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Introduction

Definition: Support Vector Machines

Definition: Support Vector Machines

Support Vector Machines (SVM), introduced by Vapnik (1995, 1998), are a set of su-
pervised learning techniques designed to solve classification or regression problems.

References
ﬁ Vapnik V.N. (1995). The Nature of Statistical Learning Theory. Springer.

ﬁ Vapnik V.N. (1998). Statistical Learning Theory. John Wiley.
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Introduction

Maximum Margin Separators Hyperplan

Remark: SVMs are also called Maximum Margin Separators Hyperplan (MMSH).

ﬁ Boser B.E, Guyon .M., Vapnik V.N. (1992). A Training Algorithm for Optimal Margin
Classifiers, Fifth Annual Workshop on Computational Learning Theory, pages 144—152.
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Introduction

SVM and SVR

Support Vector Methods
® For classification problems, the method is called SVM (Support Vector Machine).
® For regression problems, the method is called SVR (Support Vector Regression).

® In the following, we first present the classification case, and then extend the ideas to
regression.
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Introduction

SVM Intuition

Support Vector Machines rely on two fundamental concepts:

@ The principle of the maximum margin, which seeks the separating hyperplane that
maximizes the distance to the closest training points.

@® The use of a kernel function, which makes it possible to extend the method to non-linear
decision boundaries by mapping the data into higher-dimensional spaces.
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Introduction

Maximum Margin

SVM Intuition: Maximum Margin

® The margin is the distance between the separating hyperplane and the closest training
points, called support vectors.

® The optimal hyperplane is the one that maximizes this margin.

® The task is therefore to determine the separating hyperplane that achieves the largest
possible margin, based on the training data.

® This leads to a quadratic optimization problem with linear constraints.
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Introduction

Kernel Trick

SVM Intuition: Kernel Trick

® When the data are not linearly separable, the idea is to map the inputs into a
higher-dimensional feature space, where a linear separation may exist.

® The kernel trick allows this mapping to be performed implicitly: instead of computing the
transformation explicitly, one directly evaluates a kernel function that measures similarity
between data points.

® This makes it possible to replace the scalar product in the transformed space (potentially
very expensive) by the evaluation of a simple kernel function in the original space.
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Introduction

Objectives of the Session

@ Understand the fundamental concepts of linear
separability and margin maximization.

@® Derive the primal and dual formulations of the
Support Vector Machine optimization problem.

® |dentify and interpret support vectors and their role in
classification.

@ Apply the canonical hyperplane representation and
compute optimal separating boundaries.

@ Implement hard margin and soft margin SVMs for
linearly separable and non-separable data.

@ Understand the kernel trick.

@ Apply SVMs to real-world classification and
regression problems in various domains.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines

Credit: iStock

August 24, 2025

12/208



SVM Intuition

Outline

2. SVM Intuition

ristophe HURLIN

Orléans and IUF) Support Vector Machines August 24, 2025 13/208




SVM Intuition

SVM Intuition

® In SVM, the goal is to build a linear
classifier able to separate the
observations into different classes.

® To achieve this, we look for the optimal
separating boundary, defined as the
one that maximizes the margin.

® The margin is the distance between the
separating boundary (hyperplane) and
the closest observations. These closest
observations are called support vectors.

Support
Vectors
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SVM Intuition

SVM Intuition
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® The problem consists in finding this
optimal separating boundary from a
training sample.

® The solution is to formulate the task as
a quadratic optimization problem.

® A sample is said to be linearly
separable if there exists a linear
classifier that correctly classifies all the
observations.
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SVM Intuition

Notations

Notations
® Let (x, y) be a pair of random variables taking values in X x ).
® We first focus on the classification case with ) = {—1,1}.
® This can be extended to the case card()Y) = m > 2, orto ) = R (regression case).
® The variable X is a vector; with real-valued predictors we have X = RY.

® The space X is equipped with an inner product.
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SVM Intuition

Classifier and Decision Function

Definition: Classifier and Decision Function

We seek a classifier y = g(x) such that g : X — {—1, 1} minimizes the probability of
a classification error:
Pr(g(x) #¥)

Instead of constructing g directly, one generally builds a decision function h : X — R
and associates the classifier
g(x) = sgn(h(x)).
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SVM Intuition

Linear Classifier

Definition: Linear Classifier

A linear classifier (or perceptron) is a function of the form

g(x) = sgn(h(x)) = {
where the decision function is linear, with
h(x) = (w, x) + b,
of equivalently

d

j=1
where w € RY, b € R, and (-, -) denotes the inner product.

1 ifh(x) >0,
-1 ifh(x) <0,

h(x)=x'w+b=>> wx+b,
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SVM Intuition

Example of Linear Classifier in R?

Numerical Example: Linear Classifier in R?

Consider a training sample {(y;, x;)}™_; with two features (X = R?).

We consider a linear classifier with w = (1,2) and b = —1:

9() =sgn(h(x)),  Vx=(xi,x) € R?
where
h(x) = (w,X) + b= X1 + 2x — 1.

Each observation can then be classified. For instance:

Example A: (y, x1, %) = (1,1,—-1) = h(x) = -2, g(x) = —1

Example B: (y, xi, X%2) = (1,2,1) = h(x) =3, g(x) =1
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SVM Intuition

Example of Linear Classifier in R®

Numerical Example: Linear Classifier in R®

Consider a training sample {(y;, x;)}™_; with two features (X = R?).

We use a linear classifier with w = (3,2,7) and b = —2:

9(x) =sgn(h(x)),  Vx=(x,% %) € R’
where
h(x) = (w, X) + b=3xy + 2x2 + 7x3 — 2.
Each observation can then be classified. For example:

Example A: (v, X1, X2, x3) = (1,0,2,—4) = h(x) = —26, g(x) = —1

Example B: (y, x, X2, x3) = (1,8,1,2) = h(x) =38, g(x) =1
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SVM Intuition

Remarks

Remark: Because of the properties of the sgn(-) function, strictly speaking, the points lying exactly
on the separating hyperplane are not classified into {—1,1}:

1 if h(x) > 0,
g(x) =sgn(h(x)) =40 ifh(x)=0<x x € H,
—1 if h(x) <0,
but in practice, they are usually assigned to one of the two half-spaces:
1 if h(x) >0,
x) =sgn(h(x)) =
o) on () {71 if h(x) < 0.

Reminder: for a continuous variable, the probability of being exactly at a single point is zero.
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SVM Intuition

Separating Hyperplane

Definition: Separating Hyperplane

A separating hyperplane 7{ divides the input space X’ into two half-spaces correspond-
ing to the two classes of y. It is defined by the equation:

h(x) = 0.
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SVM Intuition

Numerical Example of Separating Hyperplane in R?

Numerical Example: Separating Hyperplane in R?

Consider the case X = R? and a linear classifier g(x) defined by w = (1,2)and b = —1:
h(x) = (w,x) + b= x; +2xp — 1.
1 ifX1+2X2—120,
g(x) = sgn(h(x)) = .
—1 ifxy+2x% —1<0.
Examples:

h(0,0) = -1 = g(0,0) = —1

ML =1 = g =1

The affine hyperplane (here a line) separating R? into two half-spaces corresponding to
the two classifications is given by:

h(x)=x1 +2x% —1=0, Vx:(x1,x2)e]R2.
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SVM Intuition

Numerical Example of Separating Hyperplane in R?

1.0
—— Separating hyperplane h(x1, x;) =0
0.8l % Classy=-1
% Classy=1
0.6
*
h(1, 0.5)=1.0
0.4r =1
02t
0.0r *
h(0, 0)=-1
g(0, 0)=-1
—0.2F
—0.4Ff
-1.0 -0.5 0.0 0.5 1.0 15 2.0
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SVM Intuition

Numerical Example of Separating Hyperplane in R®

Numerical Example: Separating Hyperplane in R®

Consider a linear classifier g(x) defined by w = (1,2, —8)and b = —2:

h(x) = (w,X) + b= Xy + 2x — 3x3 — 2.
The equation
h(x) =x1 +2x, —3x3 —2 =0, VX:(X1,X2,X3)EIR3

defines a hyperplane that separates R® into two half-spaces, each corresponding to a
classification.
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SVM Intuition

Numerical Example of Separating Hyperplane in R®
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SVM Intuition

Confusion Matrix

Confusion Matrix
e Classifier g(x) = sgn(h(x))

® |f there is no error, then g(x)y = 1; otherwise g(x)y = —1

y=—1 1 Noerror g(x)y =1 Error g(x)y = —1

y=1 Error g(x)y = —1 No error g(x)y = 1

Remark: the probability of a classification error is equal to
Pr(g(x) #y) = Pr (h(x)y <0) =Pr(g(x)y = —1).
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SVM Intuition

Linearly Separable Sample

Definition: Linearly Separable Sample

A sample S = {(x1,%1),...,(Xn, ¥n)} € (X x V) is said to be linearly separable if
there exists a linear classifier that correctly classifies all the observations in S.
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SVM Intuition

SVM Intuition

Christophe HURLIN

iversity of Orléans and IUF)

Consider X = R? with x; = (Xi1, Xi) and a
sample {(x;, y;)} fori=1,...,n.

Each triplet (xi1, Xi2, y;) is represented as a
point in the plane (x1, x2).

When y; = 1 (—1), the observation is
represented by a blue (green) point.
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SVM Intuition

SVM Intuition

Let a linear classifier g(x) be associated with
an affine hyperplane:

A(x) = (w,X) + b= 0.
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SVM Intuition

SVM Intuition

If all the observations with y; = 1 lie in the
blue region and all the observations with

yi = —1 liein the green region, then there is
no classification error.

Therefore, a linear classifier exists that
correctly classifies all the observations in the
sample.
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SVM Intuition

SVM Intuition
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SVM Intuition
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SVM Intuition

SVM Intuition

Indeed, there does not exist any linear
classifier that can correctly classify all the
observations.
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SVM Intuition

Remark

For a linearly separable sample, there may exist several linear classifiers (i.e., several

pairs (w, b)) that achieve the same learning performance (no classification error). Which
one is then the optimal classifier?
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SVM Intuition

SVM Intuition
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SVM Intuition

SVM Intuition
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SVM Intuition

SVM Intuition

Is it this one?
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SVM Intuition

SVM Intuition

Is it this one?
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SVM Intuition

Margin: Definition

Definition: Margin

The margin M is defined as twice the distance d from the closest point to the hyperplane.

Idea of SVM: choose the hyperplane that correctly classifies the data and is as far as possible from
all the observations (examples). This is the criterion of optimal margins
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SVM Intuition

SVM Intuition
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SVM Intuition

SVM Intuition
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Vectors
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SVM Intuition

Support Vectors: Definition

Definition: Support Vectors

Support vectors are the observations located on the margin.
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SVM Intuition

SVM Intuition
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SVM Intuition

SVM Intuition

Returning to our example: what is the
optimal linear classifier?
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SVM Intuition

SVM Intuition

This is the classifier with the optimal margin,
also called the SVM.

Support Vector Margin
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SVM Intuition

SVM Intuition

Here is the classification associated with the
hyperplane of optimal margin, i.e., the SVM.
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SVM Intuition

Support Vector Machine: Definition

Definition: Support Vector Machine

The Support Vector Machine (SVM) is the linear classifier (w™, b*) that perfectly classi-
fies all the observations in the training sample and is associated with the largest margin.
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SVM Intuition

SVM Intuition

Key Concepts
@ Linear classifier and decision function.
@ Separating hyperplane.
® Linearly separable sample.
@ Margin.
©® Support vectors.

@ Support Vector Machine.
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Formalization of the Support Vector Machine
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3. Formalization of the Support Vector Machine
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Formalization of the Support Vector Machine

Reminders: Inner Product

Reminders

Lettwo vectors inR%: r = (ry, ..., r4)" and s = (s, ..., 54)".
® Inner product

d
v(r,s) R xRY, (r,s) = rs;
=

® Euclidean norm

d
d

vre R, |rll =+/{r,r)= Erf

=

hristophe HURLIN
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Formalization of the Support Vector Machine

Reminders: Euclidean Norm

Euclidean Norm: Reminder (1/2)

ry and rp are scalars
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Formalization of the Support Vector Machine

Reminders: Euclidean Norm

Euclidean Norm: Reminder (2/2)

n
r2
From the Pythagorean Theorem:
_ 2 2 _ _ 2 2
Il =/rf+ 15 =/(rr) = =t fi
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Formalization of the Support Vector Machine

Reminders: Scalar projection and Vector Projection

Let two vectors inRY, r = (ry,...,ry) and s = (s1, ..., 5q)'.

® Scalar projection of vector s onto vector r:

(r,s)

Il

® Vector projection of vector s onto vector r:

(r,s) r
el il
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Formalization of the Support Vector Machine

Reminders: Orthogonality

® Orthogonality: r and s are orthogonal (L) if

(r,s) =0
N~
r—s S
r
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Formalization of the Support Vector Machine

Reminder: Normal Vector

Reminders: Normal Line and Normal Vector
® The normal line to a plane at a given point is the line orthogonal to the plane at that point.
® Any direction vector of this line is called a normal vector to the surface at that point.

® By convention, the normal vector has a unit norm.
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Formalization of the Support Vector Machine

Normal Vector: lllustration

z
n
P
}‘\ ~
%
Po
7
To
y
X
Source: Nagwa
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Formalization of the Support Vector Machine

Formalization of SVM

Notations
® Consider a decision function defined by
h(x) = {w,x) + b
with w € R? and b € R.

® The equation h(x) = 0 defines the separating hyperplane H in RY.

® By definition of the separating hyperplane, Vx, € H:

h(xo) = (w, %) +b=0 <= (w,xp) =—b
® Associated classifier:
1 if h(x) > 0,

vx € X, g(x)=sgn(h(x)) = {_1 it h(x) < 0

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025

58/208



Formalization of the Support Vector Machine

Normal Vector: Definition

Definition: Normal Vector

The normal vector to the separating hyperplane H is defined as
_ w
flell

w

niversity of Orléans and IUF) Support Vector Machines August 24, 2025
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Formalization of the Support Vector Machine

Exercise: Normal Vector

Exercise: Normal Vector in the Case d = 2

We consider a classification problem with two features x = (x, x2)’ € X C R
Let a linear classifier g(x) = sgn(h(x)) with

h(x) = (w,x) + b= x +2x2 — 1
and
w=(1,2), b=-1.

Question: represent &, the normal vector to the separating hyperplane H.

hristophe HURLIN
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Formalization of the Support Vector Machine

Exercise: Normal Vector

Solution: The equation defining the separating hyperplane H for w = (1, 2) is

h(x)=x1 +2x —1=0, VX:(X17X2)ER2.

The normal vector to H is defined as
w

1
5= = x(1,2) = (L, 2).
7= = v X (2= ()

1= () + () =

By definition,

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025
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Formalization of the Support Vector Machine

Exercise: Normal Vector

25 T T
2h Vecteur w (1,2) ]
norm = \/5
151 1
SO normal 4
vector
norm = 1
05k h(x)=0 1
ot ]
05 . . . . .
-1 -0.5 0 0.5 1 1.5
X
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Formalization of the Support Vector Machine

Distance from a Point to the Hyperplane

Definition: Distance from a Point to the Hyperplane

The distance from a point x € R to the hyperplane H is
[{w, %) +b] _ |h(x)|

el el

d(x, H) = |(@, x = x0)| =

where xo € H and & is the unit normal vector to the separating hyperplane H.
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Formalization of the Support Vector Machine

Distance from a Point to the Hyperplane

X2

ol ° ° o y=-1 |
° yi=1
—— Hyperplane
0 | | | | I
0 2 4 6 8 10
X1
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Formalization of the Support Vector Machine

Distance from a Point to the Hyperplane

Proof:

d(x, H) = |(@, x — xo)|

1
= ol [{w, X — Xo)|
- ”;—” (w0, %) — (&, %) |
= H‘l—‘l [{w, x) + b|
)l
Tl
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Formalization of the Support Vector Machine

Exercise: Distance to the Hyperplane

Exercise: Distance from a Point to the Hyperplane

Consider X = R2. A linear classifier g(x) = sgn(h(x)) with
h(x) = (w,x)+b, w=(1,2), b=—1.

Question: what is the distance to the separating hyperplane for the following points?
A(1,3)  B(=3.-3)-
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Formalization of the Support Vector Machine

Exercise: Distance to the Hyperplane

Solution:
w=(.2) b==1 ALY B~} -}

lw|| = V12 +22 = /5.

[h(xa)l |1 x1+2x(3/2) —1| _ 3

AR =01 = V5 5
_lhoe)|l 1 x(=3) +2x(=3) -1 _ 25
9B = et = N =
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Formalization of the Support Vector Machine

Formalization of the Margin

The goal of SVMs is to choose the separating hyperplane that:

® perfectly classifies all observations (in the linearly separable case),

* while maximizing the distance between the nearest observations from different classes, this
distance is the margin, denoted M.

* The margin M equals twice the distance between the closest point(s) and the separating
hyperplane (often called the support vectors), denoted m:

M=2xm.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 68/208



Formalization of the Support Vector Machine

Formalization of the Margin

Thus, we have:

1R
alx) = o
e

< —m.

To combine these two constraints into a single
one, multiply by y;:

h(x; .
; (x) > vi=1,...,n.
o y=1 | llwl
—— Hyperplane
| | I | I
0 0 2 4 6 8 10
X1
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Formalization of the Support Vector Machine

Canonical Separating Hyperplane

Canonical Separating Hyperplane

This inequality holds for any m > 0. We can therefore set:
1

llwll”

We then obtain:
yih(x) 2 1 = min Jh(x)| = 1.

Definition: Canonical Separating Hyperplane
A separating hyperplane is said to be canonical with respect to the observations
{x1,..., Xy} if and only if
_min [h(x;)] = min|{w, X)) +b] = 1.
i=1,..., n i
1 .
By choosing m = ﬂ we thus obtain a canonical separating hyperplane.
w
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Formalization of the Support Vector Machine

Normalization and Canonical Separating Hyperplane

Normalization and Canonical Separating Hyperplane

In practice, starting from a non-canonical separating hyperplane h(x), we normalize the parame-
ters w and b so that the decision function h(x) evaluated at a support vector equals +1 or —1.
. o w b ’ ’ /
Choose v = | min |h(xi)] > O, (w', b)) = (7, 7) , h(x) = (w,x)+b.
i=1,...,n ¥y

= min|h (x)| = 1, ie., the hyperplane h’(x) is canonical.
1
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Formalization of the Support Vector Machine

Exercise: Canonical Separating Hyperplane

Exercise: Canonical Separating Hyperplane

Consider X = R? and a linear classifier g(x) = sgn(h(x)), with
h(x) = (@, x) + b, x = (x1, %),
and _
w=(1,2) b=-1.
Assume that the vector (1, 1) is a support vector.

Question: what is the decision function associated with the canonical hyperplane?
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Formalization of the Support Vector Machine

Exercise: Canonical Separating Hyperplane

Solution:
h(x) = (@, x) +b=x1 +2x — 1, x = (x1, ),

For the support vector x5, = (1, 1), we have

h(xs)=1+2-1=2 = 9(xsv) =sgn(2) = 1.

The canonical hyperplane is then defined by
h(x) = } h(x) =0,
or equivalently
h(x) = (w,x) + b=0.5x; +x2 —05=0,
w = (0.5, 1) b= —0.5.

By definition,

h(Xsy) =05+1—-05=1 = 9(Xsv) = sgn(1) = 1.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025

73/208



Formalization of the Support Vector Machine

Canonical Separating Hyperplane

h(x) = x +2x2 — 1

1k hix)=0

oh-24 @ °

h=27
°o

ristophe HURLIN
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°
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Formalization of the Support Vector Machine

Support Vectors: Definition

Definition: Support Vectors

The support vectors are the observations x; € S that satisfy
h(x))==+1 Vie$S

or equivalently
Vi h(X,') =1 ViesS.
where h(x) = ({w, x) + b) is a canonical hyperplane,

hristophe HURLIN
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Formalization of the Support Vector Machine

Perfect Classification

Perfect Classification

For a canonical hyperplane, the conditions for a perfect classification (on the training
sample) are:
h(xi) = (w,x) +b > 1 ify; =1
h(x;)) = (w, xi) +b < =1 ify; =1
forall i =1, ..., n. These can be written compactly as:
y;h(x,) > 1 Vi=1,...,n.
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Formalization of the Support Vector Machine

Formal Definition of the Margin

Definition: Margin

The margin M(w, b) is twice the distance between a support vector xs, and the canonical
separating hyperplane H.

h(x. 2
M(w,b) = 2 x d(Xev, H) = 2 x LIC-7] . g
llell llell
since by definition h(xs,) = £1.
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Formalization of the Support Vector Machine

Optimal Canonical Hyperplane

Optimal Canonical Hyperplane

A canonical hyperplane h(x) = (w*,x) + b* = 0 is optimal with respect to the ob-

servations {(x;, yi)}7_, if it maximizes the margin M(w, b) and perfectly classifies all
observations. It satisfies:

(w*,b") = argmax —
werd, per 1@l

subjectto  yih(x) > 1 Vi=1,...
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Formalization of the Support Vector Machine

Optimal Canonical Hyperplane

Finding a hyperplane that maximizes the margin M(w) is equivalent to finding parameters (w*, b*)

such that: »
(w*,b") = argmax M(w) = —
weRd, beRr [lewl]

subjectto yih(x;)) >1 Vi=1,...,n

This is equivalent to:

;
(", b") = argmin ~ ||w]?
uEJRd,bEJR2

subjectto yih(x;)) >1 Vi=1,...,n.
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Formalization of the Support Vector Machine

SVM Primal Program

Definition: SVM Primal Program

The SVM primal program is:

9
(", b") = argmin  ||w]®
weRrd, beR
subjectto yih(x;)) >1 Vi=1,...,n,

with
h(x) = (w, x) + b, Vx e X.
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Formalization of the Support Vector Machine

Exercise: SVM Primal Program

Exercise: SVM Primal Program

Letx = (x4, x2) € R? and a training sample of size n = 10 with the following data. Task:
using a quadratic programming solver, solve the SVM primal program and determine the
equation of the optimal canonical separating hyperplane.

X ey

4 8 1

2 4 —1

4 6 —1

6 6 —1

8 8 —1

6 10 —1

12 6 1

10 6 1

8 2 1

6 2 1

istophe HURLIN
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Formalization of the Support Vector Machine

Exercise: SVM Primal Program

12 T T T T T
10r [ ] 1
8r ° ° h
<6 [ ] [ ] ® ® 1
4r ° g
2r o o 4
0 . . . . . .
0 2 4 6 8 10 12 14
X1
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Formalization of the Support Vector Machine

Solution: SVM Primal Program

Solution

1
(w*,b%) = argmin  ||w|f?
weR2, beR 2

subjectto y;h(x;)) >1 Vi=1,...,n

Write this program in matrix form to use a quadratic programming solver in Python:

’
0 = <w1 wa b)

1 0 0 w1
1T 1, .1 1
5”‘*’” = §(W1+W2)= lwr w2 b0 1 0 w | = 5‘9 Po,
0O 0 O b

Link to Google Colab: Click here
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Formalization of the Support Vector Machine

Solution: SVM Primal Program

Solution

We obtain
AT U
w ==, —= = —1.
27 2

The decision function is therefore
h(X,‘) = <W*7Xi>+b* = 1§X1,'—%X2,‘—1 VX,‘GRZ.

The equation of the optimal canonical separating hyperplane is
h(X,') =0 <= X =Xxyi — 2.

Christophe HURLIN
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Formalization of the Support Vector Machine

Solution: SVM Primal Progr

Solution

am

h(x) = 3x1; — 3% — 1

hi

(xi) yi > 1

Xti X Vi h(xi))  yih(xi) Status

4 8 —1 -3 3 —

2 4 —1 -2 2 —

4 6 —1 -2 2 —

6 6 —1 -1 1 support vector
8 8 —1 —1 1 support vector
6 10 -1 -3 3 —

12 6 1 2 2 —

10 6 1 1 1 support vector
8 2 1 2 2 -

6 2 1 1 1 support vector

hristophe HURLIN (University of Orléans and IUF)
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Formalization of the Support Vector Machine

Solution: SVM Primal Program

12 T T T T T T
@ y--1
o y-1 3
10 O Support Vector Y 4
h(x)=0
-3 -1
8r [ @ 1
2 B 1 2
X' 6f (] ® @ o ]
-2
4r ° 1
1 2
2t @ ] 1
0 . . . . .
0 2 4 6 8 10 12 14
X
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Formalization of the Support Vector Machin

SVM Implementation with scikit-learn

SVC

class sklear‘n.svm.SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0,
shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None,
verbose=False, max_iter=-1, decision_function_shape="ovr', break_ties=False,

random_state=None)

C-Support Vector Classification.

The implementation is based on libsvm. The fit time scales at least quadratically with the number of
samples and may be impractical beyond tens of thousands of samples. For large datasets consider using
LinearSVC or sGDClassifier instead, possibly after a Nystroem transformer or other Kernel
Approximation.

The multiclass support is handled according to a one-vs-one scheme.

For details on the precise mathematical formulation of the provided kernel functions and how gamma ,
coefo and degree affect each other, see the corresponding section in the narrative documentation:

Kernel functions.

To learn how to tune SVC's hyperparameters, see the following example: Nested versus non-nested

cross-validation

Read more in the User Guide.

Source: scikit-learn documentation
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https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Formalization of the Support Vector Machine

Example: SVM Implementation

Example: SVM Implementation

# Hard-margin SVM
clf = SVC(kernel="1linear", C=1e20)
clf.fit (X, y)

# Coefficients and intercept
w = clf.coef_
b = clf.intercept_

# Support vectors
sv=clf.support_vectors_

Google Colab: Click here.
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Formalization of the Support Vector Machine

Primal vs. Dual Optimization Problems

Primal vs. Dual Optimization Programs

. 1 2
min = [|wl]|
werd, ber 2
subjectto y; h(x;)) > 1 Vi=1,...,n

® Since this optimization problem is convex, solving the primal or the dual is equivalent.

® The dual problem introduces Lagrange multipliers associated with the n constraints (one per
example/observation).
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Formalization of the Support Vector Machine

Lagrangian

Lagrangian

Aj [y;((w,)ﬁ) +b) — 1]

The Lagrangian associated with the SVM program is

L(w,b,A) = |w|| Z)\,[y, (w,x) +b) = 1],
with A = (A1, ..., An)’ the vector of multipliers satisfying, forall i =1, ...,
Ai >0

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines
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Formalization of the Support Vector Machine

Remarks

L(w,b,A) = % loll® = > A [ 3 (s ) +b) = 1]
i=1

N[y, ) +6) 1] =0 with x>0

@ The Lagrangian must be minimized with respect to w and b, and maximized with respect to
A (saddle point).

@ |If the constraint [ y;({w, x;y + b) — 1] = 0/is active, then \; > 0 and x; is a support vector.

® If [yi({w,x;) + b) — 1] > 0, then X; = 0 and the point x;, lying beyond the margin, is
correctly classified. In practice, many \; are zero (sparsity).

@ Denote x; = (X1, - - -, Xig), Viand w = (w1, . . ., wq)’, the Lagrangian can be written as:

1 n n n
C(w, b, )\) = 5 wTUJ — Z AiVi XiTuJ — bz AiYi + Z Ai
P = =
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Formalization of the Support Vector Machine

Karush-Kuhn-Tucker Conditions

Karush-Kuhn-Tucker (KKT) Conditions
The Karush-Kuhn-Tucker conditions for the SVM primal are:

AL (w, b, A u
7(&9 ) w = ZNY:‘XI' =0

OL(w, b, )

o

ob

Xi (yih(x)—1) =
Ai > 0,

= _ZA/}’/

Y, [y;((w,x,-) +b) —1]

Vi=1,...,n

0

Note: Introducing the KKT conditions yields an optimization that depends only on the multipliers:
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Formalization of the Support Vector Machine

SVM Dual Problem

Definition: SVM Dual Problem

The SVM program can be written in dual form as:
n n

n
* 1
A* = arg max ZA; — EZZAIA,-y,-yj(X,-,Xj)
AoeoAn 3 =S
subjectto X\, >0 Vi=1,...,n

n
and Z AiYi = 0.

i=1

Proof: see appendix.
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Formalization of the Support Vector Machine

Exercise: SVM Dual Program

Exercise: SVM Dual Program

1 4 8 1
2 2 4
) - 3 4 6 -1
We consider the same training sample (see table).
4 6 6 1

Task: using a quadratic programming solver, solve
the SVM dual program and determine the equation 5 8 8 -1
of the optimal canonical separating hyperplane.

Google Colab: Click here. 7 12 5 1
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Formalization of the Support Vector Machine

Solution: SVM Dual Program

X1i Xoi Yi Statut Ai
4 8 —1 — 0
2 4 —1 — 0
n
A" =arg max Z Ai 4 6 - 0
Mo An 5T
! "=t 6 6 —1 supportvector 0,1528
1 n n
-3 Z NN YiYi(Xis X;) 8 8 —1 supportvector 0,0972
i=1 j=1
6 10 —1 — 0
n
stA>0, D Ay=0 2 6 1 — 0
i=1
10 6 1 support vector  0,1736
8 2 1 — 0
6 2 1 support vector ~ 0,0764
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Formalization of the Support Vector Machine

Solution: SVM Dual Program

Solution: The coefficient vector is

= > Ayix =0.1528(—1)
ies

+0.0972(—1)

+0.1736(+1) ( +0.0764(+1)
2

The bias satisfies, for any support vector x;,
b* = y,-—(w*,x,-), Vie S.
Using x = (6,6)" withy = —1:

1 1
b* = —1—(7-6—7~6) = —1.
2 2

(One gets the same b™ using any of the support vectors.)
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Formalization of the Support Vector Machine

Solution: SVM Dual Program

Solution: For x = (x1, X))’ € R?, the decision function is
h(x) => X yi(xi, x) +b" = (W, x) +b".
ics

With the dual solution,

o=

Hence the optimal canonical separating hyperplane is
h(x) = 3x1j — 3x; —1 =0,

or equivalently
Xoj = Xqj — 2.
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Formalization of the Support Vector Machine

Example: Dual Coefficients

Example: Dual Coefficients

# Hard-margin SVM
clf = SVC(kernel="1linear", C=1e20)
clf.fit (X, y)

print ("dual_coef :", clf.dual_coef )
# Absolute values give the alpha_i

alphas = np.abs(clf.dual_coef_ [0])
print ("alphas:", alphas)

O © ® N O AN =

# Dual coefficients (alpha_i % y_i for each support vector)

Google Colab: Click here.
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Formalization of the Support Vector Machine

Optimal Decision Function

Optimal SVM Solution

1. Once the optimal multipliers A* are obtained, the coefficient vector is

n
w' = ZA?{ini = ZATVI'XH
i=1

ieS

where S denotes the set of support vectors (since A = 0fori ¢ S).

2. To determine the constant b*, take any support vector i € S such that
Yi({w" %)y +b") =1.
Then |
b*=f—(w*,x,->, ViesS.
Yi
Since y; € {—1, 1}, this can also be written as

b =y — (w", x), viesS.
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Formalization of the Support Vector Machine

Optimal Decision Function

Definition: Optimal Decision Function

For any x € X, the optimal decision function is
h(x) = (W™, x) +b" = D X yi{x,x) + b,
i€s
where S denotes the set of support vectors. The associated classifier is
1 if h(x) >0,

9(x) = sen(h(x)) = {_1 if h(x) < 0

Main advantage of the SVM: Only the support vectors (weighted by ;) determine the classification
of all observations in both the training and test samples.
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Formalization of the Support Vector Machine

Exercise: SVM and Prediction

Exercise: SVM and Prediction

We consider the same training sample as before. We want to predict the class for the
following test observations:

6
Xa =

8

10
XB =

2

Task: Using only the Lagrange multipliers \; of the support vectors (see previous table),
determine the predictions y4 and yg.

Link to Google Colab: Click here
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Formalization of the Support Vector Machine

Solution: SVM and Prediction

X1 X y h(x)  yh(x) Status A

6 6 —1 —1 1 support vector ~ 0.1528
8 8 —1 —1 1 support vector ~ 0.0972
10 6 1 1 1 support vector  0.1736
6 2 1 1 1 support vector ~ 0.0764

Solution: Using only the support vectors, the decision function is
h(x) =" AT yilxi, x) + b"
i€s
This gives
h(x) = —0.1528 (6x1 + 6x2) — 0.0972 (8 + 8x2)
+0.1736 (10x; + 6x2) 4 0.0764 (6x; + 2x2) — 1

or equivalently

~ 1 1
h(x)==x1 — =xo — 1.
()= 5% — 5%
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Solution: SVM and Prediction

Solution: the decision function (from the dual and primal forms) is

E(x):ZA,-*y,-(x,-,x}—}—b*:%m —Ix—1, b* = —1.

i€s
with
6 10
Xa = and Xg = s
8 2
we obtain
hxa)=13-6-1-8—1=-2
h(xg)=1-10-1-2-1=3.
Predictions:

Ya = sgn (E(XA)) =sgn(—2) = —1,

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines
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Formalization of the Support Vector Machine

Example: SVM Predictions

© ® N ;B WN =

Example: SVM Predictions

# Hard-margin SVM
clf = SVC(kernel="1linear", C=1e20)
clf.fit (X, y)

# Test dataset
X_test = np.array([[6, 8], [10, 211)

# Predictions
y_pred = clf.predict (X_test)

Google Colab: Click here.
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Formalization of the Support Vector Machine

SVM Primal and Dual Programs

SVM Primal Program SVM Dual Program

A =argmax 3.7 A

X, An
w*,b*) = argmin } ||w]|?
( ) wGRd,bER 2 “ I _1§ ZII]:1 2;1:1 A’Aly’yl <Xf’)(j>
sc:yih(xp) >1Vi=1,...,n sC: A\ >0
SC: 2?21 Aiyi=0
h(x) = (w*, x) + b W' = 3ies AT ViXi

b* =y — (w",x), Vie S

h(x) = 3es A Vi (Xi, x) + b”
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Formalization of the Support Vector Machine

Gram matrix

The term (x;, x;) is the entry in the i-th row and j-th column of the Gram matrix (which also appears
as the Hessian in the dual):

K, xa) (X)X, Xn)

(x2,x1) (X2, Xo)

Gram matrix = Q =
nxn

(Xn, X1) cee e (Xny Xn)
Remark: If X = (x;";...;x;]) € R™ collects the x;" as rows, then the Gram matrix can be
written as -
Q= XX .
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Formalization of the Support Vector Machine

Exercise: Gram Matrix

Exercise: Gram Matrix

We consider the same training sample. Task: determine the Gram matrix.

Obs. xqi,; X, Yi

1 4 8 —1
2 2 4 —1
3 4 6 —1
4 6 6 —1
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Formalization of the Support Vector Machine

Solution: Gram Matrix

Solution: The Gram matrix associated with the linear kernel is
(a,x)  (x,X%) - o (X4, Xn)

(X2, X1) (X, X2)

(nxn)

(Xn, x1) s {Xn, Xn)
Here, with n = 10 we obtain

80 40 64 72 9 104 96 88 48 40
40 20 3 36 48 52 48 44 24 20
64 32 52 60 8 84 84 76 44 36
72 3 6 72 9% 9 108 9 60 48
9% 48 80 9 128 128 144 128 80 64
(10%10) =
9% 48 84 108 144 132 180 156 108 84
88 44 76 96 128 120 156 1386 92 72

48 24 44 60 80 68 108 92 68 52

40 20 36 48 64 56 84 72 52 40

ristophe HURLIN
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Formalization of the Support Vector Machine

Importance of Standardisation in SVM

Definition: Standardisation

The standardised feature x; is defined as
z = X~
9j

where p; is the sample mean and o; the sample standard deviation of feature x;.

Why is standardisation important for SVMs?
® SVMs rely on inner products and distances between vectors.

® Features with larger scales dominate the margin calculation.

® Standardisation ensures that all features contribute equally to the separating hyperplane.
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Formalization of the Support Vector Machine

Formalization of the Support Vector Machine

Key Concepts
© Margin
® Support vectors
@® Canonical hyperplane
@ Optimal hyperplane
@ SVM Primal program
@ Lagrangian and KKT conditions
@ SVM Dual program

©® Gram matrix
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4. Soft Margin
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Soft Margin

A Sample Not Linearly Separable

We now assume that the training sample is not linearly separable.

Two cases:

© The sample is almost linearly separable: the "optimal" separation is linear, but some
observations cannot be correctly classified.

@® The sample is not linearly separable: the "optimal" separation is non-linear.
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Soft Margin

A Sample Almost Linearly Separable

X
°
[ ]
°
e o
[ ]
[ ] °
[ ]
° C
° ° b
° @ A sample that is almost linearly separable.
[ ] [ ] -
[ ] ° p
°
L
X,
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Soft Margin

Slack Variables

Definition: Slack Variables

In the case of an almost linearly separable sample, we introduce n relaxation variables
for the classification constraints y; h(x;) > 1.

These variables, denoted ¢ = (&4, ..., &,)’, are called slack variables and satisfy:
Yil{w, x) +b) > 1-¢, & >0.
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Soft Margin

Soft Margin

Definition: Soft Margin

A soft margin SVM allows classification constraints to be relaxed through the introduction
of slack variables & > 0:

Yi({w, X)) + b) > 1-¢, i=1,...,n
The slack variables measure the extent of violation of the margin constraints.

B Cortes, C. and V. Vapnik (1995), Support-Vector Networks, Machine Learning, 20.
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Soft Margin

Interpretation of the Slack Variables

Soft Margin and the Slack Variables
Yil{w, x) +b) > 1-¢, & >0.

Three configurations can occur depending on the value of &;:

@ & =0, then y;h(x;) > 1: the observation (x;, y;) is correctly classified and outside the
margin.

@ If & > 1, then the observation (x;, y;) is misclassified and lies on the wrong side of the
separating hyperplane.

@ 1f0 < & < 1,then (x;, y;) is correctly classified but lies within the margin, i.e. at a distance
from the separating hyperplane smaller than half of the margin:

1
d(X,‘, H) < -/

llwll”
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Soft Margin

Soft Margin: lllustration

Source: https://towardsdatascience.com
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Soft Margin: lllustration

Source: scikit-learn documentation
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Soft Margin

Primal Program with Soft Margin

Definition: Primal Program with Soft Margin

The primal SVM problem in the non-separable case (with slack variables) is defined

as:
ok e . T2 ‘
(W, b",€%) = agmin  llw|® + €Y
weRY, beR, ¢€RN i=1
st yi((w,x)+b) > 1-¢, Vi=1,...,n

s.t. : & > 0.
where C > 0 denotes the penalty parameter (or cost parameter).
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Interpretation

Interpretation
(w*, b™,€")

s.t.

s.t.

c >a
i=1

. 2
arg min %HWH +
wERY, bER, ECRN  Nmmmr! ~~ i
margin cost parameter )
classification errors
Vi=1,...,n

Yi({w,xi) +b) > 1-¢,
& > 0.

August 24, 2025
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Soft Margin

Penalty Parameter

Role of the Penalty Parameter C

The penalty parameter C controls the trade-off between the margin size and the training
error rate.

® |f Cis small, misclassification errors are weakly penalized and the focus is on
maximizing the margin. This may lead to underfitting.

® |f Cis large, the focus is on avoiding misclassification at the cost of a smaller
margin. This may lead to overfitting.
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Soft Margin

Penalty Parameter in scikit-learn

Connection with scikit-learn

In scikit-learn, the penalty parameter is also denoted C in svc (Support Vector Classifier): it
controls the balance between maximizing the margin and minimizing classification errors.

® Small C: larger margin, tolerance to errors, possible underfitting.
® Large C: smaller margin, less tolerance, possible overfitting.

The appropriate value of C should be determined by cross-validation.

C : float, default=1.0

Regularization parameter. The strength of the regularization is inversely proportional to C. Must

be strictly positive. The penalty is a squared |12 penalty. For an intuitive visualization of the effects

of scaling the regularization parameter C, see Scaling_the regularization parameter for SVCs.
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Soft Margin

Example: Soft Margin

Example: SVM Soft Margin

# Without CV (fixed C)
clf_fixed = SVC(kernel="linear", C=1.0)
clf fixed.fit (X_train, y_train)

C_grid = np.logspace (-3, 3, 13)
grid = GridSearchCV (

1
2
3
4
5 # With CV (grid search for best C)
6
-
8 SVC (kernel="1linear"),

9 param_grid={"C": C_grid},
10 cv=5,

11 scoring="accuracy",

12 n_Jjobs=-1

13])

14| grid.fit (X_train, y_train)

Google Colab: Click here.
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Soft Margin

Dual Problem with Soft Margin

Definition: Dual Problem with Soft Margin

The dual program of the soft-margin SVM is

A" o= argmax Z)\, - ZZ)\)\,y,yl (Xi, X;)
i=1

Ao i=1 j=1
n
st. 0<XN<C (i=1,...,n), D> Ay=0,

where C > 0 is the penalty (cost) parameter.

Remark: The program is identical to the separable case: the only difference is the upper bound on
the Lagrange multipliers ;.

Proof: see appendix.
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Soft Margin

Interpretation of the Dual Coefficients

Configurations According to the Dual Coefficients )\;
Three configurations can occur depending on the value of \;:
© i)\ =0,then
Yi({w, x) + b) > 1, pui=C >0, & =0.
The observation (x;, y;) is correctly classified.
@ 1f0 < \; < C, then
Yi({w, xy +b) =1, pi=C—Xx >0, & =0.
The observation (x;, y;) is a support vector.

® If \; = C, then
Yil{w, xi) +b) =1 ¢, wi =0, & > 0.

The observation (x;, y;) may lie correctly classified, but within the margin or misclassified,
i.e., on wrong side of the hyperplane.
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Soft Margin: Primal and Dual Programs

Soft-Margin Primal Program Soft-Margin Dual Program

(w*,b*, %) = arg min Hlwl+C, & A" = argmax S04 A - 50, Z,n:w NNy (X, X}
weRd, beR, RN A

PRV

styh(x) > 1—-¢, i=1,...,n st0< )\ <C, i=1,...,n

st. & >0, i=1,...,n st 3 Ay =0

h(x) = (w*, x) + b* W' = cs A ViXi
b =y —(w"x), Vie$

h(x) = Xjes AT Vi{xi, ) + b*
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Soft Margin

Penalty Parameter and Cross-Validation

Penalty Parameter and Cross-Validation

The performance of SVMs is highly sensitive to the choice of the penalty parameter C.
An "optimal" hyperparameter C must therefore be selected with care.

A standard approach is to rely on Cross-Validation (CV) methods, such as hold-out or
k-fold validation.
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Soft Margin

Exercise: Soft-Margin SVM with Cross-Validation

Exercise: Soft-Margin SVM with Cross-Validation

L]

Consider the Breast Cancer Wisconsin dataset from scikit-learn (malignant vs. benign).
The goal is to choose the optimal parameter C to avoid overfitting.

Split the data into training 70% and test 30% with stratification.
Standardize the data (fit on training, transform train and test).
Fit a baseline linear SVM with C = 1.0 on the training set.

Evaluate on the test set: Accuracy, Precision, Recall, F1-score.

Use GridSearchcvtotune C € {107, ..., 10*} with 5-fold CV and scoring =
F1; refit the best model on the full training set.

Re-evaluate on the test set the tuned model and compare with the baseline (report
at least Accuracy and F1).

Note. The cross-validated score used to select C is computed on training folds only; the
final comparison must use the held-out test set.

Google Colab: Click here.
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Soft Margin

Exercise: Python Code

# Data split

2| X, y = load_breast_cancer (return_X_y=True)

3| X_tr, X_te, y_tr, y_te = train_test_split (X,
y, random_state=42)

4

5| # Standardization (fit on training,

6| scaler = StandardScaler ()

7| X_tr_s = scaler.fit_transform(X_tr)

8| X_te_s = scaler.transform(X_te)

©

10| # Train WITHOUT CV (fixed C)

11| clf_fixed = SVC(kernel="linear", C=1.0,
12| clf_fixed.fit (X_tr_s, y_tr)

13

14| # Train WITH CV to select C

15| C_grid = np.logspace (-4, 4, 17) # le-4
16| grid = GridSearchCV (

17 SVC (kernel="1inear", random_state=42),
18 param_grid={"C": C_grid},

19 cv=5,

20 scoring="f1",

21 n_jobs=-1,

22 refit=True

23| )

24| grid.fit(X_tr_s, y_tr)

y, test_size=0.3, stratify=

transform train and test)

random_state=42)

led4 (all positive)
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Soft Margin

Exercise: Python Output

No CV (C=1.0) (EVALUATED ON TEST SET)

Accuracy : 0.982
Precision : 0.981
Recall :0.991
Fl-score : 0.986
Confusion matrix:
[[ 62 2]

[ 1 106]]

With CV (best C = ©.01) (EVALUATED ON TEST SET)

Accuracy : 0.959
Precision : 0.946
Recall 1 0.991
Fl-score : 0.968
Confusion matrix:
[[ 58 6]

[ 1 106]]

Summary (TEST set):

No CV -> Acc 0.982, F1 0.986
With CV-> Acc ©.959, F1 0.968

Note: Cross-validation combats overfitting by selecting a much smaller C (wider margin, lower
model complexity), which reduces variance, even if, as in this split, it slightly sacrifices test accuracy.
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Soft Margin

Soft Margin

Key Concepts
© Soft margin
® Non-separable sample
@ Slack variables

@ Penalty parameter C
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Outline

5. Kernel Trick
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Kernel Trick

Higher-Dimensional Space

General Idea of the Kernel Trick

Most classification problems involve non-linear separations. However, the data space
can always be embedded in a higher-dimensional space in which the data may become
linearly separable.

A complex pattern-classification problem, cast in a high-dimensional space nonlinearly,
is more likely to be linearly separable than in a low-dimensional space, provided that
the space is not densely populated (Cover (1965)).

ﬁ Cover, T.M. (1965), Geometrical and Statistical Properties of Systems of Linear Inequalities

with Applications in Pattern Recognition, IEEE Transactions on Electronic Computers, 14(3),
326-334.
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Kernel Trick

Higher-Dimensional Space

Non-linear Sample Higher-dimensional Mapping
A training sample that is not linearly ...can become linearly separable in a
separable in the input space... higher-dimensional feature space.
1 14
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Kernel Trick

Kernel Trick: General Principle

Kernel Trick

The resolution of SVMs relies on the scalar product (x;, x;) between input vectors. If the
training data are mapped into a higher-dimensional space via the transformation ®(x),
this Hilbert space is associated with the inner product

K(xi, %) = (®(x1), ®(x))),
where K(x;, x;) is called the kernel function.

To implement an SVM, only the kernel function is required, without the explicit computa-
tion of the transformation ®(-): this is the essence of the kernel trick.
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Kernel Trick

Feature Space

Definition: Feature Space

Instead of searching for a separating hyperplane in the input space X' (here RY), one first
maps the data into an intermediate representation space (feature space) of higher
dimension:

o X = F, X = O(x).

Example

Let x = (x1, X2) € R2. Consider the mapping
®: R? — R®, (%1, X2) = O(x) = (X2, V2 x1 X2, X2).
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Kernel Trick

Kernel Trick

Illustration

Consider the mapping

o R? - RS, (1, %) = o(x) = (XF, V2x1xe, X5).
Instead of manipulating the original two variables x1, X, one must now handle three trans-
formed variables xf, V2x1 X0, x22, which increases computational and storage costs.

Kernel Trick

In this higher-dimensional feature space, only the inner product is required:
(@(x), D(x))) = X7 X7 + 2111 X2 X2 + XX
This simplifies to
(@00), () = (xinx1 + x2x2)® = (061, %))

Hence, the inner product in the feature space can be computed without explicitly evaluat-
ing ®(x), using the kernel function

K(xi, %) = (9(x), ®(x)) = ((xi, %)),
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Kernel Trick

Numerical Example: Kernel Trick

Numerical Example: Kernel Trick

Let x = (x1, X) € R2. Consider the mapping
o :R® 5 RS, (X1, %2) — (1,\/§x1,\/§x2,x12,x22,\/§x1x2).
Question: Determine the kernel function associated with this transformation.

Solution: For two vectors u = (uy, tp)’ and v = (v4, v2)’, we have
o(u) = (1,V2ur, V2w, U, U3, V2u o),
o(v) = (1,V2w, V21, V2 V2 V2, V).
The corresponding kernel is
K(u, v) = (®(u), ®(v)) = 14 2us vy + 2upvo + U5VE + UEVE + 2u1 vy UV,
which simplifies to
2 2
K(u,v)= (14 wmv + towe)” = (1+ (u,v))".
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Kernel Trick

Numerical Example: Kernel Trick

Numerical Example: Kernel Trick

Consider two vectors u = (1,3v/2)" and v = (1, 2v/2)’, and the mapping
o R? - R®, (1, %) = (1,V2x1, V2x2, X2, X5, V2x1 %)

Question: Show that the kernel function

K(u,v) = (14 (u,v))?
is associated with the transformation ®(x) for these two vectors.
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Kernel Trick

Numerical Example: Kernel Trick

Solution via Feature Mapping:
Using the transformation
o R? — R®, (1, %) = (1, V2x1, V2x2, X2, X5, V2x1 %),
we obtain for u = (1,3v/2)" and v = (1,2v/2)":
o(u) = (1,v2,6,1,18,6),  &(v) = (1,v2,4,1,8,4).
Therefore,
(O(U), ®(V)) =1 X1+ V2 X V2+6x4+1x1+18x8+6x4=196.
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Kernel Trick

Numerical Example: Kernel Trick

Solution via Kernel Function:

Using the kernel
K(u,v) = (14 (u,v))?,

we compute
(u,v) =1 x1+3V2 x 2v2 =13,
which gives
K(u,v) = (1+13)% = 196.
Hence,

K(u, v) = (®(u), ®(v)),
which confirms the equivalence between the explicit mapping and the kernel function.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 141/208



Kernel Trick

Kernel Function: Definition

Definition: Kernel Function

A kernel function represents the inner product associated with the feature space. For a
kernel K(x;, x;), there exists a Hilbert space F and a mapping ®(-) such that

K(xi, %) = (P(x), d(x)) <= & :RY = R", m>d, xr— o).

In practice, the kernel trick consists of selecting an appropriate kernel function K(-, -)
without explicitly characterizing the space F or the mapping ®(-).
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Kernel Trick

Procedure

Procedure

@ Transform the space of the input data into a higher-dimensional feature space
(possibly infinite-dimensional).

@ In this space, it is more likely that a linear separation exists.

@® Determine the maximum-margin canonical hyperplane (SVM), with or without
slack variables (soft margin).
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Kernel Trick

Primal Program with Feature Mapping

Definition: Primal Program with Feature Mapping

The primal SVM problem with soft margin and feature mapping is defined as:

* pE . 1 4
(@.b7.€) = agmin Sl +CY¢
weRY, beR, £€RN i—1
st y,-(<w,<b(x,))+b) >1-¢, Vi=1,...,n
s.t. : 5,’20.

where C > 0 is the penalty parameter and ® : X — F is the feature mapping.
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Kernel Trick

Difference between Primal and Dual Problems

Difference between Primal and Dual Problems

The primal program requires the explicit use (and knowledge) of the mapping ®(x). By

contrast, the dual program only involves the kernel function, which is the essence of the
kernel trick.

weRY, bER, £€RN

n
(", b", €)= argmin  LwlP+CD g
i=1

st yi((w, ®(x)) +b) >1—¢;, i=1,..
st. &>0.

- N,
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Kernel Trick

Dual Problem with Feature Mapping

Definition: Dual Problem with Feature Mapping

The dual SVM problem with soft margin and kernel trick is defined as

n n n
)\* = arg max Z )\,‘ — % Z Z )\/A/y/)// K(X,'7 X/)

Moo i =1 j=1

n
st. 0<A <6 S ay=0.
i=1

Here C > 0 is the penalty parameter, and K(x;, x;) denotes the kernel function associ-
ated with the (unknown) mapping ® : X — F.
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Kernel Trick

Optimal Decision Function

Optimal Decision Function

For any point x € X, the optimal decision function is
h(x) = (w*, d(x = A\ yiK(xi, x)
i€s
where S denotes the set of support vectors and slack variables.
The associated classifier is

o -y - {1, 1120

Note: the constant b™ is defined as:

=y =D AyiK(x), V€S,
ies
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Kernel Trick

Kernel Trick: Primal and Dual Programs

Primal Program with Feature Mapping

Dual Program with Kernel Trick

(@, b" €)= agmin  fllwl® + CXL & A" = argmax S0 N — 300 S MAYiyiK (%, X)
weRrd, beR, £€RN Ao An

styh(®(x)) > 1—¢&, i=1,...,n st0O<AN<C, i=1,....n

st. & >0, i=1,...,n st 3L Ay =0

h(x) = (w*, ®(x)) + b*

h(x) = Eics A ViK%, x) + b*
b* =y — 3ics A ViK(xi, X)), Vi€ S

W' = Eies A Vi)
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Kernel Trick

scikit-learn Documentation for svc

Given training vectors x; € RP, i=1,..., n, in two classes, and a vector y € {1, 71}", our goal is to find
w € R” and b € R such that the prediction given by sign(w”¢(z) + b) is correct for most samples.

[ SVC solves the following primal problem: |

1 7 L
1 c .
%2210 w+ ;C
subject to y; (w ¢(z;) +b) > 1 — ¢,
G=20i=1,...,n

Intuitively, we're trying to maximize the margin (by minimizing ||w||? = wTw), while incurring a penalty
when a sample is misclassified or within the margin boundary. Ideally, the value y;(w” ¢(z;) + b) would
be > 1 for all samples, which indicates a perfect prediction. But problems are usually not always perfectly
separable with a hyperplane, so we allow some samples to be at a distance ¢; from their correct margin
boundary. The penalty term ¢ controls the strength of this penalty, and as a result, acts as an inverse

regularization parameter (see note below).

Source: scikit-learn support
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Kernel Trick

scikit-learn Documentation for svc

IThe dual problem to the primal isI

1
min EaTQa —efa
subject to yTa =0
0<<C,i=1,...,n

where e is the vector of all ones, and Q is an n by 1 positive semidefinite matrix, Q;; = y;y; K (z;, z;),
where K(z;,2;) = ¢(z;)T¢(z;) is the kernel. The terms a; are called the dual coefficients, and they are
upper-bounded by C. This dual representation highlights the fact that training vectors are implicitly
mapped into a higher (maybe infinite) dimensional space by the function ¢: see kernel trick.

Source: scikit-learn support
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Kernel Trick

scikit-learn Documentation for svc

Once the optimization problem is solved, the output ofor a given sample & becomes:

Z yio; K (2, ) + b,
€SV

and the predicted class corresponds to its sign. We only need to sum over the support vectors (i.e. the

samples that lie within the margin) because the dual coefficients «; are zero for the other samples.

These parameters can be accessed through the attributeswhich holds the product y;c;,

hich holds the support vectors, and which holds the independent term b.

Source: scikit-learn support
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Kernel Trick

Mercer’s Conditions

Definition: Mercer’s Conditions

A continuous, symmetric, and positive function K(-, -) is a kernel function if, for all pos-
sible x; € X, the Gram matrix
(K(xi, Xj))i,j

is symmetric and positive semi-definite.
In this case, there exists a Hilbert space F and a mapping ¢ such that
K(xi, ;) = (®(xi), ©(x})).
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Kernel Trick

Gram Matrix

Gram Matrix and Kernel

The Gram matrix associated with the kernel K(-, -) is

K(x1,x1) K, x2) -+ K(x1,Xn)

K(x2,x1)  K(x2,x2) -+ K(xz, Xp)
Q=

K(Xn, x1)  K(Xn,x2) -+ K(Xn, Xn)

nxn

By Mercer’s conditions, this matrix must be symmetric and positive semi-definite.
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Kernel Trick

Common Kernels

Common Kernels

Linear Kernel (retrieves the case F = X):

K(xi, %) = (i, %)

Polynomial Kernel of degree p (hyperparameters: 6, p):
K(xi, %) = (60 + (i, %))".

Radial Basis Function (RBF) or Gaussian Kernel (hyperparameter: o):

lIx=x112
Kxx) = e (- 2240 ).
Sigmoid Kernel (two-layer perceptron) (hyperparameters: 6+, 05):
K(xi, X)) = tanh (61 (x;, Xj) + 62),
where tanh(-) is the hyperbolic tangent function.
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Kernel Trick

Construction of Kernel Functions

Construction of Kernel Functions

Beyond the standard kernels, new kernel functions can be constructed using the follow-
ing properties.

Properties: If K (x, y) and Kz(x, y) are kernel functions, and « € R*, then the following
functions are also valid kernels:
K(x,y) = Ki(x,y) + Ka(x, y),
K(x,y) = aKi(x, ),
K(x,y) = (Ki(x,y), Ka(x, ¥)),

K(x,y) = xAy ",
where A is a symmetric positive semi-definite matrix.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 155/208



Kernel Trick

Example: SVM with non-linear Kernel

Example: SVM with Non-Linear Kernels

# Nonlinear SVMs
svm_rbf = SVC(kernel="rbf", C=1.0, gamma=0.2, random_state=0)
svm_rbf.fit (X_tr_s, y_tr)

o B W =

svm_poly = SVC(kernel="poly", degree=3, gamma="scale", coefl
=1.0, C=1.0, random_state=0)
6| svm_poly.fit(X_tr_s, y_tr)

Google Colab: Click here.
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Kernel Trick

Kernels Available with svc

Ikernel : {’linear’, ‘poly’, ‘rbf’, 'sigmoid’, ‘prec d’} or callable, default="rbf’ I

p

Specifies the kernel type to be used in the algorithm. If none is given, ‘rbf' will be used. If a
callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix
should be an array of shape (n_samples, n_samples) . For an intuitive visualization of different

kernel types see Plot classification boundaries with different SVM Kernels.

Source: scikit-learn documentation
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Kernel Trick

Comparison of Kernels: Illustration

A classical example of a dataset which is not linearly separable is the XOR dataset. Source: scikit-learn support
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Comparison of Kernels: Illustration

SVC with linear kernel LinearSVC (linear kernel)

sepal width (cm)
sepal width (cm)

sepal length (cm) sepal length (cm)

SVC with RBF kernel SVC with polynomial (degree 3) kernel

sepal width (cm)
sepal width (cm)

sepal length (cm) sepal length (cm)

Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. Source: scikit-learn support
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Kernel Trick

SVM Procedure with Kernel Functions

SVM Procedure with Kernel Functions

The SVM procedure with a feature space transformation proceeds as follows:

@ Selection of the kernel function.

@ Selection of hyperparameters and the penalty parameter C using training data via
cross-validation.

@ Evaluation of predictive performance on a test dataset.

Caution: The predictive performance of SVMs is highly sensitive to the choice of kernel,
the value of the penalty parameter C, and the hyperparameters of the kernel function.
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Kernel Trick

Exercise: Credit Scoring with Linear and Nonlinear SVM

Exercise: Credit Scoring with Linear and Nonlinear SVM

Consider the credit scoring dataset of borrower and loan characteristics stored in
scoring_data.xlsx.

® Define the target y = Default and the features X.

® Standardize all predictors using the training data statistics (zero mean, unit
variance), and apply the same transformation to the test data.

® Split the data into training 70% and test 30% with stratification.

® Train support vector machines with three kernels: linear (baseline), radial basis
function (RBF), and polynomial.

® Select hyperparameters by k-fold cross validation on the training set only:
C e {1073,...,10%};for RBF also v € {1072,...,10"}; for polynomial also
deg € {2,3},y € {1073,...,1},and 6, € {0,1}.

* Refit each best model on the full training set and evaluate on the held out test set
using Accuracy, Precision, Recall, F1 score, and the confusion matrix; compare
the three kernels.

Google Colab: Click here.
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Kernel Trick

Exercise: Python Output

Best hyperparameters (CV on train) and TEST metrics:
Kernel C gamma degree coef® CV F1 (mean) Test Acc Test Prec Test Rec Test F1

[RBF 100 0.1 - - 0.337 0.770 0.367 0.321  0.343]
Poly 10 1 3 1 0.408 0.740 0.323 0.357 0.339
Linear 0.01 - - - 0.187 0.810 0.429 0.054 0.095

Best parameter sets by kernel:
RBF: C=100, gamma=0.1
Poly: C=10, gamma=1l, degree=3, coef@=1
Linear: C=0.01

Note: the RBF SVM (C = 100,~ = 0.1) gives the best test F1 (0.343) and higher recall, while
the linear SVM posts higher accuracy (0.810) by missing most defaults (recall 0.054), showing why
F1/recall, not accuracy, should guide model choice under class imbalance.
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Kernel Trick

Kernel Trick

Key Concepts

@ Non-linearly separable sample

@® Feature space (intermediate representation)
© Kernel function

@ Primal and dual programs with kernels

@ Mercer’s conditions

® Common kernel functions
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SVM Variants

Outline

6. SVM Variants

ristophe HURLIN

Orléans and IUF) Support Vector Machines August 24, 2025 164/208




SVM Variants Probabilities and SVM Decision Scores

SVM Variants

We consider four SVM variants:
@ Probabilities and SVM decision scores
® Multi-class SVM
® Support Vector Regression (SVR)
@ Least Squares SVM (LS-SVM)
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SVM Variants Probabilities and SVM Decision Scores

SVM and Decision Scores

Two main questions:
® How can we compute class membership probabilities?

® How can the raw SVM output be transformed into probabilities?

For any observation x € X (training, test, or new sample), the SVM output is a classification:

7 = 90 = san(h(x)) = {1_1 ) 2 0.

with the optimal decision function

h(x) = (w*,x) + b* Z/\ Yi{xi, x) + b,
i€s

where S denotes the set of support vectors.
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SVM Variants Probabilities and SVM Decision Scores

Platt Scaling

Definition: Platt Scaling

Platt’s method (Platt scaling) is a post-processing technique that transforms the output
of a classification model into a probability distribution over the classes.

Implementation:

® Platt’s method consists of using a parametric or non-parametric function to map the values
of h(x) into the interval [0, 1].

® Any cumulative distribution function (CDF) can be used for this mapping.
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SVM Variants Probabilities and SVM Decision Scores

Plat Scaling

Examples

® Logistic distribution (simple sigmoid):
1
Pryj=1|X)= —————, Vi
0 =110 = o)

® Logit model: estimate by MLE the parameters (61, 62) such that
1
Priyi=1]x) = s Vi.
V=) = o (6 + 6ok ()
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SVM Variants Probabilities and SVM Decision Scores

SVC Probabilities with scikit-learn

probability : bool, default=False

Whether to enable probability estimates. This must be enabled prior to calling fit, will slow
down that method as it internally uses 5-fold cross-validation, and predict_proba may be

inconsistent with predict . Read more in the User Guide.

1.4.1.2. Scores and probabilities

The decision_function method of svc and Nusvc gives per-class scores for each sample (or a single
score per sample in the binary case). When the constructor option probability is setto True, class

membership probability estimates (from the methods predict_proba and predict_log_proba ) are

enabled. In the binary case, the probabilities are calibrated usinglPIatt scaling 2 logistic regression on the

|SVM'S scores, fit by an additional cross-validation on the training data.|ln the multiclass case, this is

extended as per 19,

Source: scikit-learn documentation
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SVM Variants Probabilities and SVM Decision Scores

Example: SVC Decision score and Probabilities

Example: SVC Decision score and Probabilities

# Train SVC with probability=True
svc = SVC(probability=True, random_state=42)
svce.fit (X_train, y_train)

# Print probabilities

probas = svc.predict_proba (X_test)
print ("Probabilities:")

print (probas)

© ® N O ;BN =
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SVM Variants Multi-Class SVM

SVM Variants

We consider four SVM variants:
@ Probabilities and SVM decision scores
® Multi-class SVM

® Support Vector Regression (SVR)
@ Least Squares SVM (LS-SVM)
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SVM Variants Multi-Class SVM

Multi-class SVM

Multi-class SVM
® SVMs can be adapted to handle multi-class classification problems.
® The discrete outcome variable y has k categories, with y € {my, ..., mx}.
* Two main approaches exist:

@ One-vs-Rest (OvR) approach.
@® One-vs-One (OvO) or pairwise approach.

hristophe HURLIN
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SVM Variants Multi-Class SVM

One-vs-Rest Approach

One-vs-Rest (OVR) Approach
® The idea is to transform the k-class problem into k binary classifiers.

© Construct k binary models for dichotomous outcomes y;:

1 ify =mj,
Yi= -1 otherwise.

® We obtain k decision functions h;(x). The predicted class corresponds to the one with the
highest score:
y = me with ¢ = arg max hj(x).
j=1,...,k
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One-vs-One Approach

One-vs-One (OvO) Approach

® Build k(k — 1)/2 binary SVM models, one for each pair of classes. For example:

1 ity =m,
y’f_{—1 ity = m.

® This gives k(k — 1)/2 decision functions hj(x). Classification is determined by majority vote
(or another voting rule).

® Let Dj(x) denote the number of votes for class m;. The final prediction is

Yy = mc with ¢ = arg max Dj(x).
j=T,....k

® The vote count is computed as

k
Dj(x) = E sgn(h;(x)).
i, i=1
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Example: Multi-Class SVM

Example: Multi-Class SVM

# Train multiclass SVC
2| sve

SVC (kernel=’'rbf’, C=1.0, decision_function_shape="ovr’,
probability=True)
svce.fit (X_train, y_train)

[N

|dec[sion_functlon_shape : {'ovo’, ‘ovr’}, default= ’ovr’l

Whether to return a one-vs-rest (‘ovr’) decision function of shape (n_samples, n_classes) as all
other classifiers, or the original one-vs-one (‘ovo’) decision function of libsvm which has shape
(n_samples, n_classes * (n_classes - 1) / 2). However, note that internally, one-vs-one (‘ovo’) is
always used as a multi-class strategy to train models; an ovr matrix is only constructed from the
ovo matrix. The parameter is ignored for binary classification.

Source: scikit-learn documentation
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SVM Variants

We consider four SVM variants:
@ Probabilities and SVM decision scores
® Multi-class SVM
® Support Vector Regression (SVR)
@ Least Squares SVM (LS-SVM)
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SVM Variants Support Vector Regression (SVR)

Support Vector Regression

We now consider the regression setting.

® Data: {(X;, yi)}iz1,....n With x; € RY, yi €R.

® Predictor: for 3 € R? and b € R,
h(x)=x"B+b.

* Norm:
Il =118l = VBT B.

® Criterion: least squares,
n

S - h(x))2.

i=1
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SVM Variants Support Vector Regression (SVR)

Support Vector Regression

Definition: Support Vector Regression

of the weights:
n
(B,b) = argmin > (yi — h(x))*
BeRA, beR =
st o+ [n] <,

where X is a regularization parameter.

The idea of Support Vector Regression (SVR) is to impose a constraint on the Lo-norm
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SVR and Ridge Regression

SVR and Ridge Regression

problem:
n

(B,b)= argmin > (yi — h(x))* + Clhl?,
BERI, beR =1

where C > 0 is the penalty parameter.
The solution takes the form

B=X"X+Cly) "Xy,
with X = (x1,..., %) and Y = (1, .., ¥n) -

Support Vector Regression (SVR) can equivalently be expressed as a ridge regression
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SVM Variants Support Vector Regression (SVR)

7.3. Support Vector Regression (SVR)

0 Datapoint

@ Points outside wbe

@ Support Vector

@ Fied by SVR
fix)+e

#

fx)

v

Source: www.quora.com
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SVM Variants Support Vector Regression (SVR)

Support Vector Regression

® We seek a predictor of the form
n
h(x) =" ai K(x;, X),
i=1
where K(x;, x) is a kernel function.

* LetQ = (K(x;, xj)),,/. be the Gram matrix. We define the kernel-induced norm as
Il = o Qa,

with @ = (o, ..., an) .
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SVM Variants Support Vector Regression (SVR)

SVR in Dual Form

Definition: SVR in Dual Form

The dual problem of the Support Vector Regression (SVR) can be written as
n
Q = argmin Z (vi — Qa)2 + Ca'Qo,
acR? 5
where o = (ay,...,an)" and Q = (K(xi, x,~)),,l, is the Gram matrix associated with
the kernel K(-, -). The solution is
a=(Q+Ch)'Y,

where Y = (y1,...,yn) -
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SVR Implementation with scikit-learn

1.4.7.2. SVR

Given training vectors x; € R?,i=1,.., n, and a vector y € R™ £-SVR solves the following primal problem:

ZwTw+CY G+
Jmin, 5 Lt Z(( )

subject to y; — wT d(z:) — b < e+ Gy
wl(@:) +b—yi < e+,
GG >0,i=1,...,n

Here, we are penalizing samples whose prediction is at least € away from their true target. These samples
penalize the objective by ¢; or ¢, depending on whether their predictions lie above or below the ¢ tube.

The dual problem is

min %(a —a")’Q(a—a*) +ee(a+a*) —yF(a—a*)

subject to e’(a — a*) =0
0<aj,0; <Cyi=1,...,n

where e is the vector of all ones, Q is an n by n positive semidefinite matrix,
Qij = K(zi, ;) = ¢(x;)"¢(x;) is the kerel. Here training vectors are implicitly mapped into a higher
(maybe infinite) dimensional space by the function ¢.

Source: scikit-learn documentation
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Support Vector Regression with scikit-learn

SVR #

class sklearn.svm.SVR(*, kernel="rbf', degree=3, gamma='scale', coef0=0.0, tol=0.001,

C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1)

Epsilon-Support Vector Regression.
The free parameters in the model are C and epsilon.

The implementation is based on libsvm. The fit time complexity is more than quadratic with the number
of samples which makes it hard to scale to datasets with more than a couple of 10000 samples. For large

datasets consider using LinearSVR Or SGDRegressor instead, possibly after a Nystroem transformer or

other Kernel Approximation.

Read more in the User Guide.

Source: scikit-learn documentation
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Example: Support Vector Regression

Example: Support Vector Regression

# Create and train SVR
svr = SVR(kernel='rbf’,
c=100,

epsilon=0.1,
gamma='"scale’)

RBF kernel
Regularization parameter
Epsilon-tube

RBF kernel parameter

HoHE W e

svr.fit (X_train, y_train)

# Predictions
y_pred = svr.predict (X_test)
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Comparison of Kernels: Illustration

farget

— RBF model
O RBF support vectors
O other training data

Support Vector Regression
— Linear model
O Linear support vectors
O other training data

— polynomial model

© polynomial support vectors

O other training data

20 o

o

Toy example of 1D regression using linear, polynomial and RBF kernels. Source: scikit-learn documentation
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SVM Variants

We consider four SVM variants:
@ Probabilities and SVM decision scores
® Multi-class SVM
® Support Vector Regression (SVR)
@ Least Squares SVM (LS-SVM)
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Least Squares Support Vector Machine

LS-SVM: General Idea

® The LS-SVM and its regression counterpart LS-SVR were introduced by Suykens and
Vandewalle (1999) and Suykens et al. (2002).

* The method is computationally efficient: instead of solving a quadratic programming
problem, it reduces to solving a linear system of equations.

ﬁ Suykens, J. and Vandewalle, J. (1999). Least Squares Support Vector Machine Classifiers.
Neural Processing Letters, 9(3), 293-300.

ﬁ Suykens, J., Van Gestel, T., De Brabanter, J., De Moor, B. and Vandewalle, J. (2002). Least
Squares Support Vector Machine. Singapore: World Scientific.
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Least Squares Support Vector Machine

Definition: LS-SVM

The primal problem of LS-SVM is defined as:

(W' b") = agmin Flwl® + 2 ZE,
w€ERYA, beR
s.t. : y/(<w,¢(Xi)>+b) > 1-¢;, i=1,...,n,
s.t. : & >0

where (Cy, C2) € RT x R are penalty parameters. This specification can be interpreted
as a regression with a binary dependent variable y € {—1,1}.
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Least Squares Support Vector Machine

Proof: Using the fact that y? = 1, the LS-SVM program

(@b = agmin  Fwf® + Zs,
weRY, beR
st. o yi(w, () +b) > 1-¢&, i=1,...,n,
s.t. : & >0
can be rewritten as:
2
(@b = argmin G|’ + F Z [vi = ((w, o)) + b)]
weRd, ber
s.t. : Yi((wv¢(xi)>+b) >1-&, i=1,...,n,
s.t. : 5,‘ >0
August 24, 2025 190/208
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Solution of LS-SVM

Solution of LS-SVM

From the first-order conditions, solving LS-SVM reduces to solving the linear system:

0 e) w™ 0

en Q+~"h b* 4

where e, is the unit vector, I, is the n x n identity matrix, Q is the Gram matrix, Y =
V1, ¥a) , andy = C2/Cy.

Main advantage: LS-SVM replaces quadratic programming by a linear system.
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Applications of LS-SVR in Risk Management

Several studies have shown the strong performance of LS-SVR for modeling LGD (Loss Given
Default):

ﬁ Loterman, G., Brown, I., Martens, D., Mues, C. and Baesens, B. (2012). Benchmarking
Regression Algorithms for Loss Given Default Modeling. International Journal of
Forecasting, 28(1), 161-170.

ﬁ Nazemi, A., Fatemi Pour, F., Heidenreich, K. and Fabozzi, F. J. (2017). Fuzzy Decision
Fusion Approach for Loss-Given-Default Modeling. European Journal of Operational
Research, 262(2), 780-791.

ﬁ Yao, X., Crook, J. and Andreeva, G. (2015). Support Vector Regression for Loss Given
Default Modelling. European Journal of Operational Research, 240(2), 528-538.
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SVM Variants

Key Concepts
@ SVM Decision Scores & Probabilities
@ Platt scaling
® One-vs-Rest (OvR)
@ One-vs-One (OVO)
@ Support Vector Regression (SVR)

O Ridge regression connection
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7. Appendix
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Appendix Derivation of the SVM Dual Program

Appendix A: Derivation of the SVM Dual Program

Appendix A

Derivation of the SVM Dual Program
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Appendix Derivation of the SVM Dual Program

Appendix A: Lagrangian

Lagrangian

The Lagrangian associated with the SVM program is

Aj [)ﬁ((bu,)ﬁ) +‘b) -1 ]

L(w,b,A) = |w|| Z)\,[y, (w,x) +b) = 1],
with A = (A1, ..., An)’ the vector of multipliers satisfying, forall i =1, ...,
Ai >0
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Appendix Derivation of the SVM Dual Program

Appendix A: Karush-Kuhn-Tucker Conditions

Karush-Kuhn-Tucker (KKT) Conditions

The Karush-Kuhn-Tucker conditions for the SVM primal are:
AL (w, b, A u
7(80\) ) = w — Z)\jyj)(j =0

OL(w, b, )

b = _ZAI.VI

A (yih(xa) —1) = [((wx,)+b)—1]=0
N >0, Vi=1...n
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Appendix Derivation of the SVM Dual Program

Appendix A: Derivation of the SVM Dual Program

Reminder

For a column vector w € RY:

Py =1 wi
oW’ o [ . .
% == j;w’z = : =2 = 2w.
a%d o1 o «d
Similarly, for a column vector x; € R9:
8%127:1 Xi,j wj Xi,1
d
B(g,v:w) _ % 2)@)/_% - = | =x
p
%27:1 Xi j wj Xi,d
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Appendix Derivation of the SVM Dual Program

Appendix A: Derivation of the SVM Dual Program

Introducing the KKT conditions yields an optimization that depends only on the multipliers:

L(w, b, X) = Zx,y,wx, —bZA,y,JrZA,

1 n n ) n
£(w, b, )\) = E (w, w) — Z A,-y,-(w,x,-) + Z iy since Z Aiyi = 0.
i=1 i=1

i=1
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Appendix Derivation of the SVM Dual Program

Appendix A: Derivation of the SVM Dual Program

L(w,b,A) = = Z/\,y,wx, +Z/\,

n
Moreover, since w = E AiYiXi, we obtain:
i=1

n n n

L(w, b, \) = 1ZZ>\>\,y,y,(x,,x, = DSOS T Axn XY + Z,\,

i=1 j=1 i=1 j=1

L(w,b,A) = 7—ZZA>\,y,y, Xiy X))+ ZA,

i=1 j=1
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Appendix Derivation of the SVM Dual Program

Appendix A: Derivation of the SVM Dual Program

Indeed:

n n n
Do Ailw, x) = DAy <Z AYi%p, Xi>
i=1 i=1 j=1

n
=D A [ayixa, %) + -+ (AnYnXn, X))

i=1

n
= Z AiYi My (X, Xi) + -+ Anyn(Xn, Xi)]

i=1

n n
=575 Aiyix, %)

=1 j=1
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Appendix Derivation of the SVM Dual Program

Appendix A: Derivation of the SVM Dual Program

We also have:

1 1 n n
3 ww) =3 <§ AiYiXi, f=Z1/\jijj>

2

1 n
=3 <>\1}’1 X1+ X2YoXo + -+ AnYnXn, Z >‘/'J’/'X/'>

1 n
3 Z < iYiXi, Z /\,y,X,>
= Z iy <x,, Z A,y,X,>

5 Z AiYi {Z A (X, %)

1 1
= 5(w,u.z): ZZAA,y,y,(x,,x,)
i=1 j=1
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Appendix A: SVM Dual Problem

Definition: SVM Dual Problem

The SVM program can be written in dual form as:

. n 1 n n
AT = arg max Z )\,’ - = Z Z A,A/y,vy/(x,-, X/>
Ao D 2 = =
AN g =1 j=1
subjectto X\, >0 Vi=1,...,n
n
and > Ay =0.

i=1
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Appendix A: Derivation of the SVM Dual Program with Soft Margin

Appendix B

Derivation of the SVM Dual Program with Soft Margin
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Appendix B: Lagrangian Formulation

Definition: Lagrangian Formulation (Non-separable Case)

For the soft-margin SVM, the Lagrangian is

1 n
L(w,b,&,x ) =5 lwl® + CD g
2 i=1

- ZN[Y:‘((MM) +b) — (1 —&)] = > wis,
P =

with multipliers A = (A1, ..., Ap)" and p = (u1, ..., up) satisfying, foralli=1,...,n,
Ai >0, pi >0, & >0,
and the complementary slackness conditions

/\i[Yi((w7Xi> +b) — (1 —Si)] =0, w&=0.
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Appendix B: Karush—Kuhn—Tucker Conditions

Karush—Kuhn—-Tucker Conditions

The Karush—-Kuhn-Tucker (KKT) conditions for the soft-margin SVM primal are:

aL U aL u
a:w*;:ki}’ﬁ(i:& Fb:*;)\f}’f:m
oL
= = C — pu — A =0, i=1,...,n,
o8 i i
Ai[}’i((wym +b) — (1 —Ei)] =0, & =0,
Ai >0, wi > 0, & >0, i=1,...,n
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Appendix B: Dual Problem with Soft Margin

Definition: Dual Problem with Soft Margin

The dual program of the soft-margin SVM is

n n n
g max Z)\i — %ZZNNYIY] <Xi7Xj>
=1

A = ar
Ao An ST = =

n
st. 0<XN<C (i=1,...,n), D Ay=0,
i=1

where C > 0 is the penalty (cost) parameter.
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End of Session

Christophe Hurlin (University of Orléans and IUF)
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