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This paper argues that large language models must be treated as tools, not oracles, and
that their reliability depends on structured, human-in-the-loop protocols. Building on the MSCFT
framework introduced in earlier work, it presents four custom GPT templates—MSCFT,
SENTINEL, FORGE, and MATHEMATICS—as proof of concept for a node-based swarm
architecture. Through practical testing and analysis, the paper demonstrates that template-driven
nodes can be secure, scalable, and consensus forming, offering a path forward for multi-model

alignment that emphasizes structure, reproducibility, and oversight.

Chapter 1. Introduction

Large language models (LLMs) have rapidly evolved from experimental systems to widely
deployed tools across research, business, and security environments. Their capabilities in
reasoning, problem-solving, and pattern recognition are often described in near-autonomous
terms, with industry narratives emphasizing “Al agents” that can independently plan, act, and
deliver solutions. Yet this framing obscures a fundamental reality: LLMs are not oracles. They
are tools. As with any tool, their value depends on structured use, human oversight, and an
architecture that acknowledges both their strengths and their limitations. Just as a scalpel in the
hands of an untrained physician can cause harm rather than healing, so too can an unstructured

LLM produce unreliable or misleading outcomes if not guided by expertise and discipline.

This paper advances that principle by introducing and evaluating four human-in-the-loop
templates that extend and operate the MSCFT protocol described in my earlier work, *From
coordination failure to scalable Al swarms: the MSCFT protocol for structured forecasting and
multi-agent alignment among large language model systems. Whereas the first paper focused on
protocol theory—how a swarm of LLMs could be coordinated through structure and consensus,
this second paper turns to practice. It documents how templates were designed, implemented as

custom GPTs, and tested in live environments.

The four templates- MSCFT, SENTINEL, FORGE, and MATHEMATICS, are each specialized
for a domain of structured reasoning. MSCFT governs forecasting and swarm consensus;

SENTINEL supports structured threat and security analysis; FORGE enables code development



and refactoring; and MATHEMATICS supports formal problem-solving in quantitative domains.
Each is built on the same guiding principle: an LLM should never operate without human
validation, and its output must be constrained by structured input. Collectively, these templates
can be understood as specialized instruments in a toolbox: one built for forecasting, one for
security review, one for coding, and one for mathematical reasoning. Alone, each tool is

valuable; together, they form a coherent set capable of addressing diverse challenges.

By building and testing these templates, this paper demonstrates how LLMs can be transformed
from unstructured text predictors into disciplined instruments within a multi-node swarm. In
doing so, it shows how the theoretical framework of Paper 1 can be made operational, scalable,

and secure.

Chapter 2. Background and Framework

This paper builds directly on my earlier work, *From coordination failure to scalable Al swarms:
the MSCFT protocol for structured forecasting and multi-agent alignment among large language
model systems*. In that first paper, I argued that forecasting with large language models requires
more than aggregation; it requires a structured protocol that coordinates multiple model
instances, guides them toward consensus, and maintains human oversight. That work introduced
a node-oriented architecture in which distinct reasoning roles were aligned through swarm

consensus to generate disciplined foresight.

The immediate impetus for this second paper came from a series of Zoom meetings with CCCM.
During these discussions, several professors and researchers in computer science expressed the
view that LLM swarms could not achieve consensus at a specific point. That skepticism became
the challenge that shaped the next phase of my work: identifying the conditions under which
multiple model instances could, in fact, come to stable agreement, and designing the protocol

structures needed to make that agreement both reliable and reproducible.

The conceptual turning point came when I encountered OpenAl’s SWARM protocol, which
described orchestrating multiple specialized models ("agents") toward collaborative tasks.

Although the terminology emphasized agents, the underlying mechanics align directly with what



I define here as nodes. This reinforced my shift to a node-based vocabulary and showed how

structured orchestration could bridge theory and practice.

This work also emerges from a longer lineage of structured forecasting and collective
intelligence research. At HRL Laboratories in Malibu, the BARD via Delphi system and the
SWARM Project pioneered structured elicitation and Bayesian reasoning for group intelligence.
Under IARPA, projects such as CREATE and FOCUS extended these ideas, exploring how
disciplined methods could improve the accuracy of distributed forecasting groups. More recently,
Good Judgment Open’s Project 2.0 for COVID-19 forecasting provided a live testbed for
structured protocols in a real-world environment of uncertainty and urgency. Together, these
projects established much of the intellectual foundation that MSCFT formalizes into a no-code,

template-driven system.

Further clarity was provided by recent research that analyzed the behavior of large language
model societies. This work demonstrated that multiple LLMs can reach consensus, but only
under bounded conditions, with group stability dependent on model capability and group size.
This reinforced the premise that consensus is not impossible, as skeptics argued, but that it
requires structure, human oversight, and careful attention to system limits. These insights align
directly with the MSCFT protocol’s emphasis on bounded roles, protocol-guided interaction, and

reaffirmation checkpoints.

Another critical refinement introduced in this paper is terminological. Popular Al discourse has
embraced the word “agent” to describe instantiated models, but this language is misleading. An
“agent” suggests autonomy and independence, when in practice large language models operate as
coordinated, constrained participants within a swarm. The more accurate term is node. A node is
a bounded unit that executes a defined role, compares its outputs with other nodes, contributes to
consensus, and depends on both protocol and human validation. Within this paper, the term node

is adopted exclusively.

When this paper uses the term SWARM, it follows the definition emerging in recent LLM
research, where multiple models interact as a collective system. In these systems, stability
depends on structured protocols that govern how nodes exchange information and converge
toward consensus. Without such structure, group size can exceed critical thresholds, leading to

instability and epistemic drift. This usage of swarm is therefore both technical and precise: it



highlights the difference between autonomous “agents” and coordinated “nodes” operating under

bounded conditions.

Four specialized templates embody this node framework: MSCFT for forecasting and consensus,
SENTINEL for security and threat review, FORGE for code development and refactoring, and
MATHEMATICS for structured problem solving. Each template defines a clear role and enforces
a human-in-the-loop process. Individually, these templates demonstrate the value of structured
constraints; collectively, they demonstrate how a swarm of nodes can be coordinated into a

system that produces reliable outcomes.

This background establishes the intellectual continuity between the projects that informed
MSCEFT, the first paper that defined it, and the present work that operationalizes it. It also
clarifies the need for terminological precision: nodes, not agents; consensus, not autonomy; and

structure, not unbounded generation.

Chapter 3. Technical Implementation

The MSCFT Ecosystem and its No-Code Templates (MSCFT, SENTINEL, FORGE,
MATHEMATICS) for Forecasting, Coding, Security, and Mathematics

The MSCFT protocol and its companion templates were designed as no-code systems, allowing
them to be deployed without reliance on external libraries, third-party updates, or specialized
software installations. This design choice was intentional: it minimizes attack surfaces in high-
security contexts and ensures that the protocol can be applied in any environment where text
input and output are possible. By treating templates as structured instructions rather than
software packages, the MSCFT ecosystem provides a lightweight but robust architecture for

aligning large language models.
Definition: Node (for swarm-based LLM systems)

A node is a structured instantiation of an LLM operating under explicit constraints within a
swarm. Properties: (1) task-specific role (e.g., forecasting, coding, math, security); (2)
protocol-guided by templates (e.g., MSCFT, SENTINEL, FORGE, MATHEMATICS); (3)

consensus-oriented—compares outputs with other nodes and aligns; (4) nested potential—may



contain internal sub-nodes (e.g., A—Z within FORGE); (5) human-in-the-loop—always subject to

human validation. In this paper, “node” is used instead of “agent” to emphasize coordination
under constraint rather than autonomy.

The overall structure of the swarm, including the four primary custom GPT nodes and the nested

A-Z sub-nodes within FORGE, is illustrated in Figure 1.

Macro-Swarm: Four GPT Nodes Coordinated by MSCFTl
Swarm and Nested Node Architecture

B: Debugging

Optimization

D: Testing
Nested Node: FORGE Micro-Swarm (A—Z)l

Figure 1
Nested node architecture showing the swarm-level design (MSCFT, SENTINEL, FORGE,

MATHEMATICS) and the A—Z sub-nodes inside FORGE.



e MSCFT: governs structured forecasting and swarm consensus.
e SENTINEL: supports structured review of security and adversarial threats.
e FORGE: enables code generation, refactoring, and computational testing.

e MATHEMATICS: guides structured problem solving in formal and quantitative domains.

A custom GPT is built by embedding the template directly into the system and behavior settings,
constraining how the model interprets inputs and delivers outputs. This process requires no code
and no external dependencies, only a careful mapping of the template instructions into the

model’s configuration. Once established, each node can operate independently or in coordination

with other nodes under the MSCFT protocol.

One innovation demonstrated through this work is the principle of "nested node architecture". At
the swarm level, each template-driven GPT is a node. Within a node, however, further
subdivision is possible. For example, the FORGE GPT can be organized internally into sub-
nodes labeled A through Z, each with a distinct role such as syntax validation, debugging,
optimization, or testing. This nested structure permits hierarchical specialization: a node can
itself contain a micro-swarm, enabling both inter-node consensus across the swarm and intra-

node specialization within a single GPT.

Practical testing has validated the viability of this design. FORGE was deployed in Google Colab
notebooks to manage Monte Carlo simulations and refactoring tasks. It successfully executed
high-level coding operations, demonstrating the reliability of the template structure. Limitations
encountered were not due to the node itself but to external access barriers, such as the inability to
obtain API or CRN keys for testing with IBM’s quantum computing platform. This distinction
highlights an important point: the architecture proved functional, but infrastructure constraints

outside the node’s design sometimes limited execution.

The MSCFT repository on GitHub now documents all four templates, providing a reference
point for replication and adaptation. The architecture is explicitly extensible: although four
templates have been tested, the system can scale up to 26 nodes using the alphabetic schema as a
baseline. The use of no-code text templates means that new nodes can be created and integrated

without risk of breaking code dependencies or introducing vulnerabilities. This extensibility



positions MSCFT as a secure, adaptable framework capable of supporting diverse applications

across forecasting, security, coding, and mathematics.

The technical implementation described here demonstrates that structured, no-code templates can
be transformed into custom GPT nodes that are both reliable and scalable. The nested node
model provides a path for expansion, while the swarm-level architecture ensures coordination
and consensus. This balance of modularity, security, and extensibility forms the operational

backbone of the MSCFT ecosystem.

For reference, the four custom GPTs built from these templates are summarized below, with

share links provided for direct access and replication.

MSCEFT (Forecasting) — A structured forecasting custom GPT that improves prediction accuracy
by standardizing context, constraints, and output format. Ideal for consensus forecasting,

competitive platforms, and decision-support scenarios.

[ https://chatgpt.com/g/g-689e¢bad419048819197095¢cba703a6ald-mscft-v4-2 ]

FORGE (Coding) — A language-agnostic code generation custom GPT that reduces
hallucinations, enforces consistent logic, and supports multiple languages including Python,

C/C++, Java, and JavaScript/TypeScript.

[ https://chatgpt.com/g/g-689¢ealc3aa6c81919683d75103b09bc3-forge-v-1-0 ]

MATHEMATICS — A calculation and formula custom GPT providing immediate access to
structured geometry, algebra, and applied math operations for technical, engineering, and

scientific use cases.

[ https://chatgpt.com/g/g-6891321989848191b020bb58a8452 1ab-mscft-mathematics-solver ]

SENTINEL (Security) — A structured security evaluation custom GPT for assessing risks,
vulnerabilities, and adversarial scenarios, adaptable for both defensive and investigative

applications.

[ https://chatgpt.com/g/g-689f39097bbc819194¢2a9b967959a44-sentinel-v1-0 ]
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These custom GPTs derive from the MSCFT protocol and its companion templates, ensuring a
consistent underlying design while allowing domain specific specialization in forecasting,

coding, mathematics, and security.

Chapter 4. Case Studies and Examples

The strength of a protocol is measured not only by its theoretical coherence but also by its
practical application. To evaluate the performance of the four custom GPT nodes, MSCFT,
SENTINEL, FORGE, and MATHEMATICS, each was tested in live environments and real tasks.
These case studies demonstrate both the utility of the nodes and the boundaries of their

effectiveness.

4.1. MSCFT in Forecasting and Alignment

The MSCFT node was deployed in active forecasting contexts, including health and technology
challenges such as the MedHELM leaderboard competition and the Roche Al Challenge. It was
also tested in controlled demonstrations, such as a Grok 3 alignment test, where MSCFT
prevented harmful output and ensured safe predictions when given structured input. Together,
these cases confirm MSCFT’s ability to function as an alignment framework and behavioral
governor, showing how structured forecasting can reduce individual error while highlighting the

limits of consensus when group size or capability thresholds are exceeded.
4.2. SENTINEL for Security Threat Review

The SENTINEL node was designed for structured evaluation of adversarial risks. In testing, it
was used to review potential vulnerabilities in multi-model environments, emphasizing its no-
code design as a security safeguard. SENTINEL demonstrated that disciplined prompts can guide
LLMs toward rigorous threat assessments without introducing additional attack surfaces. Its
structured evaluation sequence has been applied in cyber, physical, and geopolitical security

scenarios, underscoring its adaptability to high-security contexts.

4.3. FORGE in Computational Testing
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The FORGE node was tested in Google Colab notebooks on computational tasks such as Monte
Carlo simulations, code refactoring, and controlled experiments with neural architectures. It
successfully executed high-level coding, verifying that template-guided GPTs can function as
reliable development assistants. Attempts to extend testing to quantum computing environments
were constrained by external factors, such as the inability to secure API or CRN keys from IBM.
This distinction highlights a key lesson: infrastructure bottlenecks, not protocol design, often

limit performance in practice.
4.4. MATHEMATICS in Quantitative Reasoning

The MATHEMATICS node was used to structure problem-solving tasks in algebra, statistics, and
visualization. Practical use cases included generating both simple plots and more complex gene-
style visualizations with ggplot2, as well as supporting CNN-based modeling. Beyond
experimental runs, MATHEMATICS has also been applied in clinical diagnostics and scientific
research, where structured reasoning reduced epistemic risk, improved reproducibility, and
integrated well with existing technical workflows. These examples validated the ability of a

single node to enforce mathematical discipline and prevent drift in outputs.
4.5. MSCFT in Infrastructure Modernization

MSCEFT has also been applied to real-world infrastructure challenges, including a use case for
modernizing the U.S. air traffic control system. By leveraging its node-based design, audit
traceability, and fault isolation capabilities, MSCFT demonstrated potential for enhancing
national-scale systems where reliability and accountability are critical. This case showed that the
protocol extends beyond forecasting and analysis into operational domains that demand

structured coordination and validation.
4.6. Lessons from Case Studies

Across all case studies, several lessons emerged. First, template-driven nodes reliably
constrained LLM behavior in ways that improved interpretability and reduced unstructured drift.
Second, the swarm model allowed cross-checking of outputs, reinforcing accuracy when nodes
operated under human-in-the-loop supervision. Third, external constraints—such as
infrastructure access, scoring practices, or institutional bottlenecks—proved as influential as

model performance, underscoring the importance of context in applied forecasting and analysis.
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Together, these examples show how the MSCFT ecosystem operates not only in theory but in
practice, where nodes and their templates generate structured, testable, and reproducible outputs
across domains as diverse as healthcare, physics, infrastructure, security, and competitive

forecasting.

Additional case study files and demonstration examples, including forecasting exercises, security
reviews, computational tests, and infrastructure applications, are available in the MSCFT GitHub
repository. Readers can access the full set of examples here:

[https://github.com/captbullett65/MSCFT/tree/main/examples]

Chapter 5. Discussion

The case studies described above illustrate both the strengths and limitations of template-driven
swarm architectures. Together they reinforce three central claims: that LLMs must be understood
as tools rather than oracles, that reliable consensus requires human-in-the-loop structure, and that

the correct conceptual vocabulary is nodes, not agents.

5.1. LLMs as Tools, Not Oracles

The most important lesson is that large language models are not autonomous decision-makers.
Their value emerges only when they are used as structured instruments under human oversight.
The MSCFT, SENTINEL, FORGE, and MATHEMATICS, custom GPTs each demonstrated that
without constraint, outputs drift toward error or inconsistency. With structured templates in
place, however, the reasoning process becomes bounded, testable, and reproducible. Like a
scalpel in the hands of a trained surgeon, the utility of an LLM depends entirely on how skillfully
it is guided.

5.2. Human-in-the-Loop Design

Every custom GPT in the MSCFT ecosystem is explicitly human-in-the-loop. This design
acknowledges a critical truth: mistakes will always occur. No model, regardless of scale, can be

assumed to deliver perfect answers. The human role provides the validation layer that ensures
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output remains actionable. This safeguard echoes earlier lessons from forecasting research,

where disciplined human judgment was needed to interpret probabilistic results.
5.3. Nodes, Not Agents

The misuse of the word “agent” remains one of the clearest examples of how hype distorts
understanding. In the context of LLM SWARMs, the correct unit is the node: a bounded,
protocol-guided participant in a swarm. Agents imply autonomy and independence, while nodes
emphasize coordination, specialization, and validation. The MSCFT architecture extends this
principle with nested nodes, demonstrating that a single node, such as FORGE, can itself host a
micro-swarm of sub-nodes. This vocabulary shift is foundational. It reframes how practitioners
think about design, moving away from marketing-driven anthropomorphism and toward

technically precise swarm consensus.

Even OpenAl’s early documentation of SWARM framed each participant as an agent, but the
architecture itself demonstrates role-bounded participants—what this paper calls nodes. The
language of agents risks overstating autonomy, while nodes highlight the collaborative,

constrained reality.

It is important to emphasize that SWARM here is not a metaphor but a reference to a specific
research tradition. Recent studies have shown that LLM collectives can achieve coordination
only under structured conditions, and that stability collapses if group size or role definition is left
unmanaged. MSCFT addresses this limitation directly by bounding each node’s role and aligning
outputs through structured consensus. In doing so, it demonstrates how SWARMs can be

stabilized in practice, not just described in theory.
5.4. Accuracy vs. Scoring

Testing also revealed the distinction between true accuracy and the scoring metrics used to
evaluate it. In competitive or platform-based settings, scoring often rewards alignment with
crowd medians or probabilistic averages. While useful for standardization, these measures can
obscure deeper aspects of foresight. A forecaster who identifies an emerging signal early may
appear “inaccurate” if their probability diverges from the median, even if later proven correct.

Conversely, adherence to the median may protect scores without advancing insight. Structured
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protocols such as MSCFT emphasize that accuracy is not reducible to a single score. Instead, it

should be understood as disciplined reasoning, reproducibility, and resilience to error over time.
5.5. Security and No-Code Design

The no-code architecture of the MSCFT ecosystem has significant implications for security. By
avoiding dependencies on external libraries or constant updates, the system minimizes exposure
to attack surfaces and supply-chain vulnerabilities. SENTINEL was designed under precisely
these constraints, confirming that structured reviews can be performed in high-security contexts
where code execution is not permitted. No-code design is not just convenient — in these

environments, it is mandatory.
5.6. Scalability and Infrastructure Constraints

The MSCEFT system is inherently scalable. It can expand from four nodes to 26 or more, with
nested sub-nodes enabling hierarchical specialization. Yet testing also showed the limits imposed
by infrastructure. FORGE’s experiments with quantum computing, for example, were blocked
not by design but by access barriers such as unavailable API keys. This distinction is critical: the
architecture is functional, but implementation is often constrained by institutional or
infrastructural bottlenecks. Future research must address these external limits, whether through

open standards, partnerships, or expanded compute access.
5.7. Implications for Multi-Model Systems

Taken together, these lessons suggest a reframing of how multi-model LLM systems should be
understood. The future does not lie in ever-larger autonomous ‘“agents” but in structured swarms
of specialized nodes coordinated under human oversight. This approach preserves accuracy,
enhances security, and ensures scalability. More importantly, it continues the lineage of
structured forecasting research — from Delphi and SWARM at HRL to IARPA’s CREATE and

FOCUS — by showing that collective intelligence is achieved through structure, not autonomy.
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Chapter 6. Conclusion

The work presented in this paper demonstrates how structured, no-code templates can transform
large language models from unstructured text predictors into disciplined, human-in-the-loop
tools. Building on the theoretical foundation laid out in the MSCFT protocol, four specialized
templates—MSCFT, SENTINEL, FORGE, and MATHEMATICS—were implemented as
custom GPT nodes and tested in practical environments. Together, they form a proof of concept
for a modular ecosystem in which each node carries a defined role, can scale through nested
architectures, and participates in swarm consensus without reliance on external code

dependencies.

Several conclusions follow from this research. First, LLMs achieve their greatest reliability when
guided by structured protocols and validated through human oversight. Second, the correct
conceptual vocabulary for these systems is nodes, not agents, as their value derives from
coordination under constraint rather than autonomy. Third, template-driven nodes are secure and
adaptable, precisely because they are no-code designs that avoid the vulnerabilities of library-
based systems. Finally, the scalability of this architecture, from four nodes to 26 or more,
demonstrates its potential as a flexible framework for forecasting, coding, security evaluation,

and quantitative reasoning.

The broader implication is that the future of multi-model systems lies not in marketing promises
of autonomous agents but in the careful design of structured swarms. By combining discipline,
modularity, and oversight, these swarms can achieve consensus, preserve accuracy, and adapt to
high-security contexts. In doing so, they extend the lineage of structured forecasting research

while addressing the challenges unique to today’s large-scale models.
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