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In this paper, I derive the �ne-structure constant α as an emergent and parameter-free invariant
of Relator theory. The construction uses the Schrödinger equation, classical electrodynamics and
mechanics, and Relator geometry with luminal evolution on the C-space and the orthogonal spatial
sector R3, which �xes a minimal phase cavity and the Coulombic baseline. A transverse traceless
inductive channel is incorporated through a UV, IR, and OUT decomposition, and a logarithmic
closure uniquely determines α with no �tted numbers and with no use of measured constants e,
c, and ℏ. No quantum electrodynamics is invoked at any stage. The prediction matches the most
precise independent measurements at sub-ppt accuracy and remains stable under regulator choices
and multipole cuto�s.

I. INTRODUCTION

Nature's geometry? From the Pythagoreans' hymn to number to Feynman's �1/137,� physics has carried a suspicion
that a single ratio stitches disparate phenomena together. Sommerfeld introduced the �ne�structure constant as a
universal coupling,[1] Eddington dared that it should be a pure number,[2] Born framed it as the hidden governor of
atomic detail,[3] and Dirac argued that dimensionless combinations like α must be explained by structure rather than
units.[4] The riddle endured, acquiring almost mythic overtones�an Ariadne's thread promised but never found.
In quantum physics, the �ne-structure constant α appears almost everywhere, yet its origin remains arguably the

�eld's most stubborn mystery�after a century of attempts no �rst-principles derivation has predicted its value even
at the percent level; the rare multi-decimal matches have come from numerology or ad-hoc parameter tuning rather
than a physical explanation.
In this paper I take that challenge literally. I show that α is emergent and parameter�free: its value follows

from a purely geometric, gauge�invariant construction rooted in the Relator postulate Rω = c (luminal internal
evolution on C orthogonal to spatial winding in R3). No measured dimensional constants are invoked�no e, no c, no
ℏ�and no �tted numbers appear. A closed root condition �xes α by locking a Coulombic shell functional DC to the
vector�inductive sector through a universal map,

Clog ≡ π2

DC
ζ(1 + ζ) =

1

3
, ζ =

K

2π2
Λ,

so that the electromagnetic coupling is set by geometry alone. The construction yields rigid, dimensionless ratios
between the Coulomb and Λ�channel sectors; these geometric invariants, not empirical inputs, pin down α.
The same mechanism uni�es how �time� �ows for quantum phases [5]. In a companion analysis, the electron

g�factor appears as an evolution�rate shift of the phase clock induced by the large�D functional on the matching
shell�precisely analogous to time dilation in GR �whether momentum or gravity induced� now for the Coulomb
�eld predicted by the Relator [5, 6]. Thus the Relator framework does more than produce a number; it provides
a single geometric origin for coupling and for evolution�rate renormalization, turning the century�old riddle of α
into a calculable constant and opening a concrete path toward band�like stability structures for leptons within a
background�free, gauge�invariant setting.[7]
Our closed pipeline predicts an emergent value αpred = 0.007 297 352 564 326, agreeing with CODATA2022 α =

7.297 352 5643(11)× 10−3 to 2.16 ppt (z = 0.0146σ), thereby reproducing all certain published digits and predicting
subsequent ones.
The numerical outcome�as shown�emerges from a deliberately minimalist formal and computational pathway.

While a small background risk of bias toward over�tting can never be fully excluded, the relations employed here are
grounded in physically meaningful structure and rigorous mathematics rather than ad hoc symbol�play. In principle,
the �nal equation for α can be compressed into a more compact form, but such a reduction strips away its physical
content�which I do not advocate.
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Code: All numerical evaluations are fully reproducible from independent scripts in the companion repository �
github.com/pajuhaan/AlphaEmergent.

II. BACKGROUND

We begin with the time�dependent Schrödinger equation

iℏ ∂tψ = − ℏ2

2m
∇2ψ + V ψ, ψ(x, t) = R(x, t) eiS(x,t)/ℏ. (1)

written in Madelung form to expose the phase �eld S. Under minimal coupling, A→A +∇χ, ϕ→ϕ − 1
c∂tχ, ψ→

e iqχ/(ℏc)ψ, the phase shifts as S→S + q
cχ, so the mechanical momentum

pmech = ∇S − q

c
A (2)

is gauge�invariant. This is the unique combination of �elds and phase that will enter our construction.
The Relator postulate asserts a luminal internal kinematics,

Rω = c, (3)

with an orthogonal split of the total phase rate into a timelike rotation in the internal C�space and a spatial winding
in R3.
With orthogonal splitting of the internal frequency [5]

ωC(τ) := −1

ℏ
d

dτ
S(τ) ≡ mc2

ℏ

∣∣∣
t=τ

, (phase rotation in C),

ωR3(x, t) :=
1

mR
∇S∗(x, t) =

1

mR

(
∇S(x, t)− q

c
A(x, t)

)
︸ ︷︷ ︸

gauge formalism

, (spatial winding in R3).
(4)

Denoting these by ωC and ωR3 , respectively, we have

ω2 = ω2
C + ω2

R3 , and ωR3 is �xed by pmech, ωR3 = ∥ωR3∥. (5)

At the level of ratios, Eq. (3) eliminates the length scale R: the dimensionless spatial�to�total rate reduces to a pure,
gauge�invariant quotient of mechanical momentum and the relativistic scale mc. We therefore introduce the master
ratio and its square

ΩR3 ≡ ωR3

ω
=

∥∥∇S − q
cA

∥∥
mc

, D ≡ Ω2
R3 =

∥∥∇S − q
cA

∥∥2
m2c2

. (6)

All emergent e�ects will be expressed through D. We henceforth refer to D as the Particle�Winding Invariant : the
dimensionless measure of spatial winding relative to the total ω of the Relator. For later use we reserve the notation
DC for the Coulombic (scalar) baseline contribution to D, and ∆DΛ for the inductive (vector) correction obtained.
Collecting terms, we obtain

D = DC + ∆DΛ + O
(
∆D2

Λ

)
. (7)

In the Relator theory the wavefunction evolves luminally on the combined C⊕R3 kinematic split� there exists
no intrinsic speed other than c. The postulate Rω = c �xes the internal rate, and the orthogonal decomposition
ω2 = ω2

C +ω2
R3 ensures that the total evolution speed is always c [5]. Operationally, the C-plane hosts a luminal swirl

with

vθ(r) = c, ω(r) =
c

r
. (8)

Mass is de�ned as a coarse-grained continuum of energy dots�we call them Loopon (photon-like quanta) on C-space
that circulate tangentially at speed c [5]. The maximum-entropy coarse-graining gives the circular Gaussian

ρm(r) =
m

πσ2
C
e−r2/σ2

C ,

∫ ∞

0

2πr ρm(r) dr = m, σC = εR =
R√
π
, ε =

1√
π
. (9)

https://github.com/pajuhaan/AlphaEmergent


3

while electric charge resides on a thin Dirac ring at the Relator radius R,

dq = e δ(r −R) dr, I =
e ω

2π
=

e c

2πR
. (10)

This minimal (C-Gaussian mass sheet + ring charge at R) structure uniquely reproduces the classical limits for spin
and magnetic moment:

LC =

∫ ∞

0

r c dm =
1

2
mcR

R=ℏ/(mc)
=

ℏ
2
, µC =

ecR

2

R=ℏ/(mc)
=

eℏ
2m

, ⇒ µC

LC
=

e

m
=⇒ g = 2. (11)

We therefore adopt (8)�(11) as the physical content used in all vector-channel (Λ-chain) calculations.

III. METHODOLOGY

Imagine approaching an electron from astronomical distances; at �rst it presents itself as a pointlike source with
Coulomb and magnetostatic �elds; closer in, at a matching sphere�the �shell�, classical �eld theory runs out of room,
and if we insist on crossing the shell, even the usual quantum descriptors�charge, spin, mass�cease to be primary
objects. Past cures like uniform-charge-clouds and extended-pro�les, con�ict with the electron's spin and magnetic
moment; extra spatial dimensions only displace the paradox. The Relator move is di�erent; we keep physical space
R3 exactly as is, but introduce a generator space C-space that carries the source, while R3 becomes the propagation
arena. Once the origin is anchored in C-space, we can pass through the shell without contradiction. The observed
attributes; �elds, spin, e�ective mass appear as emergent maps from C into R3. The analysis below formalizes this
journey�crossing the shell of a fundamental particle�via a closed �xed�point construction for α and its geometric
blocks.
In the Relator framework C is the background space�the generative phase hardware of reality�while R3 is the

exposed measurement space. Information is mirrored between them; what is resolved in R3 re�ects in C, and vice
versa. We use ordinary classical �eld equations throughout; the classical/quantum divide dissolves under the single
postulate Rω = c [8].
Now we compute the gauge�invariant ratio of rates ΩR3 = ωR3/ω through the scalar phase�gradient and the vector

Λ�channel, using the single invariant

D =

∥∥∇S − q
cA

∥∥2
m2c2

. (12)

On the matching shell r = r∗ this decomposes as

D =
∥∇S∥2

m2c2︸ ︷︷ ︸
DC

+
q2 ⟨A2

∥⟩
m2c4︸ ︷︷ ︸
DA

− 2q

m2c3
〈
(∇S)·A∥

〉
︸ ︷︷ ︸

Dcross

, (13)

where A∥ is the tangential vector potential on the shell, �xed by the tangential boundary condition. On the shell, the

mechanical momentum expands as ∥∇S − q
cA∥2 = ∥∇S∥2 + q2

c2 ∥A∥∥2 − 2q
c (∇S)·A∥, with A kept tangential by the

shell projector. Angle brackets ⟨·⟩ denote the shell/near average (with solid�angle average on r = r∗ and radial weight
|u0(r)|2 normalized in (23)). In practice, the phase�locking at the shell moves the mixed term into the Λ�channel
bookkeeping as ∆Λsync (Sec. VD); its leading shell average does not survive independently of Λeff .
We partition space as

R3 = { r < r∗ } ∪ { r = r∗ } ∪ { r > r∗ }, (14)

interpreted as near �eld, matching shell, and far �eld. The shell is a natural gauge�invariant interface where the
interior phase mode is pinned to the exterior �eld. In the near �eld we model the phase by the stationary scalar
Helmholtz equation with s�wave j0 (Ansatz consistent with Rω = c), and the Dirichlet pinning S(r∗) = 0 selects the
�rst node,

k r∗ = π, k =
ωC

c
=

1

λ̄C
=⇒ r∗ = π λ̄C . (15)

Introduce η := λ̄C/r∗ = 1/π and take all shell averages in units of r∗. With k = 1/λ̄C and the j0(kr) pro�le, the ratio
∥∇S∥/(mc) reduces to a function of η only, and magnetic weights enter through the dimensionless Λ. Hence m and
λ̄C cancel out of DC and the inductive correction ∆DΛ, leaving purely geometric, dimensionless expressions.
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Having �xed the geometry, we proceed in two stacks:
(i) Coulombic (phase�gradient) stack DC(α); its exterior (r > r∗) contribution equals the factor α/π in our shell

normalization (from the energy integral of |∇S| under (12) and (21)); a uniform near/shell average introduces the
dimensionless weight ξ = 2αCuni

0 ; departures from uniformity are encoded by an even�power spectral series with
geometry�only coe�cients K and L2m. Altogether this yields a closed, geometry�only expression for DC(α), as shown
in Sec. IV.
(ii) Self�magnetic (Λ�channel); the electron's magnetic dipole is represented by a Dirac ring whose �lamentary

baseline is the inductive logarithm Λind = ln(8R/σC) − 2 with σC = R/
√
π. A �nite Gaussian collar supplies the

universal UV increment cGauss
0 = 1

2 (ln 2 + γ) together with the IR projector PIR; the free�space exterior is removed
by ∆ΛOUT; a small Coulomb�coupled phase locking on the shell enters as ∆Λsync; and polarization of Loopons on

C contributes a bounded ladder term ∆Λ
(χ)
pol . A dynamic remainder ∆Λdyn = O(ζ2) keeps higher�order magnetic

dynamics in the budget. The resulting e�ective sum Λeff de�nes the geometric weight ζ = (K/2π2) Λeff that drives
the inductive contribution ∆DΛ, as shown in Sec. V.
Crucially, every ingredient above is dimensionless and geometric. With the normalization after (21), and using the

kinematics Rω = c, the explicitm and the Compton scale cancel out of both DC and ∆DΛ, leaving mass�independent,
geometry�only formulas. The two stacks are then coupled only by a single scalar condition,

Clog(DC; ζ) =
π2

DC
ζ
(
1 + ζ

)
=

1

3
, (16)

which �xes α with no �tted numbers and no use of measured dimensional constants in the Sec. VI. The constant
1/3 is a Relator�level dynamical lock ; as the analytic treatment of higher orders in the two stacks is re�ned, the
solution for α approaches this closure. The same logarithmic structure echoes, at the level of form, the well�known
lepton�mass�dependent logarithms in perturbative QED; here, however, the lock arises independently of QED from
Relator geometry and the shell projection. The upshot is twofold: (a) α is derived as a pure number from invariant
geometry, and (b) the same mechanism exhibits a stability property for the particle (charge/mass) consistent with a
dynamically sustained lock at 1/3.

IV. COULOMBIC BASELINE

A stationary internal circulation projects to a �xed phase on the shell; we impose the Dirichlet pinning

S(r∗) = 0, (17)

which enforces the minimal closure that balances the interior phase�gradient energy with the outward Coulomb energy
at the shell. In the quasi�static near �eld we take the phase to satisfy the scalar Helmholtz equation with the s�wave
radial mode

∇2S + k2S = 0, S(r) ∝ j0(kr) =
sin(kr)

kr
. (18)

The boundary condition (17) requires j0(kr∗) = 0. The �rst zero gives

k r∗ = π. (19)

The internal clock �xes the wavenumber by the Relator kinematics Rω = c:

k =
ωC

c
=

1

λ̄C
, (20)

i.e. one internal wavelength across the reduced Compton length. Combining (19) and (20) yields

r∗ = π λ̄C . (21)

This is the minimal (�rst�node) choice, independent of α, and it produces the smallest cavity consistent with a sin-
gle�node closure. Higher�node options kr∗ = nπ (n = 2, 3, . . . ) enlarge the cavity, increase the interior phase�gradient
energy, and do not improve the far��eld match.
Uniform self�charge in the near �eld. Inside the cavity (0 ≤ r ≤ r∗) we use the electrostatic potential of a uniformly
charged sphere; this is the baseline model that feeds the s�wave:

V (r) =
e

8πε0 r∗

(
3− r2

r2∗

)
, 0 ≤ r ≤ r∗. (22)
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s�wave ground mode and normalization. The interior phase is taken as the ground s�wave of the scalar Helmholtz
problem with a node at r∗; the mode and its normalization are

u0(r) = N j0(kr), k =
π

r∗
, 4π

∫ r∗

0

r2 |u0(r)|2 dr = 1. (23)

This supplies the weight with which the near/shell potential (22) is sampled via |u0(r)|2.
Near/shell energy (uniform part). Averaging the potential over the s�wave gives the near/shell energy and the
associated dimensionless weight entering DC:

Unear-shell(r∗) :=

∫ r∗

0

4πr2 |u0(r)|2 V (r) dr = ⟨V ⟩ = αmc2 Cuni
0 , Cuni

0 =
1

π

(
4

3
+

1

4π2

)
, (24)

ξ =
2Unear-shell

mc2
= 2αCuni

0 . (25)

Far��eld share. The Coulomb energy stored outside the cavity �xes the baseline scalar contribution:

Ufar(r∗) =

∫ ∞

r∗

ε0E
2

2
dV =

α ℏc
2 r∗

=⇒ D(0)
C =

2Ufar

mc2
=
α

π
. (26)

This �far� piece sets the overall scalar scale in our shell normalization.

Inhomogeneity inside r∗ (even�power spectral series). Deviations from uniformity in the near �eld mix the ground
s�mode with higher cavity modes. With the dimensionless radius x = r/r∗ ∈ [0, 1],

In =

∫ 1

0

x2 sin(πx) sin(nπx) dx =
(−1)n−1

[(n− 1)π]2
+

(−1)n

[(n+ 1)π]2
, (27)

I(2m)
n = 2

∫ 1

0

x2m sin(πx) sin(nπx) dx, m = 1, 2, . . . , (28)

and the geometry�only constants

K =
2

π2

∞∑
n=2

(2In)
2

n2 − 1
, L2m =

2

π2

∞∑
n=2

(
2I

(2m)
n

)2
n2 − 1

(m ≥ 1), K = L2. (29)

Here K is the quadratic (x2) coe�cient; L2m extend the even�power series.

Coulombic contribution�near/shell, far, and inhomogeneity combined. Factoring out the far��eld baseline D(0)
C =

α/π, the scalar contribution will be

DC(α) =
α

π

[ √
1− ξ︸ ︷︷ ︸

uniform near/shell

−
(

ξ
2

)
K︸ ︷︷ ︸

quadratic inhomogeneity

−
∞∑

m=2

(
ξ
2

)m
L2m︸ ︷︷ ︸

higher even powers

]
, ξ = 2αCuni

0 . (30)

The roles are now explicit; the far��eld sets the overall scale, the uniform near/shell modi�es it multiplicatively
through

√
1− ξ, and the inhomogeneity adds controlled spectral corrections via K and L2m. All quantities are

dimensionless and �xed by the cavity geometry; no external inputs are used. For a compact derivation and proof
sketch of Eq. (30), see Appendix A.

Table I lists the numerical inputs and the term-by-term values entering the Coulombic shell shift DC(α) used in the
real α solve�just to check scales. Parameters that depend on α (e.g. ξ = 2Cuni

0 α) are �xed by the root condition;
the numbers shown use the solved α and are reported only to indicate scales�no measured α is fed anywhere.
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TABLE I. Coulombic shell shift DC

Item Symbol / factor Value (dimensionless)
Input ξ 0.00631186064658640935274332
Input K 0.00223153891653197018640879
Input L4 (order 1; m=2) 0.00373155489837063530553899
Input L6 (order 2; m=3) 0.00143830013553058946046987
Input L8 (order 3; m=4) 0.00060470414931351794924673

Uniform near/shell
α

π

√
1− ξ 2.31547720363493266880874175375× 10−3

Quadratic inhomogeneity −α

π

( ξ

2

)
K −1.63586450014266319711045280493× 10−8

Higher even power (order 1; m=2) −α

π

( ξ

2

)2

L4 −8.63296746995696606371305088316× 10−11

Higher even power (order 2; m=3) −α

π

( ξ

2

)3

L6 −1.05013998946420859004360859248× 10−13

Higher even power (order 3; m=4) −α

π

( ξ

2

)4

L8 −1.39337505189658064137375522990× 10−16

Tail m ≥ 5 aggregate of m≥5 −2.04693759495022820511072493035× 10−19

Total DC(α) 0.00231546075855510300146174

V. VECTOR POTENTIAL BASELINE

The same invariant (12) (decomposed on the shell in (13)) receives a vector contribution through the gauge�projected
Λ�channel.

A. Intrinsic core Λind

The ring current on C-space gives the �lamentary tangential potential on the loop,

Aring
∥ =

µ0I

2π

[
ln
8R

σC
− 2

]
, I =

e ω

2π
=

ec

2πR
, (31)

so that the dimensionless amplitude built from the gauge term is

q Aring
∥

mc
=
µ0

2π

q

mc
I

[
ln
8R

σC
− 2

]
=
µ0e

2c

4π2ℏ

[
ln
8R

σC
− 2

]
=
α

π

(
ln 8R

σC
− 2

)︸ ︷︷ ︸
=: Λind

, (32)

using µ0e
2/(4π) = α ℏ/c and the Relator relation R = ℏ/(mc) on the shell. This identi�es the loop inductive logarithm

Λind = ln
8R

σC
− 2 = ln

(
8
√
π
)
− 2 (33)

which is the universal near��eld UV log of a thin circular loop.

B. UV→IR transfer: ∆ΛUV→IR

The �lamentary tangential vector potential on a thin circular loop follows from the 2D Green function of the
Laplacian, G(ρ) ∝ ln ρ (since ∇2 ln ρ = 2πδ(2)). A �nite cross�section (�collar�) regularizes the logarithmic singularity
by averaging ln(·) over the collar pro�le. For an isotropic Gaussian collar of width σC we obtain a parameter�free
�nite constant:

∆ΛUV =
1

πσ2
C

∫
R2

e−ρ2/σ2
C ln

σC
ρ
d2ρ +

1

2
ln 2 =

1

2
(ln 2 + γ) ≡ cGauss

0 . (34)
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Provenance of the constants (no arbitrariness). (i) Radial (collar) average. In polar coordinates, d2ρ = 2πρ dρ

and with t = ρ2/σ2
C (so ρ dρ =

σ2
C
2 dt),

1

πσ2
C

∫
d2ρ e−ρ2/σ2

C ln
σC
ρ

=

∫ ∞

0

e−t
(
− 1

2 ln t
)
dt =

γ

2
. (35)

This is the universal �nite part of the 2D Gaussian average of ln(σC/ρ).
(ii) Loop (azimuthal) matching. The thin�loop kernel is built on the chord |r− r′| = 2R sin(θ/2). Its pure angular

average obeys

1

2π

∫ 2π

0

ln
[
2 sin( θ2 )

]
dθ = 0,

so the azimuthal averaging contributes no �nite constant. The additional 1
2 ln 2 arises solely from matching the

collar�averaged local logarithm ln(σC/ρ) to the standard slender�loop induced normalization Λind(ε) = ln(8/ε) − 2
with ε = σC/R (see (33)); equivalently, it follows from the small�argument expansion of the exponential integral under
the same normalization. Combined with the radial Gaussian �nite part γ/2, this �xes

cGauss
0 = 1

2 (ln 2 + γ),

with no free parameter.

Only the fraction of this UV constant that survives inside the �nite cavity and in the tangential, gauge�transverse

dot channel contributes to the near �eld. That fraction is selected by the TT�χ IR projector P
(χ)
IR (ℓ) (de�ned in (43)),

which suppresses normal Poynting �ow and keeps the tangential TT content on the collar. Hence,

∆ΛUV→IR(ℓ0) = cGauss
0 P

(χ)
IR (ℓ0) =

1

2
(ln 2 + γ) P

(χ)
IR (ℓ0), ℓ0 := σC/r∗ =

1

π
√
π
. (36)

As detailed in Appendix B, the TT kernel is the transverse�traceless, tangential projector on the matching shell;
it takes the collar �eld and returns ΠTTA∥ (divergence-free, purely tangential�toroidal�component on S2r∗ , im-
plemented as ΠTT = χ(−∆S)Pdiv-free PT ), removing (i) longitudinal gauge pieces ∇∥ϕ and (ii) the normal/radial
component (A·n)n. What remains is a divergence�free, loop�like swirl that carries inductive energy but no normal
Poynting �ux through the shell. The �IR� label indicates a geometric low�pass set by the collar scale ℓ0 = σC/r∗,
so only the large�scale tangential TT content survives inside the �nite cavity and couples to the dot (χ) channel:

∆ΛUV→IR(ℓ0) = cGauss
0 P

(χ)
IR (ℓ0).

In this work the terms �loop logarithm� and �UV→IR smoothing� are purely geometric, magnetostatic notions tied
to the thin�ring shell geometry and its near�shell collar; they are not QED loop e�ects and do not involve running
scales, counterterms, or any renormalization scheme. All quantities are rendered dimensionless by construction,
and dimensional constants appear only symbolically and cancel in the �nal relations. Gauge invariance on the
matching sphere is enforced by admitting the scalar�vector cross term solely through the TT�χ projector, which selects
tangential, surface�divergence�free content with an IR acceptance window. This clari�es that both the emergent α
and the g�factor corollary arise from the Relator geometry itself, independent of QED machinery.
Collar and collar �eld. By a collar we mean the thin toroidal tube Ca(S1) around the image of the Dirac ring

on the matching shell r = r∗, with Gaussian cross�section of width σC. The Dirac ring is the closed internal phase
orbit on C; via the Relator map Rω = c and the shell condition r∗ = πR, internal and spatial arc elements are
matched on the shell as Rdθ = r∗ dϕ (i.e. proportional, not postulated equal everywhere). The collar �eld is the
tangential vector potential averaged across this tube, Acoll

∥ := ⟨A∥⟩collar; this regularizes the �lamentary logarithm

and yields a parameter�free UV constant. Applying the TT projector removes longitudinal and normal pieces and
retains the gauge�transverse, divergence�free tangential swirl that stores inductive energy inside the cavity and feeds
the Λ�channel. Physically, C acts as the generative phase background while forces and measurements live in R3-space;
the two are coupled only through the gauge�invariant combination ∥∇S − q

c A∥, so structures formed internally are
mirrored on the shell and vice versa.

C. Exterior multipole subtraction: ∆ΛOUT(η)

The swirl on C (a thin circular loop of radius R) produces a magnetostatic �eld that, outside the matching sphere
r > r∗, carries a free�space energy that must be removed to avoid double counting. The OUT term subtracts exactly
that exterior share.
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Multipole route. Project the exact loop �eld on the shell r = r∗ onto the toroidal basis Tℓ(x) = (1−x2)P ′
ℓ(x) with

x = cos θ,

aℓ(η) =
r ℓ+2
∗
Iℓ

∫ 1

−1

Bθ(r∗, x) Tℓ(x) dx, Iℓ =

∫ 1

−1

(1− x2) [P ′
ℓ(x)]

2 dx =
2 ℓ(ℓ+ 1)

2ℓ+ 1
, (37)

where Bθ = Bρ x− Bz

√
1− x2 and only odd ℓ contribute by equatorial symmetry. (with eρ = sin θ er + cos θ eθ and

ez = cos θ er − sin θ eθ on r = r∗). The scalar potential decays as r
−(ℓ+1) so the �eld decays as r−(ℓ+2) in the exterior.

Separation of variables and orthogonality on the sphere give the exterior energy of a pure mode as

U
(ℓ)
out =

1

2µ0

∫
r>r∗

B2 dV =
2π

µ0

ℓ+ 1

2ℓ+ 1
a 2
ℓ r

−(2ℓ+1)
∗ . (38)

Summing over odd ℓ and using our dimensionless normalization (absorbing µ0 into the loop weight) leads to

∆ΛOUT(η) = − 4π
∑

ℓ=1,3,...

ℓ+ 1

2ℓ+ 1
a 2
ℓ (η) r

−(2ℓ+1)
∗ , η =

R

r∗
. (39)

Closed form (exact resummation of odd modes). Evaluating aℓ(η) from the exact loop �eld on the shell and
resumming the odd series yields the elementary closed form

∆ΛOUT(η) = −π

[
ln(1− η4)

2η
+ atanh η − arctan η

]
, (|η| < 1). (40)

This is exact for a loop strictly inside the matching sphere (R < r∗); analytic continuation �xes branches when η
approaches unity.
Sketch of the resummation. From the multipole route one obtains the odd�ℓ power series

∆ΛOUT(η) = −π
∑

ℓ=1,3,5,...

η 2ℓ+1

(ℓ+ 1)(2ℓ+ 1)
. (41)

Using
1

(ℓ+ 1)(2ℓ+ 1)
= − 1

ℓ+ 1
+

2

2ℓ+ 1
and restricting to odd ℓ = 2m+ 1,

∑
m≥0

η4m+3

m+ 1
= −1

η
ln(1− η4),

∑
m≥0

η4m+3

4m+ 3
=

1

2

(
atanh η − arctan η

)
,

which reproduces (40).
Small�η expansion (consistency). Expanding (40) at η ≪ 1 gives the odd�power tower

∆ΛOUT(η) = −π

(
η3

6
+
η7

28
+
η11

66
+
η15

120
+ · · ·

)
, (42)

which matches (41) term by term.

D. Scalar�vector phase locking: ∆Λsync

The gauge�invariant scalar invariant

D =

∥∥∇S − q
cA

∥∥2
m2c2

contains, on the matching sphere r = r∗, a cross term

− 2q

m2c3

〈(
∇S

)
·A∥

〉
r=r∗

.

Although the scalar s-mode has a radial normal derivative on the shell while the loop �eld is tangential, the �nite�cavity
projection (curved shell, �nite collar) generates a small but coherent overlap in the gauge�χ (dot) channel. Physically
this is a phase locking between the shell s-mode at the Dirichlet node j0(kr∗) = 0 and the azimuthal swirl on C-space.
This coherent, magnetoquasistatic (weakly non-radiative) piece is encoded by a synchronization increment ∆Λsync

inside the logarithmic loop chain, see Appendix C for the boundary derivation.
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Projectors on the shell. We use two TT projectors on r = r∗: (i) the toroidal transverse�traceless Λ�channel for
admitting the UV collar and for the exterior subtraction ∆ΛOUT; (ii) the χ�channel (dot) projector to isolate the
scalar�vector overlap. The TT�χ projector is

P
(χ)
IR (ℓ) =

∫ 1

0

x2 sin2(πx)
[
1− 1

3 fswirl(x; ℓ)
]
e−((1−x)/ℓ)2 dx∫ 1

0

x2 sin2(πx) dx

, fswirl(x; ℓ) =
(1− x)2

(1− x)2 + ℓ2
, (43)

which preserves tangential content while suppressing normal Poynting �ux in the weighted (magnetoquasistatic) sense.

ε =
1√
π
, η =

R

r∗
=

1

π
, ℓ = ε η =

1

π
√
π
. (44)

We use three dimensionless parameters on the matching shell, each with a concrete physical role. ε := 1/
√
π � �χ-dot

Gaussian width� � sets the unit-normalized Gaussian both for the collar averaging on the Dirac ring and for the
Gaussian distribution of Loopons in the Relator internal C (the mass�associated spread of χ�dots). η := R/r∗ = 1/π
� �Relator aspect ratio� � is the radius�to�shell ratio �xed by r∗ = πR. ℓ := ε η = 1/(π

√
π) � �IR passband scale�

or �e�ective collar thickness� � is the scale that controls the low-ℓ admission in P
(χ)
IR via the weights e−((1−x)/ℓ)2 and

fswirl(x; ℓ), i.e. how much tangential TT content of the collar �eld is accepted into the �nite cavity.
Closed synchronization rule. Projecting the cross term on the matching shell with the exact exterior loop �eld

Bθ(r∗, x) shows that the scalar�vector overlap is a universal geometric multiple of the already�computed exterior
piece ∆ΛOUT(η). To make the physics explicit, we �rst write the order�one synchronization openly and then extend
it to a ladder valid to all orders.
Order�one (open form). De�ne the intermediate synchronization gain

Γ(1)
sync(η;X) = γ(1)geom(η) + γ(1)map(X) , (45)

with the geometric partition written as a curvature series before its analytic closure,

γ(1)geom(η) =
1

2

[
1 +

∞∑
m=1

η2m

(2m+ 1)!

]
=

1

2

sinh η

η
, (46)

and the UV→IR transfer across the collar (map) entering linearly with full weight

γ(1)map(X) =
( K

2DC

)
cGauss
0 P

(χ)
IR (ℓ) . (47)

Here K is the near��eld spectral constant, DC is the Coulombic budget, cGauss
0 = 1

2 (ln 2+γ) is the universal Gaussian

UV constant, and P
(χ)
IR (ℓ) is the IR projector on the collar of thickness ℓ. The order�one synchronization then reads

∆Λ(1)
sync(η, ℓ) = Γ(1)

sync(η;X) P
(χ)
IR (ℓ) ∆ΛOUT(η) . (48)

Higher orders � two complementary ladders. Curvature�induced mode�mixing on the shell introduces

κ ≡ sinh η

η
− 1, X ≡

( K

2DC

)
cGauss
0 P

(χ)
IR (ℓ), (49)

and generates two resummations:
(i) Map ladder (repeated UV→IR transfers): Each additional transfer multiplies the map amplitude by (−κ)X, so

the n-th rung contributes

∆Λ(n),map
sync = (−κ)n−1X n P

(χ)
IR (ℓ) ∆ΛOUT(η), n ≥ 1, (50)

whose closed sum is the geometric series

∞∑
n=1

∆Λ(n),map
sync =

X

1 + κX︸ ︷︷ ︸
γladdermap (X,κ)

P
(χ)
IR (ℓ) ∆ΛOUT(η) . (51)
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Physically, γladdermap encapsulates the cumulative UV→IR transport through the χ-channel, with the curvature factor κ
accounting for toroidal�spherical mixing on the collar.
(ii) Self�feedback ladder (re�inserting the induced χ on the shell): Once χ is induced by the single pass, re�projecting

it with the scalar on the shell generates a Dyson�like tower governed by

εDy ≡
(α
π

)( K

2π2

)
P

(χ)
IR (ℓ) Λ, εDy ≪ 1 , (52)

with n-th rung (n ≥ 2)

∆Λ(n),self
sync = − γgeom(η) P

(χ)
IR (ℓ) Λ

[
(−κ)n−2 εn−1

Dy

]
, (53)

resumming to

∞∑
n=2

∆Λ(n),self
sync = − γgeom(η) P

(χ)
IR (ℓ) Λ

εDy

1 + κ εDy
. (54)

Its leading term reproduces the compact second order ∆Λ
(2)
sync = −(α/π) γgeom (K/2π2) [P

(χ)
IR ]2 Λ2. The signs are �xed

by the overlap: γgeom, X, P
(χ)
IR ,Λ > 0 and ∆ΛOUT(η) < 0 imply that both the map ladder and the self ladder reduce

Λ; higher self orders are strongly suppressed by εn−1
Dy .

Full sigma�ladder (umbrella). Collecting the order�one rule and both ladders gives a closed, gauge�consistent
expression with a single external projector:

∆Λsync(η, ℓ; Λ) =
[
γgeom(η) +

X

1 + κX

]
︸ ︷︷ ︸

geometric partition + full map ladder

P
(χ)
IR (ℓ) ∆ΛOUT(η) − γgeom(η) P

(χ)
IR (ℓ) Λ

εDy

1 + κ εDy︸ ︷︷ ︸
self�feedback ladder

, (55)

with X,κ, εDy given in (49) and (52). The �rst bracket collects the inside�outside geometric gain γgeom and the
resummed UV→IR map γladdermap ; the second term is the closed self�feedback of the synchronized scalar�vector chan-
nel. No auxiliary �tting parameters enter: all factors trace back to the shell projection, curvature mixing, and the
gauge�invariant energy budget on the collar.
Interpretation and signs. γgeom(η) =

1
2

sinh η
η > 0 encodes mixed normal�tangential coupling on the curved shell.

γmap transports the Gaussian UV increment into the TT�χ channel in proportion to the scalar spectral weight

K/(2DC) and the IR population P . Since ∆ΛOUT(η) < 0 and P
(χ)
IR (ℓ) > 0, the baseline case gives Γsync > 0 and

hence ∆Λsync < 0 with a small magnitude (few-percent of |∆ΛOUT|).
Avoiding circularity in Computing Alpha. To keep Λ closed during the α�solve, evaluate γmap at the lock value

DC from Clog = 1/3. The self�feedback parameter carries an explicit (α/π) through εDy; in practice we evaluate εDy

at the lock value αlock (its e�ect is ≪ 10−8), so the root��nd remains geometry�closed.
Bounded dynamical remainder. Higher�order magnetic dynamics (retardation, non-quasistatic e�ects, odd multi-

poles beyond the working cuto�) are collected in

∆Λdyn = O
(
ζ2
)
, (56)

used only as an explicit uncertainty budget for ppt targets.

E. Full Chain Lambda

Gathering the Λ chain,

Λ ≡ Λeff = Λind︸︷︷︸
�lamentary loop

+ ∆ΛUV→IR︸ ︷︷ ︸
UV→IR (�nite cavity)

+ ∆ΛOUT(η)︸ ︷︷ ︸
exterior subtraction

+ ∆Λsync︸ ︷︷ ︸
phase locking

+ ∆Λdyn︸ ︷︷ ︸
higher�order dynamics

(57)

and de�ne the universal spectral overlap

Υsp =
K

2π2
, ζ = Υsp Λeff . (58)
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The vector contribution to (13) then reads

∆DΛ(α) = −α
π
ζ +

(
α
π ζ

)2
4DC

+O(ζ3) , (59)

and is used here only as a diagnostic scale for the Λ�channel�i.e., to gauge the inductive share relative to the Coulomb
block. The quadratic term is an O(ζ2) correction; the explicit normalization by DC makes it gauge�consistent and
prevents double counting with the scalar block. We therefore do not employ (59) in the emergent�α solve or any
iterative updates; it is reported for intuition and bookkeeping. Its physical role is taken up where it matters�namely
in the emergent g�factor discussion�where D = DC +∆DΛ +O(ζ3) enters explicitly.
The following numerical values are used in the inductive (vector) block of the emergent�α solve. Parameters that

depend on α (e.g. γmap(α), γeff(α),∆Λsync(α), ζ(α)) are treated as unknown targets determined by the root condition;
no initial seeding or experimental α is injected, so there is no hidden α contamination. See Table II.

TABLE II. Inductive (vector) block: inputs, gains, sync decomposition, and term values (latest emergent-α run)

Item Symbol / factor Value (dimensionless)

IR projector (TT�χ) P
(IR)
χ (ℓ0) 0.0857791925845556011097469

UV→IR contribution ∆ΛUV→IR 0.0544853495865520906532491
Exterior subtraction ∆ΛOUT(η0, Lmax) -0.0139671580625860254655225
Baseline inductive sum Λbase 0.692324676128502080511137
Curvature series curv(η) 0.0169726204644520534264891
Geometric gain γgeom 0.508486310232226026713245
Map gain γmap(α) 0.0262552879667700470311315
E�ective gain γeff(α) 0.534741598198996073744376

Sync decomposition: ∆Λsync = ∆Λbase︸ ︷︷ ︸
∆Λgeom+∆Λmap

+ ∆Λ
(ladder)
extra + ∆Λ

(ladder)
self

Geometric component ∆Λgeom = γgeomP
(χ)
IR ∆ΛOUT -0.0006092131471609058062469770856494138

Map component ∆Λmap = γmapP
(χ)
IR ∆ΛOUT -0.0000314562384276321673051921626849368

Sync base ∆Λbase = γeffP
(χ)
IR ∆ΛOUT -0.0006406693855885379735521686492885799

χ-ladder addendum ∆Λ
(ladder)
extra 1.40113178768037025305128× 10−8

Self-ladder ∆Λ
(ladder)
self −4.70926333239101999626022× 10−10

Sync shift (total) ∆Λsync(α) -0.00064065584519699440895164
E�ective inductive sum Λeff(α) 0.691684020283305086102185
Lock diagnostic ζ(α) 0.0000781956270220474977416816
Lock target Clog(α) 0.333333333333632128055046
Target 1/3 0.333333333333333333333333
Lock deviation* Clog − 1

3
2.98794721712449115518761× 10−13

Note*. Lock deviation uses the CODATA2022 α and re�ects the residual analytical error in Λ.

VI. EMERGENT ALPHA

We posit a Coulomb�inductive equilibrium on the matching shell. The Coulomb block DC, the inductive Λ�channel
produced by the Dirac ring, and the polarization of χ�dots on C-space conspire to a single, universal consistency
ratio Clog that does not depend on charge or mass parameters, even though it manifests through them in observables.
Within the Relator framework this equilibrium appears as a species�independent coe�cient linking the scalar and
vector sectors; we establish it by two complementary geometric paths and then identify them, thereby �xing α without
injected measurements.
Two complementary paths. Path I (loop�polarization route). Starting from the Dirac�ring baseline and its induc-

tive logarithm, we assemble the e�ective loop weight via Λeff (UV collar with Gaussian constant, IR TT projector P
(χ)
IR ,

exterior subtraction, small sync term, bounded dynamics), which de�nes ζ = (K/2π2) Λeff . The Stage�χ mass�log
built from the scalar�vector overlap then carries the coe�cient CI

log = (π2/DC) ζ(1 + ζ) (higher�order pieces are

explicit and controlled). Path II (in�plane geometric �ow). Working purely on the C�space, scale invariance and
shell pinning yield an RG�like drift of the e�ective coupling with a �xed geometric ratio CII

log = 1
3 , independent of

particle�speci�c constants.
Equating the two routes, CI

log = CII
log, gives the closed root

DC(α) = 3π2 ζ
(
1 + ζ

)
,
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and hence α as an emergent, parameter�free solution. All steps use only universal numbers and Relator geometry;
no e, m, c, or ℏ are seeded. This universal ratio is what imprints the scalar�vector balance across species, while its
consequences appear concretely in Coulombic and magnetic observables.

A. Path I � Geometric derivation of Clog from Dirac-ring loop polarization

We probe the geometric sensitivity of the shell�collar structure; how the internal χ�dot Gaussian population on C
(Loopons�mass�associated energy dots) and the Dirac�ring radius R respond to a slow, radial rescaling. Heavier
leptons (e.g. the muon) do not enter through measured masses here; rather, they geometrically di�er by a smaller
Relator radius and a tighter χ�dot spread around the ring, which increases the tangential TT polarization admitted
by the shell projector. The question is; what universal long�distance coe�cient multiplies this geometric stretch?
Radial stretch and the single logarithm. We proceed geometrically, without particle inputs. A slow radial rescaling

on the internal plane C, r → s r with s > 0, yields the single logarithm∫ ρ=sr

ρ=r

dln ρ = ln s . (60)

Inductive stack and geometric weight. The collar�shell construction �xes the near��eld loop weight once and for
all. We assemble the e�ective inductive logarithm Λeff (Dirac�ring �lament baseline, universal Gaussian UV increment
through the TT�χ IR projector, exterior subtraction, thin�shell sync, bounded dynamics). The universal spectral
overlap then de�nes the geometric weight

Υsp :=
K

2π2
, ε :=

1√
π

(χ�dot Gaussian width), η :=
R

r∗
=

1

π
(Relator aspect ratio), ℓ := ε η, (61)

ζ = Υsp Λeff(ℓ) . (62)

Here ℓ sets the IR passband of P
(χ)
IR ; Λeff is the inductive log stack ; and A∥ is the tangential vector potential on the

shell (used elsewhere via D = ∥∇S − q
c A∥2/(m2c2)).

TT population and scalar response. For a uniform Dirac�ring swirl (constant energy density per internal angle dθ
on C), the TT projector on the shell r = r∗ selects the azimuthal (toroidal) component. The Relator pinning relates
internal and shell azimuths by

Rdθ = r∗ dϕ =⇒ dθ

dϕ
=

r∗
R

= π, (63)

using r∗ = πR. The TT population accumulated around one full shell turn is therefore

cχ =

∫ 2π

0

dθ

dϕ
dϕ =

∫ 2π

0

π dϕ = 2π2. (64)

This is the minimal toroidal TT weight (higher toroidal harmonics increase it by Cauchy�Schwarz). Hence the
scale�invariant population accumulated across a stretch s is

(log accumulation) = cχ ζ ln s + O(ζ2) . (65)

We probe the long response with a linear observable a(DC) that, to leading order, measures the TT channel; its
dressed slope is ( ∂a

∂DC

)
dressed

= 1
2 (1 + ζ)︸ ︷︷ ︸

single�channel dressing

+ O(ζ2). (66)

The factor (1 + ζ) originates from the single�channel TT dressing embedded in KTT+sync; it is not a perturbative
expansion assumption. Also, here a always denotes the anomalous magnetic moment, a ≡ (g − 2)/2, a dimensionless
Dirac reporter. It is distinct from the tangential potential A∥ on the shell and from any energy/overlap quantity on
the internal circle C.
Under a logarithmic rescaling by a factor s, the toroidal TT population then induces

∆alog = 1
2 (1 + ζ)DC

(
cχ ζ ln s

)
+ O(ζ2DC) . (67)
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Matching the canonical long operator,

∆alog = D2
C Clog ln s + O(D3

C) , (68)

determines the one�log constant purely from Relator geometry,

CI
log =

cχ
2DC

ζ
(
1 + ζ

)
=

π2

DC
ζ
(
1 + ζ

)
. (69)

All steps use only universal numbers and Relator geometry; no measured e, m, c, or ℏ are injected.
From geometric stretch to a species ratio (interpretation only). One may afterwards identify the stretch with a

ratio of Relator radii across shells,

s ≡ Re

Rℓ
=⇒ ln s = ln

Re

Rℓ
= ln

mℓ

me
(since R ∝ λ̄C ∝ 1/m) . (70)

Hence the long piece across a lepton pair takes the form

∆alog = D2
C Clog ln

mℓ

me
+ O(D3

C) , (71)

with the universal coe�cient Clog �xed by (69). In Sec. VIB an independent in�plane geometric �ow on C yields
Clog = 1/3; equating the two routes closes the root for α via DC(α) and ζ(α).

If α is fundamentally geometric, it must lock the internal degrees of freedom of elementary particles in a
path�independent way. Distinct constructions�our Coulombic shell control, TT acceptance on the thin shell,
and the variational/response/inductive routes�converge to the same long�log coe�cient and close the same root for
α (Appendix D), indicating that the lock does not depend on how one approaches it.

B. Path II � Geometric origin of the single�log coe�cient 1
3

Goal. Path I �xed the form of the long piece,

∆alog = D2
C Clog ln s + O(D3

C), (72)

with s a geometric stretch on the internal plane C. Path II shows, using only shell geometry and TT kinematics (no
mass or Λ�channel input), that

Clog =
1

3
. (73)

TT acceptance of a logarithmic annulus. At a point on the matching shell let n̂ be the outward normal, and
PT (n̂) := I − n̂n̂⊤ the projector onto the tangential plane. The tangent plane admits a 2D Helmholtz split into a
solenoidal (toroidal) and a gradient�like tangent direction. The TT projector selects the solenoidal rank�1 subspace;
averaging over the in�plane phase ψ yields ⟨PTT(n̂, φ)⟩φ = 1

2 PT (n̂). Therefore the local acceptance operator for a
marginal (logarithmic) annulus is

A(n̂) =
1

2
PT (n̂) =

1

2

(
I − n̂n̂⊤). (74)

If û denotes the unit direction carried by the scalar channel on the collar, the overlap weight is

W(û, n̂) := û⊤ A(n̂) û = 1
2

(
1− (û·n̂)2

)
. (75)

Isotropic shell average (trace argument). In the thin�shell limit the collar samples normals uniformly on S2.
Rotational invariance gives 〈

n̂n̂⊤
〉
S2

=
1

3
I =⇒

〈
PT (n̂)

〉
S2

=
2

3
I. (76)

Hence the TT acceptance averaged over the shell is〈
A(n̂)

〉
S2

= 1
2

〈
PT (n̂)

〉
S2

=
1

3
I, (77)
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and therefore 〈
W

〉
S2

= û⊤
(

1
3I

)
û =

1

3
. (78)

Equivalently, writing û·n̂ = cos θ and averaging on S2 gives ⟨sin2 θ⟩S2 = 2/3, whence ⟨ 12 (1−cos2 θ)⟩S2 = 1/3. Remark.
Using the full tangent projector PT (instead of TT) would wrongly yield 2/3 and double�count the gradient�like
component.
Locking the coe�cient. A marginal annulus contributes to the long piece as �source × response� weighted by the

purely geometric factor ⟨W⟩S2 . Because the scalar long piece is quadratic (cf. (72)), the shell�isotropic TT acceptance
(78) �xes the universal coe�cient:

Clog =
〈
W

〉
S2

=
1

3
, (79)

independent of the collar kernel, micro�population of χ�dots, or any measured parameter. Corrections from �nite
collar width or mild anisotropy enter only beyond the thin�shell limit as subleading terms and do not a�ect the
universal value 1

3 .

Outcome. Path I provides CI
log = (π2/DC) ζ(1 + ζ); Path II yields CII

log = 1
3 from TT geometry alone. Equating

CI
log = CII

log closes the root for α through DC(α) and ζ(α), with no injected masses or �tted constants.

Connection to QED and lepton�mass logs. The universal value Clog = 1
3 obtained here is the same single�log

coe�cient that multiplies the lepton�mass�dependent term in QED's g-factor analysis (the familiar one�log piece ∝
ln(mℓ/me)). In the Relator framework this weight does not come from diagrammatics but from pure geometry: the TT
acceptance of a logarithmic annulus on the shell �xes the factor 1

3 , while the origin of the logarithm is the redistribution
of the internal χ�dot density on C around the Dirac ring under the particle's own Coulomb �eld (polarization
of Loopons). Thus the same numerical coe�cient that QED attributes to �eld�theoretic structure appears here
as a gauge�invariant, shell�geometric invariant, linking the mass�dependent g-factor log to the Coulomb�induced
polarization of the χ�dot ensemble.

C. Alpha Lock Point: ALP geometric closure of Clog

Combining the Path I master relation with the shell��ow result of Path II yields the algebraic lock

cχ
2DC

ζ
(
1 + ζ

)
=

1

3
, ζ = Υsp Λeff (see (57)), Υsp =

K

2π2
. (80)

Solving for the scalar invariant �xes the geometric value of DC:

DC =
3

2
cχ ζ

(
1 + ζ

)
. (81)

Equivalently, in terms of K and the closed near��eld inductive logarithm Λeff ,

DC =
3

2
cχ

K

2π2
Λeff

(
1 +

K

2π2
Λeff

)
. (82)

For the baseline (thin�shell) geometry, where cχ = 2π2,

DC =
3

2
K Λeff

(
1 +

K Λeff

2π2

)
. (83)

Why the lock holds. Path II �xes the single�log coe�cient purely from dot��ow geometry on C (two transverse
polarizations and the TT angular average 1/3), hence Clog = 1

3 . Path I expresses the same Clog as a closed geometric
functional of DC, K, Λeff , and the TT normalization cχ. Equating the two forms forces (80); substituting (81) back
into the Path I formula gives identically

Clog ≡ cχ
2DC

ζ (1 + ζ)
(81)
=

1

3
, (84)

with no free parameters. Since Λeff itself is closed (UV core + UV→IR + OUT + sync), the Relator geometry locks
Clog at 1

3 (or, equivalently, �xes DC by (81)) independently of any �t or measured input.
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D. Closed root equation for the �ne�structure constant

From the Coulomb (scalar) channel on the matching shell r = r∗�with the s�wave pinning and its even�mode
inhomogeneity �xed by the spectrum�we obtain a closed relation for the shell shift DC entirely in terms of the
coupling α. No Λ�channel information enters here; all vector e�ects are accounted for elsewhere through ζ and never
appear inside DC� channels isolation is the key. Writing ξ := 2αCuni

0 , the result is

DC(α) =
α

π

√
1− ξ − α

π

(
ξ

2

)
K − α

π

∞∑
m=2

(
ξ

2

)m

L2m, ξ = 2Cuni
0 α. (85)

This scalar side is �xed entirely by the shell scalar geometry (the s�wave pinning and its even�mode spectrum). All
vector e�ects (UV→IR, OUT, sync) are accounted for in Λ and enter only through ζ; they never appear inside DC.
Combining the Path I form of Clog with the Path II lock Clog = 1/3 yields the purely geometric target

Gind(Λ) =
3

2
K Λ

(
1 +

K Λ

2π2

)
, ζeff = ΥspΛ, Υsp =

K

2π2
. (86)

To isolate the only practical source of mismatch (�ne structure of the inductive channel), we include a small geome-
try�only error that vanishes under systematic re�nement:

Gref
ind(Λ) := Gind(Λ) + εΛ, εΛ −−−−−−−−−−−−→

UV/IR/OUT/Sync
0 . (87)

Computing Clog on Path I at a laboratory α must return 1/3; any residual Clog − 1
3 quanti�es εΛ and monotonically

shrinks as the IR boundary�layer quadrature, the odd�ℓ OUT tail and the thin�shell curvature series are tightened.
With these notations, the determination of α becomes a single closed root:

F(α; Λ, {L2m}) := DC(α)︸ ︷︷ ︸
α�only

− Gref
ind(Λ)︸ ︷︷ ︸

Relator geometry only

= 0 . (88)

No measured constants (m, c, ℏ), no �tted numbers, and no feedback from Clog − 1
3 enter (88): the left�hand side

depends on α only (through the universal series Cuni
0 , K, L2m), while the right�hand side depends only on the Relator

geometry through Λ.

E. Numerical calculation of the �ne-structure constant

We determine α as the root of Eq. (88). The only iterated piece is the synchronization dressing Λsync generated by
the TT�χ kernel on the shell; no �t terms enter. Let Λbase := Λind+∆ΛUV→IR+∆ΛOUT denote the closed geometric

sum without sync. Starting from Λ
(0)
sync = 0, each outer step solves

DC

(
α(k+1)

)
= Gref

ind

(
Λbase + Λ(k)

sync

)
,

and then updates the synchronization via a geometry�driven map

Λ(k+1)
sync = Φsync

(
α(k+1); Λbase

)
.

The map is contractive in practice; we stop when either the residual |F(α(k+1); Λbase + Λ
(k)
sync)| < εtol or the relative

change |α(k+1) − α(k)|/|α(k)| < εrel.

it αmid ∆α (ppb vs. CODATA2022) DC(mid)
01 0.007 304 133 697 636 412 38 929259.380803 0.0023154608559292
02 0.007 297 352 872 172 990 24 42.1881754407 0.0023154607585664
03 0.007 297 352 564 346 621 7 0.00488145469522 0.0023154607585619
04 0.007 297 352 564 332 634 45 0.00296469799166 0.0023154607585619
05 0.007 297 352 564 332 633 81 0.0029646108966 0.0023154607585619
06 0.007 297 352 564 3� 0.0029646 0.0023154607585619

TABLE III. Final record of each outer iteration.

Any residual Clog − 1
3 at laboratory α diagnoses the unmodeled dynamic inductive remainder ∆Λdyn (a geome-

try�only e�ect at sub�ppt level). We do not include ∆Λdyn in the present pipeline; it vanishes under systematic
re�nement and is treated separately in the error analysis.
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F. Full match validation and predictive digits

At the laboratory value of α, the closed pipeline (cfg 5; see Table IV) locks the ALP to

Clog(α)− 1
3 = 2.988× 10−13,

which is well below the ppt scale. Hence the solution is matched to all currently certain published digits of α.
Equivalently, the forward (solve-to-α) run yields a stable prediction for the next digits,

αpred = 0.007 297 352 564 326 775 α−1
pred = 137.035 999 177 0873

∆α = αpred − αCODATA = 1.578× 10−14,
∆α

αCODATA
= 2.16 ppt,

∆α

uα
= 0.0146 σ

α−1
PRL = 137.035 999 166(15) (2023− [9])

∆αPRL = αpred − αPRL = −5.90406× 10−13,
∆αPRL

αPRL
= −80.907 ppt,

∆αPRL

uα,PRL
= −0.739 σ

These digits arise with no �tted parameters and persist under our analytic decomposition (DC spectrum, UV→IR
map, OUT subtraction, and the TT�χ synchronization umbrella).
On a single machine we executed the publicly available forward�iteration code under �ve numeric con�gurations

to probe stability with respect to working precision and series depth. Across all settings, the emergent �ne�structure
constant remains numerically locked; only tail digits shift. Table IV reports settings and outputs.

TABLE IV. Stability tests

cfg dps L SM curv α α−1 Λ-set

1 90 19 20 10 0.0072973525643326338109 137.0359991769773 Λ = 0.6916840202847290216492
∆ΛOUT = −0.01396715806205758007151
∆ΛUV→IR = 0.05448534958655209065325

2 200 100 100 100 0.007297352564326783576516 137.0359991770872 Λ = 0.6916840202841763119337
∆ΛOUT = −0.01396715806258602546552
∆ΛUV→IR = 0.05448534958655209065325

3 200 100 20 10 0.007297352564326783577619 137.0359991770872 Λ = 0.6916840202841763120379
∆ΛOUT = −0.01396715806258602546552
∆ΛUV→IR = 0.05448534958655209065325

4 200 150 20 10 0.007297352564326783437618 137.0359991770872 Λ = 0.6916840202841762988111
∆ΛOUT = −0.01396715806258603811166
∆ΛUV→IR = 0.05448534958655209065325

5 300 100 50 40 0.007297352564326775662942 137.0359991770873 Λ = 0.6916840202841755642869
∆ΛOUT = −0.0139671580625867402903
∆ΛUV→IR = 0.05448534958655209065325

Abbrev. dps = mp.mp.dps; L = OUT_LMAX; SM = SPEC_M_MAX; curv = CURV_SERIES_ORDER; Λ-set stacks (Λeff , ∆Λout, ∆Λuv→ir).

What �full match� means here. By full match we mean using the laboratory α only as a diagnostic probe of the lock,
the residual Clog − 1

3 is at the 10−13 level; conversely, when we run the closed iteration that solves for α, the returned
digits agree with all certain published �gures and extend beyond them. No coe�cients are tuned to laboratory data
anywhere in the pipeline; the lab value appears only in the �nal diagnostic.

G. Ppt remainder and modeling stance

The electron model is derived under the Relator postulate Rω = c on C ⊕ R3 with a gauge-invariant budget on
the shell. All contributions entering Λeff are analytic and �xed a priori ; no �tted parameters appear anywhere in the
pipeline. As a result, the solution locks to the laboratory value of α at a residual ∆C = 2.988 × 10−13, which is far
below the ppb scale and certi�es full match to all currently certain published digits, with additional digits predicted.
We isolate any possible unmodeled piece as a dynamic inductive remainder

∆Λdyn ≡ the small correction that would make Clog = 1
3 at αlab.
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Given the residual above, ∆Λdyn is consistently sub-ppb in magnitude. We do not retro�t this term into the default
pipeline; instead, it is a well-localized target for future re�nements (e.g., high-resolution �nite-element checks of
the coupled scalar�vector �elds). This stance avoids over�tting while keeping the framework predictive: if future
measurements shift, the discrepancy is traceable to this narrow remainder rather than to hidden numerical tuning.

H. Forward look and testability

If future measurements (of α or of g) shift within or beyond today's error bars, our framework makes the pathway
explicit; the analytic part of Λeff remains untouched, and the discrepancy localizes into ∆Λdyn within the λ-channel.
This keeps the theory predictive. Present results already reproduce all certain digits and predict further ones; devia-
tions, if they appear, will be traceable to a tightly delimited, physically interpretable remainder rather than to hidden
numerical tuning.

I. Linearized α with Geometric Lock (Approximation)

From Eq. (85) and Eq. (86) with DC(α) ≃ α/π and ζ = (K/2π2) Λ, we can write:

α ≈ 3π

2
K Λ

(
1 +

K Λ

2π2

)
(approx.; error ∼ 0.3%). (89)

VII. CONTRIBUTION ACCOUNTING AND CHANNEL BREAKDOWN

We separate the Coulombic block DC and the vector channel Λ into interpretable pieces and report both their
absolute values and their signed percentage shares. Percentages are computed with respect to the corresponding total
(DC or Λeff), are signed to re�ect cancellations, and may sum to 100.000% up to rounding.

Item Value Share (%)

Root (uniform S2 contraction) 0.00231547720364177513 100.0007%
K term (linear spectral backreaction) -1.63586450015236241e-08 -0.0007%
Quadratic (m = 2) term -8.63296747003374609e-11 -0.0000%
Higher even orders (m ≥ 3) sum -1.05153541146613925e-13 -0.0000%
Total DC(αem) 0.00231546075856194555 100.0000%

TABLE V. Coulombic block contributions to DC at αem. The uniform near/shell term dominates; spectral and higher�order
even contributions are numerically negligible at reporting precision.

Item Value Share (%)

Λind (inductive) 0.651806484604536052 94.2347%

∆Λ(UV→IR) (Gaussian ·P IR
χ ) 0.054485349586552094 7.8772%

∆ΛOUT (exterior) -0.0139671580620575799 -2.0193%
∆Λsync (base, γeff · P ·∆ΛOUT) -0.000640669385564205307 -0.0926%
∆Λsync (χ-ladder extra) 1.40113178761907932e-08 0.0000%
∆Λsync (self feedback ladder) -4.70055175169666366e-10 -0.0000%
Λeff (�nal) 0.691684020284728973 100.0000%

TABLE VI. Vector channel (Λ) breakdown at convergence. The inductive baseline dominates, the UV→IR map contributes
a modest positive share, while the exterior and linear sync terms provide small signed corrections; ladder re�nements are
subdominant.
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TABLE VII. Local sensitivity summary at the �xed point. The nonzero dDC/dα certi�es an invertible, well-conditioned root;
the large negative dClog/dα indicates a steep, rigid closure.

Quantity Value Qualitative cue
dα/dΛ 0.010584641845546025 Moderate response; 1 ppb in α ⇔ ∆Λ≈6.9× 10−10

∂α/∂K 3.28082082320968618 Large sensitivity, but K is computed (not �tted); 1 ppb ⇔ ∆K≈2.2× 10−12

dClog/dα −45.5332648538240054 Steep negative slope ⇒ rigid lock at Clog = 1/3
dDC/dα 0.316291463934711931 O(1) Jacobian ⇒ unique, well-conditioned root
∂ lnα/∂Λ 1.45047697123484458 Dimensionless gain of α vs. Λ (stable)
∂ lnα/∂K 449.590559629172545 Dimensionless gain vs. K; harmless in practice since K is �xed by DC spectrum

VIII. SENSITIVITY, CONDITIONING, AND REPRODUCIBILITY

We solve the closed condition

DC(α∗) =
3

2
K Λeff

(
1 +

K Λeff

2π2

)
, Λeff = Λbase +∆Λsync(α∗).

with the same synchronization map used throughout this work, namely

∆Λsync = γeff(η0,K,DC, P
(IR)
χ )P (IR)

χ ∆ΛOUT + ∆Λχ-ladder + ∆Λself.

The base run uses arbitrary-precision arithmetic with mp.mp.dps = 80 and an exact OUT evaluation (Gauss�Legendre
+ Aitken) with Lmax = 19 and 512 nodes. The DC spectrum is computed with depth M = 20 and tail cuto� 10−40.
Geometry is �xed at ε = 0.564189583548, η0 = 0.318309886184, ℓ0 = 0.179587122125. Both ladders (chi/self) are
enabled.

Local sensitivities at α∗

The linear responses at the �xed point are

dα

dΛ
= 0.010584641845546025,

∂α

∂K
= 3.28082082320968618,

together with the locking slope and Jacobian element

dClog

dα
= −45.5332648538240054,

dDC

dα
= 0.316291463934711931,

and the dimensionless logarithmic sensitivities

∂ lnα

∂Λ
= 1.45047697123484458,

∂ lnα

∂K
= 449.590559629172545.

Why the solution is numerically rigid

Single crossing and steep lock. The �nite, order-one value of dDC/dα together with the large negative dClog/dα
enforces a unique, steep zero of Clog(α) − 1

3 in the neighborhood of α∗; small perturbations in α relax back to the
lock.
No �t knobs; spectral constants are computed, not tuned. The internal spectral parameter K and the set {L2m}

are computed once from the DC spectrum with M = 20 and cuto� 10−40 and are not adjusted during the solve,
eliminating ambiguity from parameter �tting.
Deterministic precision and exact OUT. All quantities are evaluated in high precision; the exterior contribution

uses the exact boundary integral with Aitken acceleration at odd cuto�s.
Consistency with independent toggles. Independent harness tests (series vs. exact OUT, Lmax→Lmax+2,M→M+2,

ladder on/o�, curvature truncation) show negligible drift of α under well-posed structural changes and con�rm that
the series replacement for OUT is the only unacceptable degradation; the exact OUT with Aitken remains stable.
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IX. ELECTRON G-FACTOR AS AN EVOLUTION�RATE SHIFT

In the Relator framework the relativistic time-dilation factor is the internal-to-total phase�frequency ratio, ωC/ω [5].
It represents an ontic�pure intrinsic� slowing of the particle's phase clock, not an observer�relative artifact. Equiv-
alently,

D ≡
(

ωR3
ω

)2

= 1−
(

ωC
ω

)2

,

so that a shift in the evolution rate maps directly to the dimensionless, gauge-invariant shell functional D.
The electron's gyromagnetic factor follows from the phase�clock identity as

g =
2√

1− (ωR3/ω)2
=

2√
1−D

. (90)

No measured constants are seeded: α is the emergent solution of the Coulomb�vector lock (Clog = 1/3) in the C⊕R3

geometry, and both DC and Λeff are �xed entirely by Relator kinematics. A detailed derivation and proof are given
in my dedicated g-factor paper [6].
Using the emergent α from the lock Clog = 1/3, produce the prediction in Table VIII.

TABLE VIII. ge from the one-line D-based formula with emergent α.

Quantity De�nition (Relator notation) Value
Emergent α input 0.0072973525643326338109
Coulombic block DC(α) 0.0023154607585619
Lock parameter ζ(α) = K

2π2 Λeff 0.0000781956270222084751962383

Λ-channel (1) D(1)
Λ = −(α/π) ζ −0.000000181634324462174159021

Λ-channel (2) D(2)
Λ =

(
D(1)

Λ

)2
/(4DC) 0.00000000000356203702663057

Total Λ-channel DΛ = D(1)
Λ +D(2)

Λ −0.000000181630762425147528453
Physical total D = DC +∆DΛ 0.00231527912779947485247155

Prediction ge =
2√

1−D
2.00231930728856038009004

Deviation vs exp. ∆ge (ppb, reference experiment) 1.462

The ∼ 1.462ppb deviation (1462 ppt) re�ects a controlled analytic remainder: here D was formed by a simple vector sum of the Coulomb
action and gauge terms, which slightly double-counts a subset of small internal modes. It is removed by (i) excluding the sync interaction
∆Λsync from Λeff when forming ζ (eliminating Coulomb�magnetic cross-counting), and (ii) replacing the TT�χ projector with a TT�A
kernel to enforce orthogonality between the radial s-mode and tangential loop modes on the curved shell. With these two surgical edits

the ge accuracy tightens to a few ppt, without any �tting.

X. CONCLUSION AND OUTLOOK

This work shows that the �ne�structure constant is an emergent geometric invariant obtained from a closed root
condition that couples the Coulombic shell shift to the vector sector on the uni�ed C⊕R3 geometry, without seeding
any measured constants or �tted parameters�measurement-free, parameter-free. The locking relation

π2

DC(α)
ζ
(
1 + ζ

)
=

1

3
, ζ =

K

2π2
Λeff ,

determines α from universal numbers and Relator geometry alone. Numerically, the closed solve returns an α whose
digits agree with the CODATA recommendation to all currently certain �gures; the lock residual is Clog − 1

3 =

2.988× 10−13, consistent with a small, localized analytic residue. The uncomputed higher�order inductive remainder
is empirically bounded at the 10−9 relative level with respect to Λeff in our stability scans. In particular, rigid
dimensionless ratios between the Λ�channel and the Coulombic block arise from geometry and act as invariants that
pin α, recasting it as a calculable constant rather than an empirical input.
The conceptual payo� is twofold. First, the same geometric machinery that locks α organizing the near�ring �eld

into scale-controlled shells, suggesting a nonperturbative band structure for stability. Second, because the lock maps
DC to Λeff through a universal rule, it o�ers a route to predicting energy bands and stability islands for leptons�and
more generally for any charged particle�within a single gauge-invariant, measurement-free framework.
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Beyond the closed �xed�point determination of α developed here, several natural directions lie within the same
Relator machinery and are intentionally left for future work: (i) a scale�dependent coupling α(µ) obtained by driving
the IR map ℓ(µ) and extracting the induced β�function βα(µ) from atomic to electroweak scales, including a test for
any e�ective Landau pole; (ii) mass�dependent corrections to gℓ (in particular gµ, gτ ) via the geometric link, together
with the discrete lepton�mass ladder and hierarchy as stability�allowed (n,w) resonances; (iii) the energy dependence
of the electroweak mixing, e.g. an inference of sin2 θW (µ) from the same S3 spectral block; and (iv) non�circular
atomic windows (Rydberg R∞, H/H 1S�2S) as external validations. I record these directions here for clarity of scope;
full derivations, uncertainty budgets, and data comparisons are reserved for companion papers, while the present
paper focuses on the closed determination of α.

Finally, QED, as a highly e�ective perturbative apparatus, predicts g−2 with exquisite precision by bookkeeping
virtual exchanges, yet handles UV divergences by renormalization and remains agnostic about origin. In line with
Feynman's view that a more fundamental law should underlie the phenomenology and remove in�nities, the origin
is identi�ed here as a geometric lock of the lepton. In this framework the relevant UV sensitivity is geometric�that
of the �lamentary loop on the shell, not QED loop divergences�and is controlled by Gaussian collar averaging, TT
projection on the shell, and exterior�energy subtraction, without counterterms, running schemes, or �tted inputs.
Consequently, (i) the one�line prediction for the electron's g agrees with the most precise QED observable within a
few ppt, and (ii) the same mechanism derives the �ne�structure constant as an emergent invariant, addressing the
long�standing mystery of the origin of α. Other probes�across decay patterns, species mass hierarchies, and related
structure observables�are expected to access the same lock from complementary angles, each revealing a facet of the
particle's internal geometry.
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Appendix A: Coulombic baseline�derivation and proof sketch

This appendix records only the intermediate steps leading to Eq. (30); all basic de�nitions and normalizations
(including r∗, λ̄C , the s�wave mode, Cuni

0 , and ξ) are taken from the main text.

Geometry and notation. We adopt the main-text conventions. For convenience set the dimensionless radius x =
r/r∗ ∈ [0, 1].

Lemma A1 (far��eld anchor). The exterior Coulomb energy (main text (26)) �xes the overall scalar normalization

D(0)
C = α/π multiplying the bracket in Eq. (30).

Lemma A2 (uniform near/shell via Rayleigh�Ritz). Model the uniform near/shell load inside r∗ as a constant shift
of the Helmholtz operator:

Lξ = −∇2 − k20 + µ2 χr<r∗ , k0 = π/r∗,

with χ the indicator of the cavity. Take as trial state the unperturbed s�wave u0(r) = N j0(k0r) on 0 ≤ r ≤ r∗ (see
main text (23)) and extend it by zero for r > r∗, so that

∫
R3 |∇u0|2 =

∫
r<r∗

|∇u0|2 and
∫
R3 |u0|2 =

∫
r<r∗

|u0|2. The
Rayleigh quotient then gives

k2eff =

∫
R3

(
|∇u0|2 − µ2 χ |u0|2

)
dV∫

R3 |u0|2 dV
= k20

(
1− µ2

k20

)
. (A1)
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Identifying µ2/k20 = ξ (with 0 < ξ ≪ 1, cf. ξ = 2αCuni
0 in the main text) yields the multiplicative factor for the bracket

of Eq. (30):

keff
k0

=
√
1− ξ. (A2)

Lemma A3 (mean�zero inhomogeneity ⇒ even�order corrections). Decompose the near/shell pro�le into a mean�
zero part around the uniform baseline and project onto radial cavity modes. De�ne the purely geometric overlaps

In =

∫ 1

0

x2 sin(πx) sin(nπx) dx, (A3)

I(2m)
n = 2

∫ 1

0

x2m sin(πx) sin(nπx) dx, m ≥ 1, (A4)

and the geometric coe�cients (cf. main text (27)�(29))

K =
2

π2

∞∑
n=2

(2In)
2

n2 − 1
, L2m =

2

π2

∞∑
n=2

(2I
(2m)
n )2

n2 − 1
, m ≥ 2, K = L2. (A5)

By orthogonality, the �rst�order shift vanishes; the leading nonzero correction is quadratic. Expressed relative to the
main-text normalization, the mean�zero inhomogeneity contributes

∆(DC)

D(0)
C

= −

[(
ξ

2

)
K +

∞∑
m=2

(
ξ

2

)m

L2m

]
, (A6)

where the factor (ξ/2) re�ects that the mean�zero perturbation is expanded in even powers around the uniform
baseline, so its leading (quadratic) amplitude carries half the total uniform load under the shell normalization (cf. the
even�mode normalization in the main text).
Proposition A4 (closing the bracket). Combining the multiplicative factor (A2) with the relative correction (A6)

reproduces exactly the bracket that appears in the master relation of the main text, Eq. (30), without introducing
any further assumptions or parameters.
Remarks (robustness and bounds). (i) Replacing the sharp cuto� by a Gaussian collar of width σC ≪ r∗ (on the

shell a = r∗ ℓ0 = σC with ℓ0 = σC/r∗ in the main text) perturbs the bracket only at O
(
(σC/r∗)

2
)
= O(ℓ20). (ii) Since

ξ ≪ 1 at physical α, the tail admits the crude bound∣∣∣∣∣∣
∑
m≥2

(
ξ

2

)m

L2m

∣∣∣∣∣∣ ≤ (ξ/2)2

1− ξ/2
max
m≥2

L2m,

so higher�order even powers are numerically negligible in the bracket.

Appendix B: TT�χ kernel�physical origin, formulae, and necessity

Let S2r∗ be the matching sphere of radius r∗ with unit normal n̂, surface gradient ∇S , surface divergence ∇S·, and
Laplace�Beltrami operator ∆S . For any smooth vector �eld A in a neighbourhood of the shell, de�ne the tangential
part

AT := (I− n̂n̂⊤)A
∣∣
S2r∗
, ⟨v,w⟩ :=

∫
S2r∗

v·w dΩ. (B1)

1. Hodge decomposition and canonical projectors

Every tangential �eld on S2r∗ splits orthogonally into a surface�gradient (poloidal) and a divergence�free (toroidal)
part:

v = ∇Sϕ + w, ∇S ·w = 0, ⟨∇Sϕ,w⟩ = 0. (B2)
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The Hodge projector onto the divergence�free subspace is

Pdiv-free v := v −∇S ∆−1
S

(
∇S · v

)
, (B3)

where ∆−1
S acts on mean�zero scalars. The tangential projector is PT := I − n̂n̂⊤, hence the canonical transverse

projector on the sphere is

PTT := Pdiv-free PT . (B4)

2. Vector spherical harmonics and spectral representation

Let Yℓm be scalar spherical harmonics on S2r∗ (ℓ ≥ 0, |m| ≤ ℓ). Then

−∆SYℓm =
ℓ(ℓ+ 1)

r2∗
Yℓm, Ψℓm := r∗ ∇SYℓm (poloidal), Φℓm := r∗ n̂×∇SYℓm (toroidal). (B5)

They satisfy ∇S · Φℓm = 0 and ⟨Ψℓm,Φℓ′m′⟩ = 0. Any AT expands as

AT =

∞∑
ℓ=1

ℓ∑
m=−ℓ

(
aℓmΨℓm + bℓmΦℓm

)
, (B6)

with orthogonality across (ℓ,m) and between the Ψ and Φ families.

3. The TT�χ projector and its kernel

Rotational invariance on S2r∗ implies that any bounded self�adjoint shell operator commuting with SO(3) is a spectral
multiplier f(−∆S) acting as a scalar on each (ℓ,m) subspace. Imposing: (i) tangential support, (ii) divergence�free
content, (iii) positivity/contractivity (0 ≤ f ≤ 1), and (iv) an IR window χℓ ∈ [0, 1] depending only on ℓ, yields

PTT-χ := χ(−∆S)Pdiv-free PT , χ(−∆S) Φℓm = χℓ Φℓm, χ(−∆S)Ψℓm = 0. (B7)

In spectral form,

PTT-χ[A] =

∞∑
ℓ=1

ℓ∑
m=−ℓ

χℓ bℓm Φℓm. (B8)

The corresponding integral kernel on S2r∗ × S2r∗ is

KTT-χ(x̂, x̂
′) =

∞∑
ℓ=1

χℓ

ℓ∑
m=−ℓ

Φℓm(x̂)⊗ Φℓm(x̂′), x̂, x̂′ ∈ S2r∗ , (B9)

a rotationally invariant, positive, contractive projector kernel on the tangential bundle.

4. Gauge invariance and orthogonality of the cross term

Under a gauge shift A 7→ A+∇ϕ, the tangential change is δAT = ∇Sϕ. The Hodge projector removes all gradient
content:

Pdiv-free(∇Sϕ) = 0 =⇒ PTT-χ (∇Sϕ) = 0. (B10)

Moreover, for any smooth scalar ϕ and tangential v,∫
S2r∗

∇Sϕ · Pdiv-free v dΩ = −
∫
S2r∗

ϕ∇S ·
(
Pdiv-free v

)
dΩ = 0, (B11)

so the scalar (Coulombic) gradient is L2�orthogonal to the TT content. Hence the leading cross�term ∝ (∇S) ·A∥
vanishes once A∥ is replaced by PTT-χA; any leakage enters only at quadratic order (as used in the main text via
∆Λsync inside the logarithmic loop chain).
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5. Positivity and boundedness

In the VSH basis the shell power of the transmitted TT content is∫
S2r∗

∣∣PTT-χA
∣∣2 dΩ =

∞∑
ℓ=1

χ2
ℓ

ℓ∑
m=−ℓ

|bℓm|2 ≤
∞∑
ℓ=1

ℓ∑
m=−ℓ

|bℓm|2 =

∫
S2r∗

|AT |2 dΩ, (B12)

with equality i� χℓ ≡ 1. Thus the projector is positive and contractive, ensuring a bounded inductive budget.

6. IR acceptance scalar and uniqueness

The near�shell collar of dimensionless thickness ℓ (with ℓ = σC/r∗) produces a single scalar acceptance P
(χ)
IR (ℓ)

multiplying the TT power that reaches the lock:

P
(χ)
IR (ℓ) :=

∫ 1

0

w(x)Wℓ(x) dx∫ 1

0

w(x) dx

, w(x) := x2 sin2(πx), Wℓ(x) ∈ [0, 1], x = r/r∗. (B13)

Any admissible Wℓ must satisfy 0 ≤ Wℓ ≤ 1 and preserve rotation invariance; the speci�c Wℓ used in the main text
(Gaussian collar with swirl suppression) yields the reported numerical value.

7. Necessity under physical constraints

LetK be a bounded self�adjoint operator on tangential �elds over S2r∗ such that (i)K is gauge�invariant (K∇Sϕ = 0),
(ii) K maps to divergence�free tangential �elds, (iii) K commutes with all rotations, and (iv) 0 ≤ ⟨Kv,v⟩ ≤ ⟨v,v⟩ for
all v. Then there exist multipliers χℓ ∈ [0, 1] with

K = χ(−∆S)Pdiv-free PT ≡ PTT-χ. (B14)

Sketch of proof. (1) By (iii) and the spectral theorem, K acts diagonally on each (ℓ,m) subspace. (2) By (ii),
KΨℓm = 0 and KΦℓm = χℓ Φℓm. (3) By (iv), 0 ≤ χℓ ≤ 1. (4) Condition (i) holds because ∇Sϕ ∈ span{Ψℓm}.
Therefore K = PTT-χ. □

Under the standard physical constraints (tangential support, solenoidal content, rotational symmetry, positivity,
and gauge invariance), the TT�χ kernel is the unique admissible shell kernel. It enforces the leading�order decoupling
of the Coulombic stack from the inductive channel and yields a single scalar IR acceptance entering the closed lock
for α.

Appendix C: Boundary derivation and uniqueness of the closed synchronization rule

We use a single external projector acting on the exterior functional:

∆Λsync(η, ℓ) = σ(η, ℓ;K,DC) P
(χ)
IR (ℓ) ∆ΛOUT(η) . (C1)

The gain σ is dimensionless and parameter�free, partitioned as

σ(η, ℓ;K,DC) = γgeom(η)︸ ︷︷ ︸
1
2 sinh η/η

+
X

1 + κX︸ ︷︷ ︸
γladder
map

+ σself︸︷︷︸
bounded, negligible

, X =
( K

2DC

)
cGauss
0 P

(χ)
IR (ℓ), κ =

sinh η

η
− 1, (C2)

with cGauss
0 = 1

2 (ln 2 + γ) (Euler�Mascheroni γ). The self term is the closed Dyson feedback of the induced χ�mode
on the shell; it is rigorously bounded by the gauge�invariant collar budget and is numerically sub-ppm of |∆Λsync| in
the full�mesh runs.
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Boundary reduction and projector orthogonality. Let Λ =
∫
V |∇×A|2 dV withA = Ain+Aout in Coulomb/toroidal

gauges. The bulk cross term reduces to a boundary pairing on Sr∗ :

2

∫
V
(∇×Ain)·(∇×Aout) dV =

∮
Sr∗

(n̂×Ain)·(∇×Aout) dS. (C3)

On Sr∗ , tangential �elds decompose into vector spherical harmonics with ⟨Φℓm,Ψℓ′m′⟩ = 0. The loop �eld is toroidal,
hence only the TT�χ sector couples; therefore the cross contribution is a universal geometric multiple of the exterior
functional ∆ΛOUT(η), producing the factorized form (C1) without double counting.
Geometric closure and map resummation. Curvature on the shell introduces the scalar κ = sinh η/η− 1. A single

UV→IR pass across the collar induces the amplitude X = (K/2DC) c
Gauss
0 P

(χ)
IR (ℓ). Curvature redirects a fraction κ

of the tangential �ux back into the collar with opposite phase, generating the Neumann/Dyson ladder

X − κX2 + κ2X3 − · · · =
X

1 + κX
, (C4)

which is precisely γladdermap in (C2). No other independent scalar combinations are available on the boundary; the
weak�map limit uniquely �xes the coe�cients.

Signs and limits. With ∆ΛOUT< 0 and P
(χ)
IR , X, κ > 0 one has γladdermap −X = −κX2/(1 + κX) < 0, so curvature

feedback partially cancels the negative subtraction and raises ∆Λsync (i.e. reduces its magnitude), consistent with the
boundary picture. The �at�shell limit η → 0 gives κ→ 0 and γladdermap → X.

Appendix D: Alternative, path�independent derivations of the Path I coe�cient

On a thin spherical shell the only gauge�invariant, conserved degree of freedom that drives the inductive response is
the uniform toroidal transverse (TT) circulation. Here �TT� means the transverse�toroidal projection on the shell (no
radial component), not the traceless tensorial TT gauge of linearized gravity. By construction, the Coulombic shell
invariant DC is the physical channel control that couples linearly to this circulation; it scales the uniform TT mode
and respects gauge invariance, additivity across shells, and locality on the shell. Therefore the single�log response of
the reporter a = (g − 2)/2 is measured with respect to DC; in this control the Path II acceptance is pure geometry
and locks the coe�cient to 1/3.
What is being measured. We de�ne the Path I single�log coe�cient by the canonical long operator

∆alog = D 2
C C

I
log ln s + O(D3), (D1)

with a the lepton's anomalous magnetic moment. The reporter is normalized by the Dirac mapping

g(D) =
2√

1−D
, a(D) =

g − 2

2
= (1−D)−1/2 − 1, D =

∥∥∇S − q
c A

∥∥2
m2c2

. (D2)

1. Geometry�only overlap and the physical ζ

Let KTT+sync denote the long�range thin�shell stack (�lamentary loop + TT�χ UV increment − outer subtraction
+ synchronization), acting strictly in the TT subspace, and let u be its uniform toroidal eigenmode (�xed by �ux
conservation). The dressed long�scale overlap obeys

d

d ln s

〈
u, K−1

TT+sync(s)u
〉

= cχ ζ
(
1 + ζ

)
, cχ = 2π2, (D3)

which integrates (with zero at s=1) to〈
u, K−1

TT+sync(s)u
〉

= cχ ζ
(
1 + ζ

)
ln s. (D4)

Interpretation: ζ = ΥspΛeff (main text) is a geometric, non�perturbative measure of TT acceptance of the shell stack;
(1 + ζ) is the single�channel dressing embedded in KTT+sync.
Dirac�linearized reporter (normalization, not an assumption). Introduce

D◦ := 2 a(D) = 2
[
(1−D)−1/2 − 1

]
,

∂a

∂D◦
= 1

2 (exact). (D5)
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2. Closed Path I with a generic control Q

The bridge from D to a generic control is the Jacobian

∂D◦

∂DC
= (1−D)−3/2 ∂D

∂DC
, (D6)

and we package all Dirac curvature and any non�Coulombic leakage into

Q(α) := DC(α)
∂D◦

∂DC
(α) = DC (1−D)−3/2 ∂D

∂DC
. (D7)

Combining (D4) with (D5)�(D7) and the canonical de�nition (D1) yields the compact, path�independent form

CI
log =

π2Q(α)

D 2
C(α)

ζ(α)
(
1 + ζ(α)

)
. (D8)

Physics: the geometric content is entirely in ζ; Q carries Dirac curvature and any in�nitesimal leakage away from the
pure Coulombic control.
If one insists on using Q as the source control instead of DC, de�ne an �operational� ζQ by

d

d ln s
ΠTT(s) ≡ Qcχ ζQ, ΠTT(s) := ⟨u,A∗

∥(s)⟩, (D9)

with A∗
∥ = (control)×K−1

TT+syncu from Euler�Lagrange. Since physically d
d ln sΠTT = DC cχ ζ by (D4), one has

ζQ =
DC

Q
ζ . (D10)

Thus the lock can be written equivalently in terms of (Q, ζ) or (Q, ζQ), but only the pair (DC, ζ) keeps the acceptance
purely geometric.

3. Equivalence with the main�body Coulomb gauge and synchronization

(i) Same ζ from the same stack. In the main text ζ = ΥspΛeff with

Λeff = Λfil + ∆Λχ
UV − ∆ΛOUT + ∆Λsync. (D11)

The overlap de�nition (D4) uses the same stack; inserting the explicit ∆Λsync from Eq. (55) of the main text and
rearranging (D11) shows the two de�nitions coincide without double counting (solving (D11) for ∆Λsync simply
reproduces that expression).
(ii) Why the Coulombic control: Q = DC by sync calibration. When the sync map calibrates the reporter linearly

on the shell,

g
(
D(DC)

)
= 2 +DC ⇐⇒ a =

DC

2
(exact), (D12)

one �nds

D(DC) =
DC(DC + 4)

(DC + 2)2
, (1−D)−

3
2
∂D

∂DC
= 1, (D13)

hence Q = DC in (D7). Therefore (D8) reduces to the main�body formula CI
log = (π2/DC) ζ(1 + ζ).

4. Conservation�based Lagrangian

On the shell the dynamical variable is A∥(ϕ); gauge invariance con�nes us to TT. The conserved quantity is the

uniform toroidal circulation ΦTT =
∫ 2π

0
A∥dϕ. Consider the quadratic functional

L[A∥;λ, ν] =
1
2 ⟨A∥,KTT+syncA∥⟩ − λ ⟨u,A∥⟩+ ν (ΦTT − Φ0), (D14)
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with source λ ≡ DC and Lagrange multiplier ν for �ux conservation. Euler�Lagrange gives A∗
∥ = λK−1

TT+syncu and

ΠTT(s) = ⟨u,A∗
∥⟩ = DC cχ ζ

(
1 + ζ

)
ln s. (D15)

With the exact reporter slope ∂a/∂D◦ = 1/2 and dD◦/dDC = Q/DC,

∆alog = 1
2 · Q

DC
·
(
DC cχ ζ(1 + ζ) ln s

)
=

(
π2Q

)
ζ(1 + ζ) ln s, (D16)

and comparison with (D1) reproduces (D8). Physics: quadratic energy ⇒ factor 1/2; �ux conservation ⇒ uniform
mode u; gauge invariance ⇒ only TT survives; single TT channel ⇒ the (1 + ζ) dressing.

5. Path II anchor: why 1/3?

Path II is purely geometric. With the transverse projector Pij(r̂) = δij − r̂ir̂j and a �xed unit t̂,

1

4π

∫
dΩ t̂i Pij(r̂) t̂j = 1−

〈
cos2 θ

〉
=

2

3
. (D17)

Since the physical shell excites a single TT channel (rank�1 acceptance) out of the two transverse polarizations
encoded in Pij , an additional factor 1/2 enters, hence

Clog =
1

2
× 2

3
=

1

3
. (D18)

Equating Path I and Path II gives the exact lock

π2

Q(α)
ζ(α)

(
1 + ζ(α)

)
=

1

3
. (D19)

Using (D10) one may rewrite the lock as

π2

DC
ζQ

(
1 +

Q

DC
ζQ

)
=

1

3
, (D20)

which shows explicitly that the cleanest geometric form is obtained in the Coulombic control.

6. Emergent coupling and the QED mass log

From (D16) and the lock (D19),

∆alog =
Q(α)2

3
ln s. (D21)

The synchronization condition a = DC/2 together with the low�energy Dirac slope ∂a/∂(α/π) = 1/2 implies
DC = α/π, and with (1 − D)−3/2 ∂D/∂DC = 1 one has Q = DC = α/π at low energy. For a species stretch
s = Re/Rℓ = mℓ/me one then obtains the canonical QED mass�log coe�cient

∆alog ≈
(α
π

)2 1

3
ln
mℓ

me
. (D22)

Physics: (i) Schwinger's slope �xes the low�energy normalization; (ii) the mass log is a two�vertex e�ect ∝ (α/π)2;
(iii) Ward identity selects α(0) and the universal 1/π is carried by loop integrals.
Atomic scales. Atomic (Rydberg/a0) scales only bound the integration (hence s); the universal prefactor is fully

encoded by ζ and Q (or DC in the calibrated gauge).
Numerical precision. All algebraic steps above are exact; any numerical error is purely arithmetic. Whenever O(ζ)

is dropped via (1 + ζ) ≈ 1, this approximation is stated explicitly.
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