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Data processing pipeline pattern
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Requirements for such pipelines

• Reliable, near-real time data access

• Uniform policy for data access, based on local policy

• Delegation of data access management to PI

• Ability to compute on data across storage classes

• Applying best practices with data processing pipeline

• Support for data organization to facilitate FAIR data

• …

3

Requires automation to scale 
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An example of what 

this looks like in 

practice…
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What’s going on behind the curtain?
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Data processing pipeline pattern
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Creating credentials 

for automation
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Managing service accounts/app credentials

• Service Account = Application Identity/Credential: 

app_client_uuid@clients.auth.globus.org

• These are confidential apps with client ID and secret

• Ensure application is on a secure device

• Set up policy for rotation of secret

• Assign project admins to manage the registration
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Registering a service account

• Web app: Settings → Developers

app.globus.org/settings/developers
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Get app credentials at 

app.globus.org/settings/developers
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Preparing your 

instrument for data 

automation
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Install Globus Connect

• Acquisition machines mostly run Windows

• ➔ Globus Connect Personal…

– …installed as a local user account (assuming PI login)

– …running as a service account (best practice, policy driven)

– …outbound connections only ➔ easier to get approval!

• Endpoint must have access to instrument data

1. GCP runs on instrument storage (same system)

2. Endpoint host mounts instrument storage (SMB, NFS, other)

14
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Creating the

landing zone(s) for 

instrument data
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1. Understand the processing model

• Scenario 1: Data moves from instrument to 

“adjacent” cluster for post-processing; post-

processed data moved to institutional storage

• Scenario 2:  Data transferred to researcher-owned 

storage in RCC or other compute facility

• Scenario 3: Data held in facility-owned storage; PI 

initiates transfer to compute-accessible storage

– More common in outsourced providers, national facilities
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2. Prepare the landing zone (“scratch” area)

• Who owns the landing zone?

– Facility: You set it up once and configure for each job

– Researcher: Researcher configures; may use a Flow to set 

create directories, set permissions, etc.

• Collections and permissions

– Landing zone must be writable by whomever requests the 

transfer: facility operator, researcher, or …service account

– Guest collection provides the most flexibility
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Configuring collections 

for automation



19

Configure a Globus Guest Collection

• Automation ➔ Guest collection

– The alternative is a lot more work!

• Considerations:

– How is the instrument output organized?

– Who will be requesting (initiating) transfers?

• Best practice: Use (another) service account with flow 

run permissions; grant 'R' access to guest collection
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Guest collection use pattern 1

• Create a guest collection at top level directory 

– Done by a user who has a local account

• For each experiment/project/modality

– Create a folder

– Set permissions for PI/collaborators to read data from the folder

• Can automate permission management by using local 

policy store

20
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Guest collection use pattern 2

• Create a guest collection for each experiment, 

project, modality

– Grant Access Manager role to PI for managing permissions

– Set permissions for collaborators to read data from the folder

• Can automate role and permission management by 

using local policy store
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Create the guest collection

1. Create a guest collection

— Pay attention to root path

2. Create a Group to help you manage sharing

3. Grant the service account/group permissions on the 

guest collection

4. Make service account an Access Manager on the 

guest collection
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Preparing computation 

environment and post 

processing code(s)
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Globus Compute from the researcher’s PoV
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Globus Compute transforms any computing 

resource into a function serving endpoint

• Python pip installable agent

• Elastic resource provisioning 

from local, cluster, or cloud 

system (via Parsl)

• Parallel execution using local 

fork or via common schedulers

– Slurm, PBS, LSF, Cobalt, K8s

Compute

Service
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Installing a single-user compute endpoint

$ source ./compute/bin/activate
$ globus-compute-endpoint configure PEARC25-Tutorial-Endpoint
Created profile for endpoint named < PEARC25-Tutorial-Endpoint >

Configuration file: /home/vas/.globus_compute/PEARC25-Tutorial-Endpoint /config.yaml

Use the `start` subcommand to run it:

$ globus-compute-endpoint start PEARC25-Tutorial-Endpoint

$ globus-compute-endpoint start PEARC25-Tutorial-Endpoint
Starting endpoint; registered ID: 54460200-b652-4f43-a918-02882fa6114a
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Multi-user Endpoints: Architecture
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Multi-user Compute Endpoints

Benefits for Researcher

● No need to maintain 

multiple endpoints for 

different configurations

● Specify configuration 

at task submission

● No need to log in to the 

terminal

28

Benefits for Administrator

● Templatable endpoint 

configurations, e.g., pre-

select executor, enforce limits

● No orphaned user endpoints

● Standard Globus identity 

mapping

● Lower user support overhead
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1. Configure compute endpoint

• Globus compute agent must be installed where each 

postprocessing step will run

– Facility/instrument-adjacent cluster ➔ Single-user endpoint

– RCC cluster, cloud/other shared resource ➔ Multi-user endpoint

• Configure executor, e.g., Slurm job parameters

• Considerations: local account that compute tasks run as

– Must have access to compute endpoint and scratch space

– Must have necessary allocations (# nodes, capability, time, …)?
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2. Prepare compute code(s)

• Package and register functions with Globus Compute

– Data processing

– Metadata extraction

• Ensure local user can load required environment(s)

• Ensure imported packages are in place

• Ensure Python versions match (serialization, ugh!)
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Preparing for data 

sharing and/or 

publication
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Globus Search provides FAIRness foundation

• Metadata store with fine-
grained visibility controls

• Schema agnostic dynamic 
schemas

• Simple search using URL 
query parameters

• Complex search using 
search request document

34

docs.globus.org/api/search

Search

Index



35

Capture metadata early and often

• …about the instrument: equipment, calibration data, 
software version, …

• …about the run: researcher/project/experiment IDs, 
sample metadata, time/duration, preparation and/or 
procedural data, …

• Hardcode less variable attributes, or enter before run

• Register Compute function(s) to extract dynamic 
(sample/run-based) variables
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Set up Search index

• Create index and assign roles

– Service account must have writer access

• Decide on schema and search facets

– No Globus-imposed constraints

– Extensible as needs evolve

• Select ID type/service (DataCite DOI, ORCID ID, …)

– Configure minting service (get credentials, decide on test vs. 

production environment)



37

identifier

Persistent identifiers are key to data FAIRness

• Add a PID minting step to your flow

• Include PID when ingesting metadata to 

Globus Search

docs.globus.org/api/flows/hosted-action-

providers/ap-datacite-mint
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Creating and deploying 

flows for automation
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Flow definition 

39

"StartAt": "TransferFiles",
    "States": {
        "TransferFiles": {
            "Comment": "Transfer to a guest collection",
            "Type": "Action",
            "ActionUrl": "https://actions.automate.globus.org/transfer/transfer",
            "Parameters": {
                "source_endpoint_id.$": "$.input.source.id",
                "destination_endpoint_id.$": "$.input.destination.id",
                "transfer_items": [
                    {
                        "source_path.$": "$.input.source.path",
                        "destination_path.$": "$.input.destination.path",
                        "recursive.$": "$.input.recursive_tx"
                    }
                ]
            },
            "ResultPath": "$.TransferFiles",
            "WaitTime": 60,
            "Next": "SetPermission",
        },
        "SetPermission": {
            .....
            "End": True
        }
    }

Action

Action Provider URL

Action inputs

Timeout (seconds)

Next state
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Define/deploy the Globus flow

• Start with published flow definitions

– github.com/globus/globus-flows-trigger-examples

– docs.globus.org/api/flows/authoring-flows/examples/

• Manage flow definitions in a version control system 

• Validation tools 

– Flows IDE: https://globus.github.io/flows-ide/

– Globus CLI: globus flows validate

• Be agile :-) build/test each action incrementally; add error 
handling
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Create the flow

• Success returns the flow ID

• Inspect the flow using the web app

43

$ globus login

$ cd ~/pearc25-tutorial

$ globus flows create FLOW_NAME \

> definition.json --input-schema schema.json
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Decide who/what will run the flow

• Instruments are closed environments

– Little/no visibility into run progress

– Restricted access to capture dir (outside of device software)

➔ Flow trigger is sometimes custom code

➔ More often a human may need to run the flow

• Decide how to pass inputs (depends on trigger )
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Permissions to run the flow

Set 

permission 

for the service 

account to 

run the flow 

45
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Key consideration: Be identity aware

• What identity is the flow running as?

• Does identity have access to target resources?

– Collections (ideally, guest collections)

– Compute endpoint

– Compute function

• Does identity have the required role?

– Access Manager, if granting/revoking permissions

46
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Triggering flows on 

instruments …and other 

resources
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Instruments don’t play nice!

• Determining the trigger event is not an exact science

• Custom code almost always required

• Locked-down environments may necessitate a 

manual step/triggering of the flow
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Creating and triggering runs of our flow

1. Edit the monitor (trigger.py) script

2. Ensure GCP is running on the instrument

3. Run the monitor script

4. Trigger the flow

49
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Ask for help! Really, please.

• Guidance on best practices

• Sounding board for your design/implementation

• Assistance with developing flows, solutions

• All at no cost to you …just reach out
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