ao T, (A0) AA evernorenenen (37)

19. For the ordinary system of zonal and tesseral harmonics of
rank 3, we have from the equation

1 1 ® e =
— = = =T (A V) dA
r  (F+i) ,(o ey (AVin) dh,
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where ¢=zty, n=a—uw,

.a_m_ a”_m .l: —_— u-,;u ® n-m "*’-—-—i A‘/_ dA
g g (-1) LA e HE“Jo( én)

= (—1)"§1;‘ e=me r Ate~* J,, (Ap) dA.

Now an. oo™ 1 —= (=" T MP:I ®);

afm azu—m r ,'.vu-l 2m
hence we have
Tohd = e jm)'r A€ T,y () @heerer e vereee (38),
*d0

which gives an expression for the tesseral harmonic ‘ﬂé%‘-) cos m¢ as
a definite integral.

We have, putting r = 1,

Py(p) = ),[ Amgmreoe I (X gin 0) dX .........(39),

(n—

P =2 r A6 J. (Asin 8) e e neenn.... (40).
*Jo

Some potential problems may be solved either in terms of the system
of zonal and tesseral harmonics, or in terms of Bessel’'s functions;
the formuls of the present section afford the means of passing from
one form of solution to the other.

20. It might be expected that, corresponding to (36) and (37), there
should exist expressions for the positive harmonics +*P, (p, p),
P, (1), a8 definite integrals involving Bessel’s functions. If, in (16),
we write Ar for 7, we see, by Cauchy’s theorem, that

7P, (p, cos 6) I (g =3)
P (P_g__) O (n+p—3)

=1 grem Jm—'n (Ar sin 0) da,
2me N‘“ (Ar sin 6)3P-9

or » P, (p, cos )
_2!““”11(1"2 ) I (ntp-3)

=3 dX...(41),

I "w“ J. (p=3) (AT Sin 9)
A (Arsin 9)i =3
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where the integral is taken along a complex path represented by a
closed curve round the origin A = 0.

In particular, we have

P, (cos §) = — I

K cose

o Jy (Arsin@) dr ............ (42).

It may be shown that

7P (cos 0) = in_;_@l’ J AlJ (Arsin 8) dA.........(43).
T

The expressions (42), (43) correspond exactly to (37) and (38), the
only difference being that in the latter the integrals are taken along
a real path, and in the former along a complex path.

Eaxpressions for the Zonal and Tesseral Harmonics of the Second Kind
in Terms of Bessel's Functions.

21. Let us evaluate the definite integral

[ e ¥, (Ap) dA.

0

Substituting for Y, (Ap), the value

cos (Ap cosh %) du,

we have

zd (2u)
22' +p* + p* cosh 2u

l
K e Y, (hp) dA —[ [ ~* cos (Ap cosh u) dudr
=],

= —A [cosh" (22 +p*) cosh 2u+p"]°

2‘/52’*'?’ ’ (228 +p*) +p* cosh 2u J,
_ 1 a2+ L
Y e [cosh o cosh 1]
-1 5 (2z’+p’+2zvz’+p’)
2\/z’+p' p ¢

JERK |
_~/_,1 ---glogz+~/z +p ;
zr+p p
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thus we have the theorem

which corresponds to the known theorem

1 f e J, (Ap) dA.
T 0

From (44), we obtain, by differentiation » times with respect to 7,
the formula

Qu (1) % J: AT, (A) AN e (45),

ru-rl

where Q, (u) is the zonal harmonic of the second kind. As in the
cage of the harmonics of the first kind, we find

Qw1 rxne-“Y.,.(hp)dx cererenenend(46) 5

X (n=m)!]},

R 4

thus the tesseral harmonic QL(—’:—) cos mg is expressed as a definite
r

integral involving the elements e"**Y,, (Ap) cos mg.

Note on a Variable Seven-points Oircle, analogous to the Brocard
Circle of a Plane Triangle. By JoBN Grirritas, M.A.
Received December 13th, 1893. Read December 14th,
1893,

The object of this note is to show that a seven-points circle can be
constructed from a variable point U taken on one of three given
circles connected with a triangle ABC.

1. On the side BC of a triangle ABC describe a circular arc BUC
touching AC in C, and let U be any point on this arc. This con-





