
Rachana Ananthakrishnan, Lev Gorenstein,

Greg Nawrocki, Vas Vasiliadis

Automating

Research at Scale

bit.ly/pearc25-globus

2

Data processing pipeline pattern

2

ENTERPRISE

STORAGE

RESEARCH

COMPUTING/HPC

COMMERCIAL

CLOUD

Data Source Processing and Storage Curation, Approvals

Access by

collaborators

Metadata

Extraction

Set access

and publish

for discovery

Persistent

Identifiers

COMPUTING

3

Requirements for such pipelines

• Reliable, near-real time data access

• Uniform policy for data access, based on local policy

• Delegation of data access management to PI

• Ability to compute on data across storage classes

• Applying best practices with data processing pipeline

• Support for data organization to facilitate FAIR data

• …

3

Requires automation to scale

4

An example of what

this looks like in

practice…

4

5

What’s going on behind the curtain?

Move

Transfer

raw files

Compute

Launch

analysis job

Compute

Extract

metadata

Share

Set access

controls

Move

Transfer

results

Clean up

Delete

temp data

Globus

Flows

Ingest

Open

metadata

FAIR data,

by default

Ingest

Restricted

metadata

6

Compute

Resource

Our instrument research environment

Compute

Endpoint

Registered compute

function

transfer control

discover and

access dataSharing Repository

transfer

raw files1

invoke image

processing function
2

set permissions

4
transfer

result files

3

Storage

Endpoint

(scratch)

Storage

Endpoint

(share)

Compute

Service

Transfer

Service

Instrument Capture

Machine
(your laptop)

Storage

Endpoint
(using GCP)

Monitor

script

0
trigger

flow run

Search

Service

6

7

cleanup

scratch

5

ingest

metadata

7

Data processing pipeline pattern

7

ENTERPRISE

STORAGE

RESEARCH

COMPUTING/HPC

COMMERCIAL

CLOUD

Data source

Processing

and storage

Access by

collaborators

Set permissions for

access

LOCAL

POLICY

1. Credentials for automation
2. Preparing instrument for

automation

3. Configuring data
collections for automated

data transfer and sharing
4. Configuring the

computation environment

5. Creating and deploying
flows for automation

6. Creating trigger scripts

8

Creating credentials

for automation

9

Managing service accounts/app credentials

• Service Account = Application Identity/Credential:

app_client_uuid@clients.auth.globus.org

• These are confidential apps with client ID and secret

• Ensure application is on a secure device

• Set up policy for rotation of secret

• Assign project admins to manage the registration

10

Registering a service account

• Web app: Settings → Developers

app.globus.org/settings/developers

11

Get app credentials at

app.globus.org/settings/developers

12

Preparing your

instrument for data

automation

14

Install Globus Connect

• Acquisition machines mostly run Windows

• ➔ Globus Connect Personal…

– …installed as a local user account (assuming PI login)

– …running as a service account (best practice, policy driven)

– …outbound connections only ➔ easier to get approval!

• Endpoint must have access to instrument data

1. GCP runs on instrument storage (same system)

2. Endpoint host mounts instrument storage (SMB, NFS, other)

14

15

Creating the

landing zone(s) for

instrument data

16

1. Understand the processing model

• Scenario 1: Data moves from instrument to

“adjacent” cluster for post-processing; post-

processed data moved to institutional storage

• Scenario 2: Data transferred to researcher-owned

storage in RCC or other compute facility

• Scenario 3: Data held in facility-owned storage; PI

initiates transfer to compute-accessible storage

– More common in outsourced providers, national facilities

17

2. Prepare the landing zone (“scratch” area)

• Who owns the landing zone?

– Facility: You set it up once and configure for each job

– Researcher: Researcher configures; may use a Flow to set

create directories, set permissions, etc.

• Collections and permissions

– Landing zone must be writable by whomever requests the

transfer: facility operator, researcher, or …service account

– Guest collection provides the most flexibility

18

Configuring collections

for automation

19

Configure a Globus Guest Collection

• Automation ➔ Guest collection

– The alternative is a lot more work!

• Considerations:

– How is the instrument output organized?

– Who will be requesting (initiating) transfers?

• Best practice: Use (another) service account with flow

run permissions; grant 'R' access to guest collection

20

Guest collection use pattern 1

• Create a guest collection at top level directory

– Done by a user who has a local account

• For each experiment/project/modality

– Create a folder

– Set permissions for PI/collaborators to read data from the folder

• Can automate permission management by using local

policy store

20

21

Guest collection use pattern 2

• Create a guest collection for each experiment,

project, modality

– Grant Access Manager role to PI for managing permissions

– Set permissions for collaborators to read data from the folder

• Can automate role and permission management by

using local policy store

22

Create the guest collection

1. Create a guest collection

— Pay attention to root path

2. Create a Group to help you manage sharing

3. Grant the service account/group permissions on the

guest collection

4. Make service account an Access Manager on the

guest collection

23

Preparing computation

environment and post

processing code(s)

24

Globus Compute from the researcher’s PoV

A B

You request a function be

executed on endpoints A and B

1

2
Globus Compute manages

the reliable and secure

execution on these endpoints

3
Globus Compute returns results or

stores them until requested

Compute

Service

You register your code

(as a Python function)

0

A compute

resource

Another

compute

resource

25

Globus Compute transforms any computing

resource into a function serving endpoint

• Python pip installable agent

• Elastic resource provisioning

from local, cluster, or cloud

system (via Parsl)

• Parallel execution using local

fork or via common schedulers

– Slurm, PBS, LSF, Cobalt, K8s

Compute

Service

26

Installing a single-user compute endpoint

$ source ./compute/bin/activate
$ globus-compute-endpoint configure PEARC25-Tutorial-Endpoint
Created profile for endpoint named < PEARC25-Tutorial-Endpoint >

Configuration file: /home/vas/.globus_compute/PEARC25-Tutorial-Endpoint /config.yaml

Use the `start` subcommand to run it:

$ globus-compute-endpoint start PEARC25-Tutorial-Endpoint

$ globus-compute-endpoint start PEARC25-Tutorial-Endpoint
Starting endpoint; registered ID: 54460200-b652-4f43-a918-02882fa6114a

27

Multi-user Endpoints: Architecture

27

Start Endpoint

(identity id, uep id)

Node 1

Node …

Node n

[tasks] [results]

1

Executor submit

([tasks], endpoint,

user endpoint config)

…

Multi-User Endpoint

Templates

ID Mapping

User Endpoint

Globus Compute

Engine

Local User

Spawn

(identity)

↧
(local user)

2

[results]

Globus Compute

3

…..

28

Multi-user Compute Endpoints

Benefits for Researcher

● No need to maintain

multiple endpoints for

different configurations

● Specify configuration

at task submission

● No need to log in to the

terminal

28

Benefits for Administrator

● Templatable endpoint

configurations, e.g., pre-

select executor, enforce limits

● No orphaned user endpoints

● Standard Globus identity

mapping

● Lower user support overhead

31

1. Configure compute endpoint

• Globus compute agent must be installed where each

postprocessing step will run

– Facility/instrument-adjacent cluster ➔ Single-user endpoint

– RCC cluster, cloud/other shared resource ➔ Multi-user endpoint

• Configure executor, e.g., Slurm job parameters

• Considerations: local account that compute tasks run as

– Must have access to compute endpoint and scratch space

– Must have necessary allocations (# nodes, capability, time, …)?

32

2. Prepare compute code(s)

• Package and register functions with Globus Compute

– Data processing

– Metadata extraction

• Ensure local user can load required environment(s)

• Ensure imported packages are in place

• Ensure Python versions match (serialization, ugh!)

33

Preparing for data

sharing and/or

publication

34

Globus Search provides FAIRness foundation

• Metadata store with fine-
grained visibility controls

• Schema agnostic dynamic
schemas

• Simple search using URL
query parameters

• Complex search using
search request document

34

docs.globus.org/api/search

Search

Index

35

Capture metadata early and often

• …about the instrument: equipment, calibration data,
software version, …

• …about the run: researcher/project/experiment IDs,
sample metadata, time/duration, preparation and/or
procedural data, …

• Hardcode less variable attributes, or enter before run

• Register Compute function(s) to extract dynamic
(sample/run-based) variables

36

Set up Search index

• Create index and assign roles

– Service account must have writer access

• Decide on schema and search facets

– No Globus-imposed constraints

– Extensible as needs evolve

• Select ID type/service (DataCite DOI, ORCID ID, …)

– Configure minting service (get credentials, decide on test vs.

production environment)

37

identifier

Persistent identifiers are key to data FAIRness

• Add a PID minting step to your flow

• Include PID when ingesting metadata to

Globus Search

docs.globus.org/api/flows/hosted-action-

providers/ap-datacite-mint

38

Creating and deploying

flows for automation

39

Flow definition

39

"StartAt": "TransferFiles",
 "States": {
 "TransferFiles": {
 "Comment": "Transfer to a guest collection",
 "Type": "Action",
 "ActionUrl": "https://actions.automate.globus.org/transfer/transfer",
 "Parameters": {
 "source_endpoint_id.$": "$.input.source.id",
 "destination_endpoint_id.$": "$.input.destination.id",
 "transfer_items": [
 {
 "source_path.$": "$.input.source.path",
 "destination_path.$": "$.input.destination.path",
 "recursive.$": "$.input.recursive_tx"
 }
]
 },
 "ResultPath": "$.TransferFiles",
 "WaitTime": 60,
 "Next": "SetPermission",
 },
 "SetPermission": {

 "End": True
 }
 }

Action

Action Provider URL

Action inputs

Timeout (seconds)

Next state

40

Define/deploy the Globus flow

• Start with published flow definitions

– github.com/globus/globus-flows-trigger-examples

– docs.globus.org/api/flows/authoring-flows/examples/

• Manage flow definitions in a version control system

• Validation tools

– Flows IDE: https://globus.github.io/flows-ide/

– Globus CLI: globus flows validate

• Be agile :-) build/test each action incrementally; add error
handling

43

Create the flow

• Success returns the flow ID

• Inspect the flow using the web app

43

$ globus login

$ cd ~/pearc25-tutorial

$ globus flows create FLOW_NAME \

> definition.json --input-schema schema.json

44

Decide who/what will run the flow

• Instruments are closed environments

– Little/no visibility into run progress

– Restricted access to capture dir (outside of device software)

➔ Flow trigger is sometimes custom code

➔ More often a human may need to run the flow

• Decide how to pass inputs (depends on trigger)

45

Permissions to run the flow

Set

permission

for the service

account to

run the flow

45

46

Key consideration: Be identity aware

• What identity is the flow running as?

• Does identity have access to target resources?

– Collections (ideally, guest collections)

– Compute endpoint

– Compute function

• Does identity have the required role?

– Access Manager, if granting/revoking permissions

46

47

Triggering flows on

instruments …and other

resources

48

Instruments don’t play nice!

• Determining the trigger event is not an exact science

• Custom code almost always required

• Locked-down environments may necessitate a

manual step/triggering of the flow

49

Creating and triggering runs of our flow

1. Edit the monitor (trigger.py) script

2. Ensure GCP is running on the instrument

3. Run the monitor script

4. Trigger the flow

49

51

Ask for help! Really, please.

• Guidance on best practices

• Sounding board for your design/implementation

• Assistance with developing flows, solutions

• All at no cost to you …just reach out

	Slide 1: Automating Research at Scale
	Slide 2: Data processing pipeline pattern
	Slide 3: Requirements for such pipelines
	Slide 4
	Slide 5: What’s going on behind the curtain?
	Slide 6: Our instrument research environment
	Slide 7: Data processing pipeline pattern
	Slide 8
	Slide 9: Managing service accounts/app credentials
	Slide 10: Registering a service account
	Slide 11: Get app credentials at app.globus.org/settings/developers
	Slide 12
	Slide 14: Install Globus Connect
	Slide 15
	Slide 16: 1. Understand the processing model
	Slide 17: 2. Prepare the landing zone (“scratch” area)
	Slide 18
	Slide 19: Configure a Globus Guest Collection
	Slide 20: Guest collection use pattern 1
	Slide 21: Guest collection use pattern 2
	Slide 22: Create the guest collection
	Slide 23
	Slide 24: Globus Compute from the researcher’s PoV
	Slide 25: Globus Compute transforms any computing resource into a function serving endpoint
	Slide 26: Installing a single-user compute endpoint
	Slide 27: Multi-user Endpoints: Architecture
	Slide 28: Multi-user Compute Endpoints
	Slide 31: 1. Configure compute endpoint
	Slide 32: 2. Prepare compute code(s)
	Slide 33
	Slide 34: Globus Search provides FAIRness foundation
	Slide 35: Capture metadata early and often
	Slide 36: Set up Search index
	Slide 37: Persistent identifiers are key to data FAIRness
	Slide 38
	Slide 39: Flow definition
	Slide 40: Define/deploy the Globus flow
	Slide 43: Create the flow
	Slide 44: Decide who/what will run the flow
	Slide 45: Permissions to run the flow
	Slide 46: Key consideration: Be identity aware
	Slide 47
	Slide 48: Instruments don’t play nice!
	Slide 49: Creating and triggering runs of our flow
	Slide 51: Ask for help! Really, please.

