
Support Vector Machines
espace

Master ESA - University of Orléans

Christophe HURLIN

University of Orléans and IUF

Master Econométrie et Statistique Appliquée

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 1 / 208

Introduction

Outline

1. Introduction

2. SVM Intuition

3. Formalization of the Support Vector Machine

4. Soft Margin

5. Kernel Trick

6. SVM Variants

7. Appendix

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 2 / 208

Introduction

Definition: Support Vector Machines

Definition: Support Vector Machines

Support Vector Machines (SVM), introduced by Vapnik (1995, 1998), are a set of su-
pervised learning techniques designed to solve classification or regression problems.

References

Vapnik V.N. (1995). The Nature of Statistical Learning Theory. Springer.

Vapnik V.N. (1998). Statistical Learning Theory. John Wiley.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 3 / 208

Introduction

Maximum Margin Separators Hyperplan

Remark: SVMs are also called Maximum Margin Separators Hyperplan (MMSH).

Boser B.E, Guyon I.M., Vapnik V.N. (1992). A Training Algorithm for Optimal Margin
Classifiers, Fifth Annual Workshop on Computational Learning Theory, pages 144–152.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 4 / 208

Introduction

SVM and SVR

Support Vector Methods

• For classification problems, the method is called SVM (Support Vector Machine).

• For regression problems, the method is called SVR (Support Vector Regression).

• In the following, we first present the classification case, and then extend the ideas to
regression.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 5 / 208

Introduction

SVM Intuition

Support Vector Machines rely on two fundamental concepts:

1 The principle of the maximum margin, which seeks the separating hyperplane that
maximizes the distance to the closest training points.

2 The use of a kernel function, which makes it possible to extend the method to non-linear
decision boundaries by mapping the data into higher-dimensional spaces.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 6 / 208

Introduction

Maximum Margin

SVM Intuition: Maximum Margin

• The margin is the distance between the separating hyperplane and the closest training
points, called support vectors.

• The optimal hyperplane is the one that maximizes this margin.

• The task is therefore to determine the separating hyperplane that achieves the largest
possible margin, based on the training data.

• This leads to a quadratic optimization problem with linear constraints.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 7 / 208

Introduction

Kernel Trick

SVM Intuition: Kernel Trick

• When the data are not linearly separable, the idea is to map the inputs into a
higher-dimensional feature space, where a linear separation may exist.

• The kernel trick allows this mapping to be performed implicitly: instead of computing the
transformation explicitly, one directly evaluates a kernel function that measures similarity
between data points.

• This makes it possible to replace the scalar product in the transformed space (potentially
very expensive) by the evaluation of a simple kernel function in the original space.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 8 / 208

Introduction

Bibliography: Main References

References:

Cristianini, N., and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and
Other Kernel-Based Learning Methods. Cambridge University Press.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. 2nd ed. Springer.

Suykens, J., and Vandewalle, J. (1999). Least Squares Support Vector Machine Classifiers.
Neural Processing Letters, 9(3), 293–300.

Suykens, J., Van Gestel, T., De Brabanter, J., De Moor, B., and Vandewalle, J. (2002). Least
Squares Support Vector Machine. World Scientific.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer.

Vapnik, V. N. (1998). Statistical Learning Theory. John Wiley.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 9 / 208

Introduction

Bibliography: Other Course Notes

Other Course Notes (Non-Exhaustive List)

Bousquet, O. Introduction to Support Vector Machines, CMA, École Polytechnique.

Clémençon, S. Introduction to Learning Theory, Télécom ParisTech.

Rakotomalala, R. Support Vector Machine, Université Lumière Lyon 2.

Rakotomamonjy, A. Linear Large Margin Separators, INSA Rouen.

Revel, A. Support Vector Machines, Université de La Rochelle.

Zhao, A. Support Vector Machines, Metis.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 10 / 208

Introduction

Bibliography: Applications in Risk Management

Selection of SVM/SVR Applications in Risk Management

Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., Vanthienen, J. (2003).
Benchmarking State-of-the-Art Classification Algorithms for Credit Scoring. Journal of the
Operational Research Society, 54, 627–635.

Loterman, G., Brown, I., Martens, D., Mues, C., and Baesens, B. (2012). Benchmarking
Regression Algorithms for Loss Given Default Modeling. International Journal of
Forecasting, 28(1), 161–170.

Tobback, E., Martens, D., Van Gestel, T., and Baesens, B. (2014). Forecasting Loss Given
Default Models: Impact of Account Characteristics and the Macroeconomic State. Journal of
the Operational Research Society, 65(3), 376–392.

Yao, X., Crook, J., and Andreeva, G. (2015). Support Vector Regression for Loss Given
Default Modelling. European Journal of Operational Research, 240(2), 528–538.

Yao, X., Crook, J., and Andreeva, G. (2017). Enhancing Two-Stage Modelling Methodology
for Loss Given Default with Support Vector Machines. European Journal of Operational
Research, 263(2), 679–689.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 11 / 208

Introduction

Objectives of the Session

1 Understand the fundamental concepts of linear
separability and margin maximization.

2 Derive the primal and dual formulations of the
Support Vector Machine optimization problem.

3 Identify and interpret support vectors and their role in
classification.

4 Apply the canonical hyperplane representation and
compute optimal separating boundaries.

5 Implement hard margin and soft margin SVMs for
linearly separable and non-separable data.

6 Understand the kernel trick.

7 Apply SVMs to real-world classification and
regression problems in various domains.

Credit: iStock

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 12 / 208

SVM Intuition

Outline

1. Introduction

2. SVM Intuition

3. Formalization of the Support Vector Machine

4. Soft Margin

5. Kernel Trick

6. SVM Variants

7. Appendix

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 13 / 208

SVM Intuition

SVM Intuition

• In SVM, the goal is to build a linear
classifier able to separate the
observations into different classes.

• To achieve this, we look for the optimal
separating boundary, defined as the
one that maximizes the margin.

• The margin is the distance between the
separating boundary (hyperplane) and
the closest observations. These closest
observations are called support vectors.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 14 / 208

SVM Intuition

SVM Intuition

• The problem consists in finding this
optimal separating boundary from a
training sample.

• The solution is to formulate the task as
a quadratic optimization problem.

• A sample is said to be linearly
separable if there exists a linear
classifier that correctly classifies all the
observations.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 15 / 208

SVM Intuition

Notations

Notations

• Let (x, y) be a pair of random variables taking values in X × Y.

• We first focus on the classification case with Y = {−1, 1}.

• This can be extended to the case card(Y) = m > 2, or to Y = R (regression case).

• The variable X is a vector; with real-valued predictors we have X = Rd .

• The space X is equipped with an inner product.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 16 / 208

SVM Intuition

Classifier and Decision Function

Definition: Classifier and Decision Function

We seek a classifier ŷ = g(x) such that g : X → {−1, 1} minimizes the probability of
a classification error:

Pr (g(x) ̸= y)

Instead of constructing g directly, one generally builds a decision function h : X → R
and associates the classifier

g(x) = sgn
(
h(x)

)
.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 17 / 208

SVM Intuition

Linear Classifier

Definition: Linear Classifier

A linear classifier (or perceptron) is a function of the form

g(x) = sgn
(
h(x)

)
=

{
1 if h(x) ≥ 0,

−1 if h(x) < 0,

where the decision function is linear, with

h(x) = ⟨ω, x⟩ + b,
of equivalently

h(x) = x ′
ω + b =

d∑
j=1

ωj xj + b,

where ω ∈ Rd , b ∈ R, and ⟨·, ·⟩ denotes the inner product.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 18 / 208

SVM Intuition

Example of Linear Classifier in R2

Numerical Example: Linear Classifier in R2

Consider a training sample {(yi , xi)}n
i=1 with two features (X = R2).

We consider a linear classifier with ω = (1, 2) and b = −1:

g(x) = sgn
(
h(x)

)
, ∀x = (x1, x2) ∈ R2

where
h(x) = ⟨ω, x⟩ + b = x1 + 2x2 − 1.

Each observation can then be classified. For instance:

Example A: (y, x1, x2) = (1, 1,−1) ⇒ h(x) = −2, g(x) = −1

Example B: (y, x1, x2) = (1, 2, 1) ⇒ h(x) = 3, g(x) = 1

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 19 / 208

SVM Intuition

Example of Linear Classifier in R3

Numerical Example: Linear Classifier in R3

Consider a training sample {(yi , xi)}n
i=1 with two features (X = R2).

We use a linear classifier with ω = (3, 2, 7) and b = −2:

g(x) = sgn
(
h(x)

)
, ∀x = (x1, x2, x3) ∈ R3

where
h(x) = ⟨ω, x⟩ + b = 3x1 + 2x2 + 7x3 − 2.

Each observation can then be classified. For example:

Example A: (y, x1, x2, x3) = (1, 0, 2,−4) ⇒ h(x) = −26, g(x) = −1

Example B: (y, x1, x2, x3) = (1, 8, 1, 2) ⇒ h(x) = 38, g(x) = 1

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 20 / 208

SVM Intuition

Remarks

Remark: Because of the properties of the sgn(·) function, strictly speaking, the points lying exactly
on the separating hyperplane are not classified into {−1, 1}:

g(x) = sgn
(
h(x)

)
=


1 if h(x) > 0,

0 if h(x) = 0 ⇔ x ∈ H,

−1 if h(x) < 0,

but in practice, they are usually assigned to one of the two half-spaces:

g(x) = sgn
(
h(x)

)
=

{
1 if h(x) ≥ 0,

−1 if h(x) < 0.

Reminder: for a continuous variable, the probability of being exactly at a single point is zero.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 21 / 208

SVM Intuition

Separating Hyperplane

Definition: Separating Hyperplane

A separating hyperplane H divides the input space X into two half-spaces correspond-
ing to the two classes of y . It is defined by the equation:

h(x) = 0.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 22 / 208

SVM Intuition

Numerical Example of Separating Hyperplane in R2

Numerical Example: Separating Hyperplane in R2

Consider the case X = R2 and a linear classifier g(x) defined by ω = (1, 2) and b = −1:

h(x) = ⟨ω, x⟩ + b = x1 + 2x2 − 1.

g(x) = sgn(h(x)) =

{
1 if x1 + 2x2 − 1 ≥ 0,

−1 if x1 + 2x2 − 1 < 0.

Examples:
h(0, 0) = −1 ⇒ g(0, 0) = −1

h
(
1, 1

2

)
= 1 ⇒ g

(
1, 1

2

)
= 1

The affine hyperplane (here a line) separating R2 into two half-spaces corresponding to
the two classifications is given by:

h(x) = x1 + 2x2 − 1 = 0, ∀x = (x1, x2) ∈ R2
.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 23 / 208

SVM Intuition

Numerical Example of Separating Hyperplane in R2

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 24 / 208

SVM Intuition

Numerical Example of Separating Hyperplane in R3

Numerical Example: Separating Hyperplane in R3

Consider a linear classifier g(x) defined by ω = (1, 2,−3) and b = −2:

h(x) = ⟨ω, x⟩ + b = x1 + 2x2 − 3x3 − 2.

The equation

h(x) = x1 + 2x2 − 3x3 − 2 = 0, ∀x = (x1, x2, x3) ∈ R3

defines a hyperplane that separates R3 into two half-spaces, each corresponding to a
classification.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 25 / 208

SVM Intuition

Numerical Example of Separating Hyperplane in R3

-2

2

-1

2

0

x
3

1

1

x
2

1

x
1

2

0
0

-1 -1

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 26 / 208

SVM Intuition

Confusion Matrix

Confusion Matrix

• Classifier g(x) = sgn
(
h(x)

)
• If there is no error, then g(x)y = 1; otherwise g(x)y = −1

g(x) = −1 g(x) = 1

y = −1 No error g(x)y = 1 Error g(x)y = −1

y = 1 Error g(x)y = −1 No error g(x)y = 1

Remark: the probability of a classification error is equal to

Pr
(
g(x) ̸= y

)
= Pr

(
h(x) y ≤ 0

)
= Pr

(
g(x) y = −1

)
.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 27 / 208

SVM Intuition

Linearly Separable Sample

Definition: Linearly Separable Sample

A sample S = {(x1, y1), . . . , (xn, yn)} ∈ (X × Y) is said to be linearly separable if
there exists a linear classifier that correctly classifies all the observations in S.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 28 / 208

SVM Intuition

SVM Intuition

Consider X = R2 with xi = (xi1, xi2) and a
sample {(xi , yi)} for i = 1, . . . , n.

Each triplet (xi1, xi2, yi) is represented as a
point in the plane (x1, x2).

When yi = 1 (−1), the observation is
represented by a blue (green) point.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 29 / 208

SVM Intuition

SVM Intuition

Let a linear classifier g(x) be associated with
an affine hyperplane:

h(x) = ⟨ω, x⟩ + b = 0.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 30 / 208

SVM Intuition

SVM Intuition

If all the observations with yi = 1 lie in the
blue region and all the observations with
yi = −1 lie in the green region, then there is
no classification error.

Therefore, a linear classifier exists that
correctly classifies all the observations in the
sample.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 31 / 208

SVM Intuition

SVM Intuition

The sample is said to be linearly separable.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 32 / 208

SVM Intuition

SVM Intuition

In contrast, this sample is not linearly
separable.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 33 / 208

SVM Intuition

SVM Intuition

Indeed, there does not exist any linear
classifier that can correctly classify all the
observations.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 34 / 208

SVM Intuition

SVM Intuition

Remark

For a linearly separable sample, there may exist several linear classifiers (i.e., several
pairs (ω, b)) that achieve the same learning performance (no classification error). Which
one is then the optimal classifier?

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 35 / 208

SVM Intuition

SVM Intuition

What is the optimal linear classifier for this
sample?

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 36 / 208

SVM Intuition

SVM Intuition

Is it this one?

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 37 / 208

SVM Intuition

SVM Intuition

Is it this one?

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 38 / 208

SVM Intuition

SVM Intuition

Is it this one?

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 39 / 208

SVM Intuition

Margin: Definition

Definition: Margin

The margin M is defined as twice the distance d from the closest point to the hyperplane.

Idea of SVM: choose the hyperplane that correctly classifies the data and is as far as possible from
all the observations (examples). This is the criterion of optimal margins

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 40 / 208

SVM Intuition

SVM Intuition

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 41 / 208

SVM Intuition

SVM Intuition

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 42 / 208

SVM Intuition

Support Vectors: Definition

Definition: Support Vectors

Support vectors are the observations located on the margin.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 43 / 208

SVM Intuition

SVM Intuition

Returning to our example: what is the
optimal linear classifier?

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 44 / 208

SVM Intuition

SVM Intuition

Returning to our example: what is the
optimal linear classifier?

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 45 / 208

SVM Intuition

SVM Intuition

This is the classifier with the optimal margin,
also called the SVM.

Support Vector Margin

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 46 / 208

SVM Intuition

SVM Intuition

Here is the classification associated with the
hyperplane of optimal margin, i.e., the SVM.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 47 / 208

SVM Intuition

Support Vector Machine: Definition

Definition: Support Vector Machine

The Support Vector Machine (SVM) is the linear classifier (ω∗, b∗) that perfectly classi-
fies all the observations in the training sample and is associated with the largest margin.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 48 / 208

SVM Intuition

SVM Intuition

Key Concepts

1 Linear classifier and decision function.

2 Separating hyperplane.

3 Linearly separable sample.

4 Margin.

5 Support vectors.

6 Support Vector Machine.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 49 / 208

Formalization of the Support Vector Machine

Outline

1. Introduction

2. SVM Intuition

3. Formalization of the Support Vector Machine

4. Soft Margin

5. Kernel Trick

6. SVM Variants

7. Appendix

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 50 / 208

Formalization of the Support Vector Machine

Reminders: Inner Product

Reminders

Let two vectors in Rd : r = (r1, . . . , rd)
′ and s = (s1, . . . , sd)

′.

• Inner product

∀(r , s) ∈ Rd × Rd
, ⟨r , s⟩ =

d∑
i=1

ri si

• Euclidean norm

∀r ∈ Rd
, ∥r∥ =

√
⟨r , r⟩ =

√√√√ d∑
i=1

r2
i

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 51 / 208

Formalization of the Support Vector Machine

Reminders: Euclidean Norm

Euclidean Norm: Reminder (1/2)

r =

r1

r2



r1

r2

r1 and r2 are scalars

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 52 / 208

Formalization of the Support Vector Machine

Reminders: Euclidean Norm

Euclidean Norm: Reminder (2/2)

r =

r1

r2



r1

r2

From the Pythagorean Theorem:

∥r∥ =
√

r2
1 + r2

2 =
√

⟨r , r⟩ =
√∑2

i=1 r2
i

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 53 / 208

Formalization of the Support Vector Machine

Reminders: Scalar projection and Vector Projection

Let two vectors in Rd , r = (r1, . . . , rd)
′ and s = (s1, . . . , sd)

′.

• Scalar projection of vector s onto vector r :

⟨r , s⟩
∥r∥

• Vector projection of vector s onto vector r :

⟨r , s⟩
∥r∥

×
r

∥r∥

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 54 / 208

Formalization of the Support Vector Machine

Reminders: Orthogonality

• Orthogonality: r and s are orthogonal (⊥) if

⟨r , s⟩ = 0

r

sr − s

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 55 / 208

Formalization of the Support Vector Machine

Reminder: Normal Vector

Reminders: Normal Line and Normal Vector

• The normal line to a plane at a given point is the line orthogonal to the plane at that point.

• Any direction vector of this line is called a normal vector to the surface at that point.

• By convention, the normal vector has a unit norm.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 56 / 208

Formalization of the Support Vector Machine

Normal Vector: Illustration

Source: Nagwa

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 57 / 208

https://www.nagwa.com/en/explainers/373101390857/

Formalization of the Support Vector Machine

Formalization of SVM

Notations

• Consider a decision function defined by

h(x) = ⟨ω, x⟩ + b

with ω ∈ Rd and b ∈ R.

• The equation h(x) = 0 defines the separating hyperplane H in Rd .

• By definition of the separating hyperplane, ∀x0 ∈ H:

h(x0) = ⟨ω, x0⟩ + b = 0 ⇐⇒ ⟨ω, x0⟩ = −b

• Associated classifier:

∀x ∈ X , g(x) = sgn
(
h(x)

)
=

{
1 if h(x) ≥ 0,

−1 if h(x) < 0.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 58 / 208

Formalization of the Support Vector Machine

Normal Vector: Definition

Definition: Normal Vector

The normal vector to the separating hyperplane H is defined as

ω̃ =
ω

∥ω∥

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 59 / 208

Formalization of the Support Vector Machine

Exercise: Normal Vector

Exercise: Normal Vector in the Case d = 2

We consider a classification problem with two features x = (x1, x2)
′ ∈ X ⊆ R2.

Let a linear classifier g(x) = sgn(h(x)) with

h(x) = ⟨ω, x⟩ + b = x1 + 2x2 − 1

and
ω = (1, 2), b = −1.

Question: represent ω̃, the normal vector to the separating hyperplane H.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 60 / 208

Formalization of the Support Vector Machine

Exercise: Normal Vector

Solution: The equation defining the separating hyperplane H for ω = (1, 2) is

h(x) = x1 + 2x2 − 1 = 0, ∀x = (x1, x2) ∈ R2
.

The normal vector to H is defined as

ω̃ =
ω

∥ω∥
=

1
√

1 + 4
× (1, 2) =

(
1√
5
, 2√

5

)
.

By definition,

∥ω̃∥ =

√(
1√
5

)2
+

(
2√
5

)2
= 1.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 61 / 208

Formalization of the Support Vector Machine

Exercise: Normal Vector

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 62 / 208

Formalization of the Support Vector Machine

Distance from a Point to the Hyperplane

Definition: Distance from a Point to the Hyperplane

The distance from a point x ∈ Rd to the hyperplane H is

d(x, H) =
∣∣⟨ω̃, x − x0⟩

∣∣ = ∣∣⟨ω, x⟩ + b
∣∣

∥ω∥
=

|h(x)|
∥ω∥

,

where x0 ∈ H and ω̃ is the unit normal vector to the separating hyperplane H.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 63 / 208

Formalization of the Support Vector Machine

Distance from a Point to the Hyperplane

0 2 4 6 8 10
0

2

4

6

8

10

h(x) > 0

h(x) = 0h(x) < 0 |h(xi)|∥ω∥

x1

x 2

yi = −1
yi = 1

Hyperplane

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 64 / 208

Formalization of the Support Vector Machine

Distance from a Point to the Hyperplane

Proof:

d(x, H) =
∣∣⟨ω̃, x − x0⟩

∣∣
=

1
∥ω∥

∣∣⟨ω, x − x0⟩
∣∣

=
1

∥ω∥
∣∣⟨ω, x⟩ − ⟨ω, x0⟩

∣∣
=

1
∥ω∥

∣∣⟨ω, x⟩ + b
∣∣

=
|h(x)|
∥ω∥

.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 65 / 208

Formalization of the Support Vector Machine

Exercise: Distance to the Hyperplane

Exercise: Distance from a Point to the Hyperplane

Consider X = R2. A linear classifier g(x) = sgn(h(x)) with

h(x) = ⟨ω, x⟩ + b, ω = (1, 2), b = −1.

Question: what is the distance to the separating hyperplane for the following points?

A
(
1, 3

2

)
B
(
− 1

2 ,−
1
2

)
.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 66 / 208

Formalization of the Support Vector Machine

Exercise: Distance to the Hyperplane

Solution:

ω = (1, 2) b = −1 A
(
1, 3

2

)
B
(
− 1

2 ,−
1
2

)
∥ω∥ =

√
12 + 22 =

√
5.

d(A, H) =
|h(xA)|
∥ω∥

=
|1 × 1 + 2 × (3/2) − 1|

√
5

=
3
√

5
.

d(B, H) =
|h(xB)|
∥ω∥

=

∣∣1 ×
(
− 1

2

)
+ 2 ×

(
− 1

2

)
− 1

∣∣
√

5
=

2.5
√

5
.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 67 / 208

Formalization of the Support Vector Machine

Formalization of the Margin

The goal of SVMs is to choose the separating hyperplane that:

• perfectly classifies all observations (in the linearly separable case),

• while maximizing the distance between the nearest observations from different classes, this
distance is the margin, denoted M.

• The margin M equals twice the distance between the closest point(s) and the separating
hyperplane (often called the support vectors), denoted m:

M = 2 × m.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 68 / 208

Formalization of the Support Vector Machine

Formalization of the Margin

0 2 4 6 8 10
0

2

4

6

8

10 h(x)
∥ω∥ > m

h(x) = 0
h(x)

∥ω∥ < −m

m

m

M

F
x1

x 2

yi = −1
yi = 1

Hyperplane

Thus, we have:

g(xi) =


1 if

h(xi)

∥ω∥
≥ m,

−1 if
h(xi)

∥ω∥
< −m.

To combine these two constraints into a single
one, multiply by yi :

yi
h(xi)

∥ω∥
≥ m ∀ i = 1, . . . , n.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 69 / 208

Formalization of the Support Vector Machine

Canonical Separating Hyperplane

Canonical Separating Hyperplane

This inequality holds for any m > 0. We can therefore set:

m =
1

∥ω∥
.

We then obtain:
yi h(xi) ≥ 1 =⇒ min

i=1,...,n
|h(xi)| = 1.

Definition: Canonical Separating Hyperplane

A separating hyperplane is said to be canonical with respect to the observations
{x1, . . . , xn} if and only if

min
i=1,...,n

|h(xi)| = min
i

|⟨ω, xi⟩ + b| = 1.

By choosing m =
1

∥ω∥
we thus obtain a canonical separating hyperplane.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 70 / 208

Formalization of the Support Vector Machine

Normalization and Canonical Separating Hyperplane

Normalization and Canonical Separating Hyperplane

In practice, starting from a non-canonical separating hyperplane h(x), we normalize the parame-
ters ω and b so that the decision function h(x) evaluated at a support vector equals +1 or −1.

Choose γ = min
i=1,...,n

|h(xi)| > 0, (ω′
, b′) =

(
ω

γ
,

b
γ

)
, h′(x) = ⟨ω′

, x⟩ + b′
.

⇒ min
i

|h′(xi)| = 1, i.e., the hyperplane h′(x) is canonical.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 71 / 208

Formalization of the Support Vector Machine

Exercise: Canonical Separating Hyperplane

Exercise: Canonical Separating Hyperplane

Consider X = R2 and a linear classifier g(x) = sgn(h(x)), with

h(x) = ⟨ω, x⟩ + b, x = (x1, x2)
′
,

and
ω = (1, 2) b = −1.

Assume that the vector (1, 1) is a support vector.

Question: what is the decision function associated with the canonical hyperplane?

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 72 / 208

Formalization of the Support Vector Machine

Exercise: Canonical Separating Hyperplane

Solution:

h(x) = ⟨ω, x⟩ + b = x1 + 2x2 − 1, x = (x1, x2)
′
,

For the support vector xsv = (1, 1), we have

h(xsv) = 1 + 2 − 1 = 2 ⇒ g(xsv) = sgn(2) = 1.

The canonical hyperplane is then defined by

h(x) = 1
2 h(x) = 0,

or equivalently
h(x) = ⟨ω, x⟩ + b = 0.5 x1 + x2 − 0.5 = 0,

ω = (0.5, 1) b = −0.5.

By definition,
h(xsv) = 0.5 + 1 − 0.5 = 1 ⇒ g(xsv) = sgn(1) = 1.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 73 / 208

Formalization of the Support Vector Machine

Canonical Separating Hyperplane

h(x) = x1 + 2x2 − 1

x
1

-1 -0.5 0 0.5 1 1.5 2

x
2

-1

-0.5

0

0.5

1

1.5

2

h(x)=3

h(x)=2,7

h(x)=2,4

h(x)=2

h(x)=0

h(x)=-2

h(x)=-2,5

h(x) = 0.5 x1 + x2 − 0.5

x
1

-1 -0.5 0 0.5 1 1.5 2

x
2

-1

-0.5

0

0.5

1

1.5

2

h(x)=1,5

h(x)=1,35

h(x)=1,2

h(x)=1

h(x)=0

h(x)=-1

h(x)=-1,25

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 74 / 208

Formalization of the Support Vector Machine

Support Vectors: Definition

Definition: Support Vectors

The support vectors are the observations xi ∈ S that satisfy

h(xi) = ±1 ∀i ∈ S

or equivalently
yi h(xi) = 1 ∀i ∈ S.

where h(x) =
(
⟨ω, x⟩ + b

)
is a canonical hyperplane,

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 75 / 208

Formalization of the Support Vector Machine

Perfect Classification

Perfect Classification

For a canonical hyperplane, the conditions for a perfect classification (on the training
sample) are:

h(xi) = ⟨ω, xi⟩ + b ≥ 1 if yi = 1

h(xi) = ⟨ω, xi⟩ + b ≤ −1 if yi = −1

for all i = 1, . . . , n. These can be written compactly as:

yi h(xi) ≥ 1 ∀i = 1, . . . , n.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 76 / 208

Formalization of the Support Vector Machine

Formal Definition of the Margin

Definition: Margin

The margin M(ω, b) is twice the distance between a support vector xsv and the canonical
separating hyperplane H.

M(ω, b) = 2 × d(xsv , H) = 2 ×
|h(xsv)|
∥ω∥

=
2

∥ω∥
,

since by definition h(xsv) = ±1.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 77 / 208

Formalization of the Support Vector Machine

Optimal Canonical Hyperplane

Optimal Canonical Hyperplane

A canonical hyperplane h(x) = ⟨ω∗, x⟩ + b∗ = 0 is optimal with respect to the ob-
servations {(xi , yi)}n

i=1 if it maximizes the margin M(ω, b) and perfectly classifies all
observations. It satisfies:

(ω∗
, b∗) = arg max

ω∈Rd , b∈R

2
∥ω∥

subject to yi h(xi) ≥ 1 ∀ i = 1, . . . , n.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 78 / 208

Formalization of the Support Vector Machine

Optimal Canonical Hyperplane

Finding a hyperplane that maximizes the margin M(ω) is equivalent to finding parameters (ω∗, b∗)
such that:

(ω∗
, b∗) = arg max

ω∈Rd , b∈R
M(ω) =

2
∥ω∥

subject to yi h(xi) ≥ 1 ∀ i = 1, . . . , n.

This is equivalent to:

(ω∗
, b∗) = arg min

ω∈Rd , b∈R

1
2
∥ω∥2

subject to yi h(xi) ≥ 1 ∀ i = 1, . . . , n.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 79 / 208

Formalization of the Support Vector Machine

SVM Primal Program

Definition: SVM Primal Program

The SVM primal program is:

(ω∗
, b∗) = arg min

ω∈Rd , b∈R

1
2
∥ω∥2

subject to yi h(xi) ≥ 1 ∀ i = 1, . . . , n,
with

h(x) = ⟨ω, x⟩ + b, ∀ x ∈ X .

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 80 / 208

Formalization of the Support Vector Machine

Exercise: SVM Primal Program

Exercise: SVM Primal Program

Let x = (x1, x2)
′ ∈ R2 and a training sample of size n = 10 with the following data. Task:

using a quadratic programming solver, solve the SVM primal program and determine the
equation of the optimal canonical separating hyperplane.

x1 x2 y

4 8 −1

2 4 −1

4 6 −1

6 6 −1

8 8 −1

6 10 −1

12 6 1

10 6 1

8 2 1

6 2 1

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 81 / 208

Formalization of the Support Vector Machine

Exercise: SVM Primal Program

0 2 4 6 8 10 12 14

X
1

0

2

4

6

8

10

12

X
2

Y=-1

Y=1

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 82 / 208

Formalization of the Support Vector Machine

Solution: SVM Primal Program

Solution

(ω∗, b∗) = arg min
ω∈R2, b∈R

1
2
∥ω∥2

subject to yi h(xi) ≥ 1 ∀ i = 1, . . . , n

Write this program in matrix form to use a quadratic programming solver in Python:

θ =

(
ω1 ω2 b

)′

1
2
∥ω∥2 =

1
2
(ω2

1 + ω
2
2) =

1
2

(
ω1 ω2 b

)


1 0 0

0 1 0

0 0 0




ω1

ω2

b

 =
1
2
θ
⊤P θ,

Link to Google Colab: Click here

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 83 / 208

https://colab.research.google.com/drive/1trhLWnKq8s1ptMOEdzZRyRMqXZlYnc9V

Formalization of the Support Vector Machine

Solution: SVM Primal Program

Solution

We obtain

ω
∗ =

(
1
2
, −

1
2

)′
b∗ = −1.

The decision function is therefore

h(xi) = ⟨ω∗
, xi⟩ + b∗ = 1

2 x1i − 1
2 x2i − 1 ∀ xi ∈ R2

.

The equation of the optimal canonical separating hyperplane is

h(xi) = 0 ⇐⇒ x2i = x1i − 2 .

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 84 / 208

Formalization of the Support Vector Machine

Solution: SVM Primal Program

Solution
h(xi) =

1
2 x1i − 1

2 x2i − 1 h(xi) yi ≥ 1

x1i x2i yi h(xi) yi h(xi) Status

4 8 −1 −3 3 —

2 4 −1 −2 2 —

4 6 −1 −2 2 —

6 6 −1 −1 1 support vector

8 8 −1 −1 1 support vector

6 10 −1 −3 3 —

12 6 1 2 2 —

10 6 1 1 1 support vector

8 2 1 2 2 —

6 2 1 1 1 support vector

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 85 / 208

Formalization of the Support Vector Machine

Solution: SVM Primal Program

0 2 4 6 8 10 12 14

X
1

0

2

4

6

8

10

12

X
2

-3

-2

-2 -1

-1

-3

21

21

y=-1

y=1

Support Vector

h(x)=0

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 86 / 208

Formalization of the Support Vector Machine

SVM Implementation with scikit-learn

Source: scikit-learn documentation

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 87 / 208

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Formalization of the Support Vector Machine

Example: SVM Implementation

Example: SVM Implementation

1 # Hard-margin SVM
2 clf = SVC(kernel="linear", C=1e20)
3 clf.fit(X, y)
4

5 # Coefficients and intercept
6 w = clf.coef_
7 b = clf.intercept_
8

9 # Support vectors
10 sv=clf.support_vectors_

Google Colab: Click here.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 88 / 208

https://colab.research.google.com/drive/1G5_HJbMH9eWtQDhWVk8rfpFlAq-1ImtA?usp=sharing

Formalization of the Support Vector Machine

Primal vs. Dual Optimization Problems

Primal vs. Dual Optimization Programs

min
ω∈Rd , b∈R

1
2
∥ω∥2

subject to yi h(xi) ≥ 1 ∀ i = 1, . . . , n

• Since this optimization problem is convex, solving the primal or the dual is equivalent.

• The dual problem introduces Lagrange multipliers associated with the n constraints (one per
example/observation).

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 89 / 208

Formalization of the Support Vector Machine

Lagrangian

Lagrangian

The Lagrangian associated with the SVM program is

L(ω, b, λ) =
1
2
∥ω∥2 −

n∑
i=1

λi

[
yi
(
⟨ω, xi⟩ + b

)
− 1

]
,

with λ = (λ1, . . . , λn)
′ the vector of multipliers satisfying, for all i = 1, . . . , n,

λi ≥ 0

λi

[
yi
(
⟨ω, xi⟩ + b

)
− 1

]
= 0.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 90 / 208

Formalization of the Support Vector Machine

Remarks

L(ω, b, λ) =
1
2
∥ω∥2 −

n∑
i=1

λi

[
yi
(
⟨ω, xi⟩ + b

)
− 1

]
λi

[
yi
(
⟨ω, xi⟩ + b

)
− 1

]
= 0 with λi ≥ 0

1 The Lagrangian must be minimized with respect to ω and b, and maximized with respect to
λ (saddle point).

2 If the constraint
[

yi (⟨ω, xi⟩ + b) − 1
]
= 0 is active, then λi > 0 and xi is a support vector.

3 If
[

yi (⟨ω, xi⟩ + b) − 1
]
> 0, then λi = 0 and the point xi , lying beyond the margin, is

correctly classified. In practice, many λi are zero (sparsity).

4 Denote xi = (xi1, . . . , xid)
′, ∀i and ω = (ω1, . . . , ωd)

′, the Lagrangian can be written as:

L(ω, b, λ) =
1
2
ω

⊤
ω −

n∑
i=1

λi yi x⊤
i ω − b

n∑
i=1

λi yi +
n∑

i=1

λi .

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 91 / 208

Formalization of the Support Vector Machine

Karush-Kuhn-Tucker Conditions

Karush-Kuhn-Tucker (KKT) Conditions

The Karush-Kuhn-Tucker conditions for the SVM primal are:

∂L(ω, b, λ)
∂ω

= ω −
n∑

i=1

λi yi xi = 0

∂L(ω, b, λ)
∂b

= −
n∑

i=1

λi yi = 0

λi
(
yi h(xi) − 1

)
= λi

[
yi
(
⟨ω, xi⟩ + b

)
− 1

]
= 0

λi ≥ 0, ∀ i = 1, . . . , n.

Note: Introducing the KKT conditions yields an optimization that depends only on the multipliers:

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 92 / 208

Formalization of the Support Vector Machine

SVM Dual Problem

Definition: SVM Dual Problem

The SVM program can be written in dual form as:

λ
∗ = arg max

λ1,...,λn

n∑
i=1

λi −
1
2

n∑
i=1

n∑
j=1

λiλj yi yj⟨xi , xj⟩

subject to λi ≥ 0 ∀ i = 1, . . . , n

and
n∑

i=1

λi yi = 0.

Proof: see appendix.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 93 / 208

Formalization of the Support Vector Machine

Exercise: SVM Dual Program

Exercise: SVM Dual Program

We consider the same training sample (see table).

Task: using a quadratic programming solver, solve
the SVM dual program and determine the equation
of the optimal canonical separating hyperplane.

Google Colab: Click here.

Obs. x1,i x2,i yi

1 4 8 −1

2 2 4 −1

3 4 6 −1

4 6 6 −1

5 8 8 −1

6 6 10 −1

7 12 6 1

8 10 6 1

9 8 2 1

10 6 2 1

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 94 / 208

https://colab.research.google.com/drive/1trhLWnKq8s1ptMOEdzZRyRMqXZlYnc9V

Formalization of the Support Vector Machine

Solution: SVM Dual Program

λ
∗ =arg max

λ1,...,λn

n∑
i=1

λi

−
1
2

n∑
i=1

n∑
j=1

λiλj yi yj⟨xi , xj⟩

s.t. λi ≥ 0,
n∑

i=1

λi yi = 0

x1i x2i yi Statut λi

4 8 −1 — 0

2 4 −1 — 0

4 6 −1 — 0

6 6 −1 support vector 0,1528

8 8 −1 support vector 0,0972

6 10 −1 — 0

12 6 1 — 0

10 6 1 support vector 0,1736

8 2 1 — 0

6 2 1 support vector 0,0764

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 95 / 208

Formalization of the Support Vector Machine

Solution: SVM Dual Program

Solution: The coefficient vector is

ω
∗ =

∑
i∈S

λ
∗
i yi xi = 0.1528(−1)

6

6

 + 0.0972(−1)

8

8



+ 0.1736(+1)

10

6

 + 0.0764(+1)

6

2

 .

⇒ ω
∗ =


1
2

− 1
2

 .

The bias satisfies, for any support vector xi ,

b∗ = yi − ⟨ω∗
, xi⟩, ∀i ∈ S.

Using x = (6, 6)′ with y = −1:

b∗ = −1 −
(

1
2
· 6 −

1
2
· 6

)
= −1.

(One gets the same b∗ using any of the support vectors.)

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 96 / 208

Formalization of the Support Vector Machine

Solution: SVM Dual Program

Solution: For x = (x1, x2)
′ ∈ R2, the decision function is

h(x) =
∑
i∈S

λ
∗
i yi⟨xi , x⟩ + b∗ = ⟨ω∗

, x⟩ + b∗
.

With the dual solution,

ω
∗ =


1
2

− 1
2

 , b∗ = −1.

Hence the optimal canonical separating hyperplane is

h(xj) =
1
2 x1j − 1

2 x2j − 1 = 0,

or equivalently
x2j = x1j − 2.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 97 / 208

Formalization of the Support Vector Machine

Example: Dual Coefficients

Example: Dual Coefficients

1 # Hard-margin SVM
2 clf = SVC(kernel="linear", C=1e20)
3 clf.fit(X, y)
4

5 # Dual coefficients (alpha_i * y_i for each support vector)
6 print("dual_coef_:", clf.dual_coef_)
7

8 # Absolute values give the alpha_i
9 alphas = np.abs(clf.dual_coef_[0])

10 print("alphas:", alphas)

Google Colab: Click here.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 98 / 208

https://colab.research.google.com/drive/1G5_HJbMH9eWtQDhWVk8rfpFlAq-1ImtA?usp=sharing

Formalization of the Support Vector Machine

Optimal Decision Function

Optimal SVM Solution

1. Once the optimal multipliers λ∗ are obtained, the coefficient vector is

ω
∗ =

n∑
i=1

λ
∗
i yi xi =

∑
i∈S

λ
∗
i yi xi ,

where S denotes the set of support vectors (since λ∗
i = 0 for i /∈ S).

2. To determine the constant b∗, take any support vector i ∈ S such that

yi
(
⟨ω∗

, xi⟩ + b∗) = 1.

Then

b∗ =
1
yi

− ⟨ω∗
, xi⟩, ∀ i ∈ S.

Since yi ∈ {−1, 1}, this can also be written as

b∗ = yi − ⟨ω∗
, xi⟩, ∀ i ∈ S.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 99 / 208

Formalization of the Support Vector Machine

Optimal Decision Function

Definition: Optimal Decision Function

For any x ∈ X , the optimal decision function is

h(x) = ⟨ω∗
, x⟩ + b∗ =

∑
i∈S

λ
∗
i yi ⟨xi , x⟩ + b∗

,

where S denotes the set of support vectors. The associated classifier is

g(x) = sgn
(
h(x)

)
=

{
1 if h(x) ≥ 0,

−1 if h(x) < 0.

Main advantage of the SVM: Only the support vectors (weighted by λi) determine the classification
of all observations in both the training and test samples.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 100 / 208

Formalization of the Support Vector Machine

Exercise: SVM and Prediction

Exercise: SVM and Prediction

We consider the same training sample as before. We want to predict the class for the
following test observations:

xA =

6

8



xB =

10

2


Task: Using only the Lagrange multipliers λi of the support vectors (see previous table),
determine the predictions yA and yB .

Link to Google Colab: Click here

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 101 / 208

https://colab.research.google.com/drive/1trhLWnKq8s1ptMOEdzZRyRMqXZlYnc9V

Formalization of the Support Vector Machine

Solution: SVM and Prediction

x1 x2 y h(x) y h(x) Status λ

6 6 −1 −1 1 support vector 0.1528

8 8 −1 −1 1 support vector 0.0972

10 6 1 1 1 support vector 0.1736

6 2 1 1 1 support vector 0.0764

Solution: Using only the support vectors, the decision function is

ĥ(x) =
∑
i∈S

λ
∗
i yi⟨xi , x⟩ + b∗

.

This gives

ĥ(x) = −0.1528 (6x1 + 6x2) − 0.0972 (8x1 + 8x2)

+ 0.1736 (10x1 + 6x2) + 0.0764 (6x1 + 2x2) − 1

or equivalently

ĥ(x) =
1
2

x1 −
1
2

x2 − 1.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 102 / 208

Formalization of the Support Vector Machine

Solution: SVM and Prediction

Solution: the decision function (from the dual and primal forms) is

ĥ(x) =
∑
i∈S

λ
∗
i yi⟨xi , x⟩ + b∗ = 1

2 x1 − 1
2 x2 − 1, b∗ = −1.

with

xA =

6

8

 and xB =

10

2

 ,

we obtain

ĥ(xA) =
1
2 · 6 − 1

2 · 8 − 1 = −2.

ĥ(xB) =
1
2 · 10 − 1

2 · 2 − 1 = 3.
Predictions:

ŷA = sgn
(
ĥ(xA)

)
= sgn(−2) = −1, ŷB = sgn

(
ĥ(xB)

)
= sgn(3) = 1.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 103 / 208

Formalization of the Support Vector Machine

Example: SVM Predictions

Example: SVM Predictions

1 # Hard-margin SVM
2 clf = SVC(kernel="linear", C=1e20)
3 clf.fit(X, y)
4

5 # Test dataset
6 X_test = np.array([[6, 8], [10, 2]])
7

8 # Predictions
9 y_pred = clf.predict(X_test)

Google Colab: Click here.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 104 / 208

https://colab.research.google.com/drive/1G5_HJbMH9eWtQDhWVk8rfpFlAq-1ImtA?usp=sharing

Formalization of the Support Vector Machine

SVM Primal and Dual Programs

SVM Primal Program SVM Dual Program

(ω∗, b∗) = arg min
ω∈Rd ,b∈R

1
2 ∥ω∥2

sc : yi h (xi) ≥ 1 ∀i = 1, ..., n

λ∗ = arg max
λ1,..,λn

∑n
i=1 λi

− 1
2
∑n

i=1
∑n

j=1 λiλj yi yj
〈
xi , xj

〉
sc : λi ≥ 0

sc :
∑n

i=1 λi yi = 0

h (x) = ⟨ω∗, x⟩ + b∗ ω∗ =
∑

i∈S λ∗
i yi xi

b∗ = yi − ⟨ω∗, xi⟩ , ∀i ∈ S

h (x) =
∑

i∈S λ∗
i yi ⟨xi , x⟩ + b∗

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 105 / 208

Formalization of the Support Vector Machine

Gram matrix

The term ⟨xi , xj⟩ is the entry in the i-th row and j-th column of the Gram matrix (which also appears
as the Hessian in the dual):

Gram matrix = Ω
n×n

=



⟨x1, x1⟩ ⟨x1, x2⟩ · · · · · · ⟨x1, xn⟩

⟨x2, x1⟩ ⟨x2, x2⟩ · · · · · · · · ·
...

...
. . .

...
...

⟨xn, x1⟩ · · · · · · · · · ⟨xn, xn⟩


.

Remark: If X = (x⊤
1 ; . . . ; x⊤

n) ∈ Rn×d collects the x⊤
i as rows, then the Gram matrix can be

written as
Ω = X X⊤

.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 106 / 208

Formalization of the Support Vector Machine

Exercise: Gram Matrix

Exercise: Gram Matrix

We consider the same training sample. Task: determine the Gram matrix.

Obs. x1,i x2,i yi

1 4 8 −1

2 2 4 −1

3 4 6 −1

4 6 6 −1

5 8 8 −1

6 6 10 −1

7 12 6 1

8 10 6 1

9 8 2 1

10 6 2 1

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 107 / 208

Formalization of the Support Vector Machine

Solution: Gram Matrix

Solution: The Gram matrix associated with the linear kernel is

Ω
(n×n)

=



⟨x1, x1⟩ ⟨x1, x2⟩ · · · · · · ⟨x1, xn⟩

⟨x2, x1⟩ ⟨x2, x2⟩ · · · · · · · · ·
...

...
. . .

...
...

⟨xn, x1⟩ · · · · · · · · · ⟨xn, xn⟩


.

Here, with n = 10 we obtain

Ω
(10×10)

=



80 40 64 72 96 104 96 88 48 40

40 20 32 36 48 52 48 44 24 20

64 32 52 60 80 84 84 76 44 36

72 36 60 72 96 96 108 96 60 48

96 48 80 96 128 128 144 128 80 64

104 52 84 96 128 136 132 120 68 56

96 48 84 108 144 132 180 156 108 84

88 44 76 96 128 120 156 136 92 72

48 24 44 60 80 68 108 92 68 52

40 20 36 48 64 56 84 72 52 40



.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 108 / 208

Formalization of the Support Vector Machine

Importance of Standardisation in SVM

Definition: Standardisation

The standardised feature xj is defined as

zj =
xj − µj

σj

where µj is the sample mean and σj the sample standard deviation of feature xj .

Why is standardisation important for SVMs?

• SVMs rely on inner products and distances between vectors.

• Features with larger scales dominate the margin calculation.

• Standardisation ensures that all features contribute equally to the separating hyperplane.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 109 / 208

Formalization of the Support Vector Machine

Formalization of the Support Vector Machine

Key Concepts

1 Margin

2 Support vectors

3 Canonical hyperplane

4 Optimal hyperplane

5 SVM Primal program

6 Lagrangian and KKT conditions

7 SVM Dual program

8 Gram matrix

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 110 / 208

Soft Margin

Outline

1. Introduction

2. SVM Intuition

3. Formalization of the Support Vector Machine

4. Soft Margin

5. Kernel Trick

6. SVM Variants

7. Appendix

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 111 / 208

Soft Margin

A Sample Not Linearly Separable

We now assume that the training sample is not linearly separable.

Two cases:

1 The sample is almost linearly separable: the "optimal" separation is linear, but some
observations cannot be correctly classified.

2 The sample is not linearly separable: the "optimal" separation is non-linear.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 112 / 208

Soft Margin

A Sample Almost Linearly Separable

A sample that is almost linearly separable.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 113 / 208

Soft Margin

Slack Variables

Definition: Slack Variables

In the case of an almost linearly separable sample, we introduce n relaxation variables
for the classification constraints yi h(xi) ≥ 1.

These variables, denoted ξ = (ξ1, . . . , ξn)
′, are called slack variables and satisfy:

yi
(
⟨ω, xi⟩ + b

)
≥ 1 − ξi , ξi ≥ 0.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 114 / 208

Soft Margin

Soft Margin

Definition: Soft Margin

A soft margin SVM allows classification constraints to be relaxed through the introduction
of slack variables ξi ≥ 0:

yi
(
⟨ω, xi⟩ + b

)
≥ 1 − ξi , i = 1, . . . , n.

The slack variables measure the extent of violation of the margin constraints.

Cortes, C. and V. Vapnik (1995), Support-Vector Networks, Machine Learning, 20.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 115 / 208

Soft Margin

Interpretation of the Slack Variables

Soft Margin and the Slack Variables

yi
(
⟨ω, xi⟩ + b

)
≥ 1 − ξi , ξi ≥ 0.

Three configurations can occur depending on the value of ξi :

1 If ξi = 0, then yi h(xi) ≥ 1: the observation (xi , yi) is correctly classified and outside the
margin.

2 If ξi ≥ 1, then the observation (xi , yi) is misclassified and lies on the wrong side of the
separating hyperplane.

3 If 0 < ξi < 1, then (xi , yi) is correctly classified but lies within the margin, i.e. at a distance
from the separating hyperplane smaller than half of the margin:

d(xi , H) <
1

∥ω∥
.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 116 / 208

Soft Margin

Soft Margin: Illustration

Source: https://towardsdatascience.com

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 117 / 208

Soft Margin

Soft Margin: Illustration

Source: scikit-learn documentation

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 118 / 208

https://scikit-learn.org/stable/auto_examples/svm/plot_svm_margin.html

Soft Margin

Primal Program with Soft Margin

Definition: Primal Program with Soft Margin

The primal SVM problem in the non-separable case (with slack variables) is defined
as:

(ω∗
, b∗

, ξ
∗) = arg min

ω∈Rd , b∈R, ξ∈Rn

1
2
∥ω∥2 + C

n∑
i=1

ξi

s.t. : yi
(
⟨ω, xi⟩ + b

)
≥ 1 − ξi , ∀i = 1, . . . , n

s.t. : ξi ≥ 0.

where C > 0 denotes the penalty parameter (or cost parameter).

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 119 / 208

Soft Margin

Interpretation

Interpretation

(ω∗
, b∗

, ξ
∗) = arg min

ω∈Rd , b∈R, ξ∈Rn

1
2∥ω∥2︸ ︷︷ ︸
margin

+ C︸︷︷︸
cost parameter

n∑
i=1

ξi︸ ︷︷ ︸
classification errors

s.t. : yi
(
⟨ω, xi⟩ + b

)
≥ 1 − ξi , ∀i = 1, . . . , n

s.t. : ξi ≥ 0.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 120 / 208

Soft Margin

Penalty Parameter

Role of the Penalty Parameter C

The penalty parameter C controls the trade-off between the margin size and the training
error rate.

• If C is small, misclassification errors are weakly penalized and the focus is on
maximizing the margin. This may lead to underfitting.

• If C is large, the focus is on avoiding misclassification at the cost of a smaller
margin. This may lead to overfitting.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 121 / 208

Soft Margin

Penalty Parameter in scikit-learn

Connection with scikit-learn

In scikit-learn, the penalty parameter is also denoted C in SVC (Support Vector Classifier): it
controls the balance between maximizing the margin and minimizing classification errors.

• Small C: larger margin, tolerance to errors, possible underfitting.

• Large C: smaller margin, less tolerance, possible overfitting.

The appropriate value of C should be determined by cross-validation.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 122 / 208

Soft Margin

Example: Soft Margin

Example: SVM Soft Margin

1 # Without CV (fixed C)
2 clf_fixed = SVC(kernel="linear", C=1.0)
3 clf_fixed.fit(X_train, y_train)
4

5 # With CV (grid search for best C)
6 C_grid = np.logspace(-3, 3, 13)
7 grid = GridSearchCV(
8 SVC(kernel="linear"),
9 param_grid={"C": C_grid},

10 cv=5,
11 scoring="accuracy",
12 n_jobs=-1
13)
14 grid.fit(X_train, y_train)

Google Colab: Click here.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 123 / 208

https://colab.research.google.com/drive/141TGPkI3-4g-NRRNHXi34G58cirQAjhD

Soft Margin

Dual Problem with Soft Margin

Definition: Dual Problem with Soft Margin

The dual program of the soft-margin SVM is

λ
∗ = arg max

λ1,...,λn

n∑
i=1

λi −
1
2

n∑
i=1

n∑
j=1

λiλj yi yj ⟨xi , xj⟩

s.t. 0 ≤ λi ≤ C (i = 1, . . . , n),
n∑

i=1

λi yi = 0,

where C > 0 is the penalty (cost) parameter.

Remark: The program is identical to the separable case: the only difference is the upper bound on
the Lagrange multipliers λi .

Proof: see appendix.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 124 / 208

Soft Margin

Interpretation of the Dual Coefficients

Configurations According to the Dual Coefficients λi

Three configurations can occur depending on the value of λi :

1 If λi = 0, then
yi
(
⟨ω, xi⟩ + b

)
> 1, µi = C > 0, ξi = 0.

The observation (xi , yi) is correctly classified.

2 If 0 < λi < C, then

yi
(
⟨ω, xi⟩ + b

)
= 1, µi = C − λi > 0, ξi = 0.

The observation (xi , yi) is a support vector.

3 If λi = C, then
yi
(
⟨ω, xi⟩ + b

)
= 1 − ξi , µi = 0, ξi > 0.

The observation (xi , yi) may lie correctly classified, but within the margin or misclassified,
i.e., on wrong side of the hyperplane.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 125 / 208

Soft Margin

Soft Margin: Primal and Dual Programs

Soft-Margin Primal Program Soft-Margin Dual Program

(ω∗, b∗, ξ∗) = arg min
ω∈Rd , b∈R, ξ∈Rn

1
2∥ω∥2 + C

∑n
i=1 ξi

s.t. yi h(xi) ≥ 1 − ξi , i = 1, . . . , n

s.t. ξi ≥ 0, i = 1, . . . , n

λ∗ = arg max
λ1,...,λn

∑n
i=1 λi − 1

2
∑n

i=1
∑n

j=1 λiλj yi yj⟨xi , xj⟩

s.t. 0 ≤ λi ≤ C, i = 1, . . . , n

s.t.
∑n

i=1 λi yi = 0

h(x) = ⟨ω∗, x⟩ + b∗ ω∗ =
∑

i∈S λ∗
i yi xi

— b∗ = yi − ⟨ω∗, xi⟩, ∀i ∈ S

— h(x) =
∑

i∈S λ∗
i yi⟨xi , x⟩ + b∗

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 126 / 208

Soft Margin

Penalty Parameter and Cross-Validation

Penalty Parameter and Cross-Validation

The performance of SVMs is highly sensitive to the choice of the penalty parameter C.

An "optimal" hyperparameter C must therefore be selected with care.

A standard approach is to rely on Cross-Validation (CV) methods, such as hold-out or
k-fold validation.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 127 / 208

Soft Margin

Exercise: Soft-Margin SVM with Cross-Validation

Exercise: Soft-Margin SVM with Cross-Validation

Consider the Breast Cancer Wisconsin dataset from scikit-learn (malignant vs. benign).
The goal is to choose the optimal parameter C to avoid overfitting.

• Split the data into training 70% and test 30% with stratification.

• Standardize the data (fit on training, transform train and test).

• Fit a baseline linear SVM with C = 1.0 on the training set.

• Evaluate on the test set: Accuracy, Precision, Recall, F1-score.

• Use GridSearchCV to tune C ∈ {10−4, . . . , 104} with 5-fold CV and scoring =
F1; refit the best model on the full training set.

• Re-evaluate on the test set the tuned model and compare with the baseline (report
at least Accuracy and F1).

Note. The cross-validated score used to select C is computed on training folds only; the
final comparison must use the held-out test set.

Google Colab: Click here.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 128 / 208

https://colab.research.google.com/drive/141TGPkI3-4g-NRRNHXi34G58cirQAjhD

Soft Margin

Exercise: Python Code

1 # Data split
2 X, y = load_breast_cancer(return_X_y=True)
3 X_tr, X_te, y_tr, y_te = train_test_split(X, y, test_size=0.3, stratify=

y, random_state=42)
4

5 # Standardization (fit on training, transform train and test)
6 scaler = StandardScaler()
7 X_tr_s = scaler.fit_transform(X_tr)
8 X_te_s = scaler.transform(X_te)
9

10 # Train WITHOUT CV (fixed C)
11 clf_fixed = SVC(kernel="linear", C=1.0, random_state=42)
12 clf_fixed.fit(X_tr_s, y_tr)
13

14 # Train WITH CV to select C
15 C_grid = np.logspace(-4, 4, 17) # 1e-4 ... 1e4 (all positive)
16 grid = GridSearchCV(
17 SVC(kernel="linear", random_state=42),
18 param_grid={"C": C_grid},
19 cv=5,
20 scoring="f1",
21 n_jobs=-1,
22 refit=True
23)
24 grid.fit(X_tr_s, y_tr)

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 129 / 208

Soft Margin

Exercise: Python Output

Note: Cross-validation combats overfitting by selecting a much smaller C (wider margin, lower
model complexity), which reduces variance, even if, as in this split, it slightly sacrifices test accuracy.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 130 / 208

Soft Margin

Soft Margin

Key Concepts

1 Soft margin

2 Non-separable sample

3 Slack variables

4 Penalty parameter C

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 131 / 208

Kernel Trick

Outline

1. Introduction

2. SVM Intuition

3. Formalization of the Support Vector Machine

4. Soft Margin

5. Kernel Trick

6. SVM Variants

7. Appendix

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 132 / 208

Kernel Trick

Higher-Dimensional Space

General Idea of the Kernel Trick

Most classification problems involve non-linear separations. However, the data space
can always be embedded in a higher-dimensional space in which the data may become
linearly separable.

A complex pattern-classification problem, cast in a high-dimensional space nonlinearly,
is more likely to be linearly separable than in a low-dimensional space, provided that
the space is not densely populated (Cover (1965)).

Cover, T.M. (1965), Geometrical and Statistical Properties of Systems of Linear Inequalities
with Applications in Pattern Recognition, IEEE Transactions on Electronic Computers, 14(3),
326–334.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 133 / 208

Kernel Trick

Higher-Dimensional Space

Non-linear Sample

A training sample that is not linearly
separable in the input space...

X

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Higher-dimensional Mapping

...can become linearly separable in a
higher-dimensional feature space.

X

-5 -4 -3 -2 -1 0 1 2 3 4 5

X
2

0

2

4

6

8

10

12

14

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 134 / 208

Kernel Trick

Kernel Trick: General Principle

Kernel Trick

The resolution of SVMs relies on the scalar product ⟨xi , xj⟩ between input vectors. If the
training data are mapped into a higher-dimensional space via the transformation Φ(x),
this Hilbert space is associated with the inner product

K (xi , xj) = ⟨Φ(xi),Φ(xj)⟩,

where K (xi , xj) is called the kernel function.

To implement an SVM, only the kernel function is required, without the explicit computa-
tion of the transformation Φ(·): this is the essence of the kernel trick.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 135 / 208

Kernel Trick

Feature Space

Definition: Feature Space

Instead of searching for a separating hyperplane in the input space X (here Rd), one first
maps the data into an intermediate representation space (feature space) of higher
dimension:

Φ : X → F, x 7→ Φ(x).

Example

Let x = (x1, x2) ∈ R2. Consider the mapping

Φ : R2 → R3
, (x1, x2) 7→ Φ(x) = (x2

1 ,
√

2 x1x2, x2
2).

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 136 / 208

Kernel Trick

Kernel Trick

Illustration

Consider the mapping

Φ : R2 → R3
, (x1, x2) 7→ Φ(x) =

(
x2

1 ,
√

2x1x2, x2
2
)
.

Instead of manipulating the original two variables x1, x2, one must now handle three trans-
formed variables x2

1 ,
√

2x1x2, x2
2 , which increases computational and storage costs.

Kernel Trick

In this higher-dimensional feature space, only the inner product is required:

⟨Φ(xi),Φ(xj)⟩ = x2
i1x2

j1 + 2xi1xj1xi2xj2 + x2
i2x2

j2.

This simplifies to

⟨Φ(xi),Φ(xj)⟩ =
(
xi1xj1 + xi2xj2

)2 =
(
⟨xi , xj⟩

)2
.

Hence, the inner product in the feature space can be computed without explicitly evaluat-
ing Φ(x), using the kernel function

K (xi , xj) = ⟨Φ(xi),Φ(xj)⟩ =
(
⟨xi , xj⟩

)2
.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 137 / 208

Kernel Trick

Numerical Example: Kernel Trick

Numerical Example: Kernel Trick

Let x = (x1, x2) ∈ R2. Consider the mapping

Φ : R2 → R6
, (x1, x2) 7→

(
1,

√
2x1,

√
2x2, x2

1 , x2
2 ,

√
2x1x2

)
.

Question: Determine the kernel function associated with this transformation.

Solution: For two vectors u = (u1, u2)
′ and v = (v1, v2)

′, we have

Φ(u) =
(
1,

√
2u1,

√
2u2, u2

1 , u2
2 ,

√
2u1u2

)
,

Φ(v) =
(
1,

√
2v1,

√
2v2, v2

1 , v2
2 ,

√
2v1v2

)
.

The corresponding kernel is

K (u, v) = ⟨Φ(u),Φ(v)⟩ = 1 + 2u1v1 + 2u2v2 + u2
1v2

1 + u2
2v2

2 + 2u1v1u2v2,

which simplifies to
K (u, v) =

(
1 + u1v1 + u2v2

)2 =
(
1 + ⟨u, v⟩

)2
.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 138 / 208

Kernel Trick

Numerical Example: Kernel Trick

Numerical Example: Kernel Trick

Consider two vectors u = (1, 3
√

2)′ and v = (1, 2
√

2)′, and the mapping

Φ : R2 → R6
, (x1, x2) 7→

(
1,

√
2x1,

√
2x2, x2

1 , x2
2 ,

√
2x1x2

)
.

Question: Show that the kernel function

K (u, v) =
(
1 + ⟨u, v⟩

)2

is associated with the transformation Φ(x) for these two vectors.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 139 / 208

Kernel Trick

Numerical Example: Kernel Trick

Solution via Feature Mapping:

Using the transformation

Φ : R2 → R6
, (x1, x2) 7→

(
1,

√
2x1,

√
2x2, x2

1 , x2
2 ,

√
2x1x2

)
,

we obtain for u = (1, 3
√

2)′ and v = (1, 2
√

2)′:

Φ(u) = (1,
√

2, 6, 1, 18, 6), Φ(v) = (1,
√

2, 4, 1, 8, 4).

Therefore,

⟨Φ(u),Φ(v)⟩ = 1 × 1 +
√

2 ×
√

2 + 6 × 4 + 1 × 1 + 18 × 8 + 6 × 4 = 196.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 140 / 208

Kernel Trick

Numerical Example: Kernel Trick

Solution via Kernel Function:

Using the kernel
K (u, v) =

(
1 + ⟨u, v⟩

)2
,

we compute
⟨u, v⟩ = 1 × 1 + 3

√
2 × 2

√
2 = 13,

which gives
K (u, v) = (1 + 13)2 = 196.

Hence,
K (u, v) = ⟨Φ(u),Φ(v)⟩,

which confirms the equivalence between the explicit mapping and the kernel function.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 141 / 208

Kernel Trick

Kernel Function: Definition

Definition: Kernel Function

A kernel function represents the inner product associated with the feature space. For a
kernel K (xi , xj), there exists a Hilbert space F and a mapping Φ(·) such that

K (xi , xj) = ⟨Φ(xi),Φ(xj)⟩ ⇐⇒ Φ : Rd → Rm
, m > d, x 7→ Φ(x).

In practice, the kernel trick consists of selecting an appropriate kernel function K (·, ·)
without explicitly characterizing the space F or the mapping Φ(·).

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 142 / 208

Kernel Trick

Procedure

Procedure

1 Transform the space of the input data into a higher-dimensional feature space
(possibly infinite-dimensional).

2 In this space, it is more likely that a linear separation exists.

3 Determine the maximum-margin canonical hyperplane (SVM), with or without
slack variables (soft margin).

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 143 / 208

Kernel Trick

Primal Program with Feature Mapping

Definition: Primal Program with Feature Mapping

The primal SVM problem with soft margin and feature mapping is defined as:

(ω∗
, b∗

, ξ
∗) = arg min

ω∈Rd , b∈R, ξ∈Rn

1
2
∥ω∥2 + C

n∑
i=1

ξi

s.t. : yi

(
⟨ω,Φ(xi)⟩ + b

)
≥ 1 − ξi , ∀i = 1, . . . , n

s.t. : ξi ≥ 0.

where C > 0 is the penalty parameter and Φ : X → F is the feature mapping.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 144 / 208

Kernel Trick

Difference between Primal and Dual Problems

Difference between Primal and Dual Problems

The primal program requires the explicit use (and knowledge) of the mapping Φ(x). By
contrast, the dual program only involves the kernel function, which is the essence of the
kernel trick.

(ω∗
, b∗

, ξ
∗) = arg min

ω∈Rd , b∈R, ξ∈Rn

1
2∥ω∥2 + C

n∑
i=1

ξi

s.t. yi
(
⟨ω,Φ(xi)⟩ + b

)
≥ 1 − ξi , i = 1, . . . , n,

s.t. ξi ≥ 0.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 145 / 208

Kernel Trick

Dual Problem with Feature Mapping

Definition: Dual Problem with Feature Mapping

The dual SVM problem with soft margin and kernel trick is defined as

λ
∗ = arg max

λ1,...,λn

n∑
i=1

λi − 1
2

n∑
i=1

n∑
j=1

λiλj yi yj K (xi , xj)

s.t. 0 ≤ λi ≤ C,

n∑
i=1

λi yi = 0.

Here C > 0 is the penalty parameter, and K (xi , xj) denotes the kernel function associ-
ated with the (unknown) mapping Φ : X → F .

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 146 / 208

Kernel Trick

Optimal Decision Function

Optimal Decision Function

For any point x ∈ X , the optimal decision function is

h(x) = ⟨ω∗
,Φ(x)⟩ + b∗ =

∑
i∈S

λ
∗
i yi K (xi , x) + b∗

,

where S denotes the set of support vectors and slack variables.

The associated classifier is

g(x) = sgn
(
h(x)

)
=

{
1 if h(x) ≥ 0,
−1 if h(x) < 0.

Note: the constant b∗ is defined as:

b∗ = yj −
∑
i∈S

λ
∗
i yi K (xi , xj), ∀j ∈ S,

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 147 / 208

Kernel Trick

Kernel Trick: Primal and Dual Programs

Primal Program with Feature Mapping Dual Program with Kernel Trick

(ω∗, b∗, ξ∗) = arg min
ω∈Rd , b∈R, ξ∈Rn

1
2∥ω∥2 + C

∑n
i=1 ξi

s.t. yi h(Φ(xi)) ≥ 1 − ξi , i = 1, . . . , n

s.t. ξi ≥ 0, i = 1, . . . , n

λ∗ = arg max
λ1,...,λn

∑n
i=1 λi − 1

2
∑n

i=1
∑n

j=1 λiλj yi yj K (xi , xj)

s.t. 0 ≤ λi ≤ C, i = 1, . . . , n

s.t.
∑n

i=1 λi yi = 0

h(x) = ⟨ω∗,Φ(x)⟩ + b∗ h(x) =
∑

i∈S λ∗
i yi K (xi , x) + b∗

— b∗ = yj −
∑

i∈S λ∗
i yi K (xi , xj), ∀j ∈ S

— ω∗ =
∑

i∈S λ∗
i yiΦ(xi)

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 148 / 208

Kernel Trick

scikit-learn Documentation for SVC

Source: scikit-learn support

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 149 / 208

https://scikit-learn.org/stable/modules/svm.html#svc

Kernel Trick

scikit-learn Documentation for SVC

Source: scikit-learn support

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 150 / 208

https://scikit-learn.org/stable/modules/svm.html#svc

Kernel Trick

scikit-learn Documentation for SVC

Source: scikit-learn support

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 151 / 208

https://scikit-learn.org/stable/modules/svm.html#svc

Kernel Trick

Mercer’s Conditions

Definition: Mercer’s Conditions

A continuous, symmetric, and positive function K (·, ·) is a kernel function if, for all pos-
sible xi ∈ X , the Gram matrix (

K (xi , xj)
)

i,j

is symmetric and positive semi-definite.

In this case, there exists a Hilbert space F and a mapping Φ such that

K (xi , xj) = ⟨Φ(xi),Φ(xj)⟩.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 152 / 208

Kernel Trick

Gram Matrix

Gram Matrix and Kernel

The Gram matrix associated with the kernel K (·, ·) is

Ω =



K (x1, x1) K (x1, x2) · · · K (x1, xn)

K (x2, x1) K (x2, x2) · · · K (x2, xn)

...
...

. . .
...

K (xn, x1) K (xn, x2) · · · K (xn, xn)


n×n

.

By Mercer’s conditions, this matrix must be symmetric and positive semi-definite.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 153 / 208

Kernel Trick

Common Kernels

Common Kernels

Linear Kernel (retrieves the case F = X):

K (xi , xj) = ⟨xi , xj⟩.

Polynomial Kernel of degree p (hyperparameters: θ0, p):

K (xi , xj) =
(
θ0 + ⟨xi , xj⟩

)p
.

Radial Basis Function (RBF) or Gaussian Kernel (hyperparameter: σ):

K (xi , xj) = exp

(
−

∥xi−xj∥
2

2σ2

)
.

Sigmoid Kernel (two-layer perceptron) (hyperparameters: θ1, θ2):

K (xi , xj) = tanh
(
θ1⟨xi , xj⟩ + θ2

)
,

where tanh(·) is the hyperbolic tangent function.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 154 / 208

Kernel Trick

Construction of Kernel Functions

Construction of Kernel Functions

Beyond the standard kernels, new kernel functions can be constructed using the follow-
ing properties.

Properties: If K1(x, y) and K2(x, y) are kernel functions, and α ∈ R+, then the following
functions are also valid kernels:

K (x, y) = K1(x, y) + K2(x, y),

K (x, y) = α K1(x, y),

K (x, y) = ⟨K1(x, y), K2(x, y)⟩,

K (x, y) = xAy⊤
,

where A is a symmetric positive semi-definite matrix.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 155 / 208

Kernel Trick

Example: SVM with non-linear Kernel

Example: SVM with Non-Linear Kernels

1 # Nonlinear SVMs
2 svm_rbf = SVC(kernel="rbf", C=1.0, gamma=0.2, random_state=0)
3 svm_rbf.fit(X_tr_s, y_tr)
4

5 svm_poly = SVC(kernel="poly", degree=3, gamma="scale", coef0
=1.0, C=1.0, random_state=0)

6 svm_poly.fit(X_tr_s, y_tr)

Google Colab: Click here.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 156 / 208

https://colab.research.google.com/drive/1E8f3w_R3JJmoMIt_QfHH-ENW9eBlH14P

Kernel Trick

Kernels Available with SVC

Source: scikit-learn documentation

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 157 / 208

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Kernel Trick

Comparison of Kernels: Illustration

A classical example of a dataset which is not linearly separable is the XOR dataset. Source: scikit-learn support

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 158 / 208

https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html#sphx-glr-auto-examples-svm-plot-svm-kernels-py

Kernel Trick

Comparison of Kernels: Illustration

Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. Source: scikit-learn support

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 159 / 208

https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html#sphx-glr-auto-examples-svm-plot-iris-svc-py

Kernel Trick

SVM Procedure with Kernel Functions

SVM Procedure with Kernel Functions

The SVM procedure with a feature space transformation proceeds as follows:

1 Selection of the kernel function.

2 Selection of hyperparameters and the penalty parameter C using training data via
cross-validation.

3 Evaluation of predictive performance on a test dataset.

Caution: The predictive performance of SVMs is highly sensitive to the choice of kernel,
the value of the penalty parameter C, and the hyperparameters of the kernel function.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 160 / 208

Kernel Trick

Exercise: Credit Scoring with Linear and Nonlinear SVM

Exercise: Credit Scoring with Linear and Nonlinear SVM

Consider the credit scoring dataset of borrower and loan characteristics stored in
scoring_data.xlsx.

• Define the target y = Default and the features X .
• Standardize all predictors using the training data statistics (zero mean, unit

variance), and apply the same transformation to the test data.
• Split the data into training 70% and test 30% with stratification.
• Train support vector machines with three kernels: linear (baseline), radial basis

function (RBF), and polynomial.
• Select hyperparameters by k -fold cross validation on the training set only:

C ∈ {10−3, . . . , 103}; for RBF also γ ∈ {10−3, . . . , 101}; for polynomial also
deg ∈ {2, 3}, γ ∈ {10−3, . . . , 1}, and θ0 ∈ {0, 1}.

• Refit each best model on the full training set and evaluate on the held out test set
using Accuracy, Precision, Recall, F1 score, and the confusion matrix; compare
the three kernels.

Google Colab: Click here.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 161 / 208

https://colab.research.google.com/drive/1E8f3w_R3JJmoMIt_QfHH-ENW9eBlH14P

Kernel Trick

Exercise: Python Output

Note: the RBF SVM (C = 100, γ = 0.1) gives the best test F1 (0.343) and higher recall, while
the linear SVM posts higher accuracy (0.810) by missing most defaults (recall 0.054), showing why
F1/recall, not accuracy, should guide model choice under class imbalance.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 162 / 208

Kernel Trick

Kernel Trick

Key Concepts

1 Non-linearly separable sample

2 Feature space (intermediate representation)

3 Kernel function

4 Primal and dual programs with kernels

5 Mercer’s conditions

6 Common kernel functions

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 163 / 208

SVM Variants

Outline

1. Introduction

2. SVM Intuition

3. Formalization of the Support Vector Machine

4. Soft Margin

5. Kernel Trick

6. SVM Variants

7. Appendix

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 164 / 208

SVM Variants Probabilities and SVM Decision Scores

SVM Variants

We consider four SVM variants:

1 Probabilities and SVM decision scores

2 Multi-class SVM

3 Support Vector Regression (SVR)

4 Least Squares SVM (LS-SVM)

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 165 / 208

SVM Variants Probabilities and SVM Decision Scores

SVM and Decision Scores

Two main questions:

• How can we compute class membership probabilities?

• How can the raw SVM output be transformed into probabilities?

For any observation x ∈ X (training, test, or new sample), the SVM output is a classification:

ŷ = g(x) = sgn
(
h(x)

)
=

{
1 if h(x) ≥ 0,
−1 if h(x) < 0.

with the optimal decision function

h(x) = ⟨ω∗
, x⟩ + b∗ =

∑
i∈S

λ
∗
i yi⟨xi , x⟩ + b∗

,

where S denotes the set of support vectors.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 166 / 208

SVM Variants Probabilities and SVM Decision Scores

Platt Scaling

Definition: Platt Scaling

Platt’s method (Platt scaling) is a post-processing technique that transforms the output
of a classification model into a probability distribution over the classes.

Implementation:

• Platt’s method consists of using a parametric or non-parametric function to map the values
of h(x) into the interval [0, 1].

• Any cumulative distribution function (CDF) can be used for this mapping.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 167 / 208

SVM Variants Probabilities and SVM Decision Scores

Plat Scaling

Examples

• Logistic distribution (simple sigmoid):

Pr(yi = 1 | x) =
1

1 + exp
(
− h(x)

) , ∀i.

• Logit model: estimate by MLE the parameters (θ1, θ2) such that

Pr(yi = 1 | x) =
1

1 + exp
(
− (θ1 + θ2h(xi))

) , ∀i.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 168 / 208

SVM Variants Probabilities and SVM Decision Scores

SVC Probabilities with scikit-learn

Source: scikit-learn documentation

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 169 / 208

https://scikit-learn.org/stable/modules/svm.html#scores-probabilities

SVM Variants Probabilities and SVM Decision Scores

Example: SVC Decision score and Probabilities

Example: SVC Decision score and Probabilities

1 # Train SVC with probability=True
2 svc = SVC(probability=True, random_state=42)
3 svc.fit(X_train, y_train)
4

5 # Print probabilities
6 probas = svc.predict_proba(X_test)
7 print("Probabilities:")
8 print(probas)
9

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 170 / 208

SVM Variants Multi-Class SVM

SVM Variants

We consider four SVM variants:

1 Probabilities and SVM decision scores

2 Multi-class SVM

3 Support Vector Regression (SVR)

4 Least Squares SVM (LS-SVM)

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 171 / 208

SVM Variants Multi-Class SVM

Multi-class SVM

Multi-class SVM

• SVMs can be adapted to handle multi-class classification problems.

• The discrete outcome variable y has k categories, with y ∈ {m1, . . . , mk}.

• Two main approaches exist:

1 One-vs-Rest (OvR) approach.

2 One-vs-One (OvO) or pairwise approach.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 172 / 208

SVM Variants Multi-Class SVM

One-vs-Rest Approach

One-vs-Rest (OvR) Approach

• The idea is to transform the k -class problem into k binary classifiers.

• Construct k binary models for dichotomous outcomes yj :

yj =

{
1 if y = mj ,

−1 otherwise.

• We obtain k decision functions hj (x). The predicted class corresponds to the one with the
highest score:

ŷ = mc with c = arg max
j=1,...,k

hj (x).

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 173 / 208

SVM Variants Multi-Class SVM

One-vs-One Approach

One-vs-One (OvO) Approach

• Build k(k − 1)/2 binary SVM models, one for each pair of classes. For example:

yij =

{
1 if y = mi ,

−1 if y = mj .

• This gives k(k − 1)/2 decision functions hij (x). Classification is determined by majority vote
(or another voting rule).

• Let Dj (x) denote the number of votes for class mj . The final prediction is

ŷ = mc with c = arg max
j=1,...,k

Dj (x).

• The vote count is computed as

Dj (x) =
k∑

i ̸=j, i=1

sgn
(
hij (x)

)
.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 174 / 208

SVM Variants Multi-Class SVM

Example: Multi-Class SVM

Example: Multi-Class SVM

1 # Train multiclass SVC
2 svc = SVC(kernel=’rbf’, C=1.0, decision_function_shape=’ovr’,

probability=True)
3 svc.fit(X_train, y_train)
4

Source: scikit-learn documentation

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 175 / 208

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

SVM Variants Support Vector Regression (SVR)

SVM Variants

We consider four SVM variants:

1 Probabilities and SVM decision scores

2 Multi-class SVM

3 Support Vector Regression (SVR)

4 Least Squares SVM (LS-SVM)

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 176 / 208

SVM Variants Support Vector Regression (SVR)

Support Vector Regression

We now consider the regression setting.

• Data: {(xi , yi)}i=1,...,n with xi ∈ Rd , yi ∈ R.

• Predictor: for β ∈ Rd and b ∈ R,

h(x) = x⊤
β + b.

• Norm:
∥h∥ = ∥β∥ =

√
β⊤β.

• Criterion: least squares,
n∑

i=1

(
yi − h(xi)

)2
.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 177 / 208

SVM Variants Support Vector Regression (SVR)

Support Vector Regression

Definition: Support Vector Regression

The idea of Support Vector Regression (SVR) is to impose a constraint on the L2-norm
of the weights:

(β̂, b̂) = arg min
β∈Rd , b∈R

n∑
i=1

(
yi − h(xi)

)2

s.t. : ∥h∥ ≤ λ,

where λ is a regularization parameter.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 178 / 208

SVM Variants Support Vector Regression (SVR)

SVR and Ridge Regression

SVR and Ridge Regression

Support Vector Regression (SVR) can equivalently be expressed as a ridge regression
problem:

(β̂, b̂) = arg min
β∈Rd , b∈R

n∑
i=1

(
yi − h(xi)

)2 + C∥h∥2
,

where C > 0 is the penalty parameter.

The solution takes the form

β̂ = (X⊤X + CId)
−1X⊤Y ,

with X = (x1, . . . , xn)
⊤ and Y = (y1, . . . , yn)

⊤.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 179 / 208

SVM Variants Support Vector Regression (SVR)

7.3. Support Vector Regression (SVR)

Source: www.quora.com

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 180 / 208

SVM Variants Support Vector Regression (SVR)

Support Vector Regression

• We seek a predictor of the form

h(x) =
n∑

i=1

αi K (xi , x),

where K (xi , x) is a kernel function.

• Let Ω =
(
K (xi , xj)

)
i,j be the Gram matrix. We define the kernel-induced norm as

∥h∥2
K = α

⊤Ωα,

with α = (α1, . . . , αn)
⊤.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 181 / 208

SVM Variants Support Vector Regression (SVR)

SVR in Dual Form

Definition: SVR in Dual Form

The dual problem of the Support Vector Regression (SVR) can be written as

α̂ = arg min
α∈Rn

n∑
i=1

(
yi − Ωα

)2 + C α
⊤Ωα,

where α = (α1, . . . , αn)
⊤ and Ω =

(
K (xi , xj)

)
i,j is the Gram matrix associated with

the kernel K (·, ·). The solution is

α̂ =
(
Ω + CIn

)−1Y ,

where Y = (y1, . . . , yn)
⊤.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 182 / 208

SVM Variants Support Vector Regression (SVR)

SVR Implementation with scikit-learn

Source: scikit-learn documentation

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 183 / 208

https://scikit-learn.org/stable/modules/svm.html#svm-regression

SVM Variants Support Vector Regression (SVR)

Support Vector Regression with scikit-learn

Source: scikit-learn documentation

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 184 / 208

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

SVM Variants Support Vector Regression (SVR)

Example: Support Vector Regression

Example: Support Vector Regression

1 # Create and train SVR
2 svr = SVR(kernel=’rbf’, # RBF kernel
3 C=100, # Regularization parameter
4 epsilon=0.1, # Epsilon-tube
5 gamma=’scale’) # RBF kernel parameter
6

7 svr.fit(X_train, y_train)
8

9 # Predictions
10 y_pred = svr.predict(X_test)

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 185 / 208

SVM Variants Support Vector Regression (SVR)

Comparison of Kernels: Illustration

Toy example of 1D regression using linear, polynomial and RBF kernels. Source: scikit-learn documentation

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 186 / 208

https://scikit-learn.org/stable/auto_examples/svm/plot_svm_regression.html#sphx-glr-auto-examples-svm-plot-svm-regression-py

SVM Variants Least Squares Support Vector Machine (LS-SVM)

SVM Variants

We consider four SVM variants:

1 Probabilities and SVM decision scores

2 Multi-class SVM

3 Support Vector Regression (SVR)

4 Least Squares SVM (LS-SVM)

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 187 / 208

SVM Variants Least Squares Support Vector Machine (LS-SVM)

Least Squares Support Vector Machine

LS-SVM: General Idea

• The LS-SVM and its regression counterpart LS-SVR were introduced by Suykens and
Vandewalle (1999) and Suykens et al. (2002).

• The method is computationally efficient: instead of solving a quadratic programming
problem, it reduces to solving a linear system of equations.

Suykens, J. and Vandewalle, J. (1999). Least Squares Support Vector Machine Classifiers.
Neural Processing Letters, 9(3), 293–300.

Suykens, J., Van Gestel, T., De Brabanter, J., De Moor, B. and Vandewalle, J. (2002). Least
Squares Support Vector Machine. Singapore: World Scientific.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 188 / 208

SVM Variants Least Squares Support Vector Machine (LS-SVM)

Least Squares Support Vector Machine

Definition: LS-SVM

The primal problem of LS-SVM is defined as:

(ω∗
, b∗) = arg min

ω∈Rd , b∈R

C1
2 ∥ω∥2 +

C2
2

n∑
i=1

ξ
2
i

s.t. : yi
(
⟨ω,Φ(xi)⟩ + b

)
≥ 1 − ξi , i = 1, . . . , n,

s.t. : ξi ≥ 0.

where (C1, C2) ∈ R+×R+ are penalty parameters. This specification can be interpreted
as a regression with a binary dependent variable y ∈ {−1, 1}.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 189 / 208

SVM Variants Least Squares Support Vector Machine (LS-SVM)

Least Squares Support Vector Machine

Proof: Using the fact that y2 = 1, the LS-SVM program

(ω∗
, b∗) = arg min

ω∈Rd , b∈R

C1
2 ∥ω∥2 +

C2
2

n∑
i=1

ξ
2
i

s.t. : yi
(
⟨ω,Φ(xi)⟩ + b

)
≥ 1 − ξi , i = 1, . . . , n,

s.t. : ξi ≥ 0.

can be rewritten as:

(ω∗
, b∗) = arg min

ω∈Rd , b∈R

C1
2 ∥ω∥2 +

C2
2

n∑
i=1

[
yi − (⟨ω,Φ(xi)⟩ + b)

]2

s.t. : yi
(
⟨ω,Φ(xi)⟩ + b

)
≥ 1 − ξi , i = 1, . . . , n,

s.t. : ξi ≥ 0.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 190 / 208

SVM Variants Least Squares Support Vector Machine (LS-SVM)

Solution of LS-SVM

Solution of LS-SVM

From the first-order conditions, solving LS-SVM reduces to solving the linear system: 0 e⊤
n

en Ω + γ−1In


ω∗

b∗

 =

0

Y


where en is the unit vector, In is the n × n identity matrix, Ω is the Gram matrix, Y =
(y1, . . . , yn)

⊤, and γ = C2/C1.

Main advantage: LS-SVM replaces quadratic programming by a linear system.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 191 / 208

SVM Variants Least Squares Support Vector Machine (LS-SVM)

Applications of LS-SVR in Risk Management

Several studies have shown the strong performance of LS-SVR for modeling LGD (Loss Given
Default):

Loterman, G., Brown, I., Martens, D., Mues, C. and Baesens, B. (2012). Benchmarking
Regression Algorithms for Loss Given Default Modeling. International Journal of
Forecasting, 28(1), 161–170.

Nazemi, A., Fatemi Pour, F., Heidenreich, K. and Fabozzi, F. J. (2017). Fuzzy Decision
Fusion Approach for Loss-Given-Default Modeling. European Journal of Operational
Research, 262(2), 780–791.

Yao, X., Crook, J. and Andreeva, G. (2015). Support Vector Regression for Loss Given
Default Modelling. European Journal of Operational Research, 240(2), 528–538.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 192 / 208

SVM Variants Least Squares Support Vector Machine (LS-SVM)

SVM Variants

Key Concepts

1 SVM Decision Scores & Probabilities

2 Platt scaling

3 One-vs-Rest (OvR)

4 One-vs-One (OvO)

5 Support Vector Regression (SVR)

6 Ridge regression connection

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 193 / 208

Appendix

Outline

1. Introduction

2. SVM Intuition

3. Formalization of the Support Vector Machine

4. Soft Margin

5. Kernel Trick

6. SVM Variants

7. Appendix

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 194 / 208

Appendix Derivation of the SVM Dual Program

Appendix A: Derivation of the SVM Dual Program

Appendix A

Derivation of the SVM Dual Program

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 195 / 208

Appendix Derivation of the SVM Dual Program

Appendix A: Lagrangian

Lagrangian

The Lagrangian associated with the SVM program is

L(ω, b, λ) =
1
2
∥ω∥2 −

n∑
i=1

λi

[
yi
(
⟨ω, xi⟩ + b

)
− 1

]
,

with λ = (λ1, . . . , λn)
′ the vector of multipliers satisfying, for all i = 1, . . . , n,

λi ≥ 0

λi

[
yi
(
⟨ω, xi⟩ + b

)
− 1

]
= 0.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 196 / 208

Appendix Derivation of the SVM Dual Program

Appendix A: Karush-Kuhn-Tucker Conditions

Karush-Kuhn-Tucker (KKT) Conditions

The Karush-Kuhn-Tucker conditions for the SVM primal are:

∂L(ω, b, λ)
∂ω

= ω −
n∑

i=1

λi yi xi = 0

∂L(ω, b, λ)
∂b

= −
n∑

i=1

λi yi = 0

λi
(
yi h(xi) − 1

)
= λi

[
yi
(
⟨ω, xi⟩ + b

)
− 1

]
= 0

λi ≥ 0, ∀ i = 1, . . . , n.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 197 / 208

Appendix Derivation of the SVM Dual Program

Appendix A: Derivation of the SVM Dual Program

Reminder

For a column vector ω ∈ Rd :

∂ (ω⊤ω)

∂ω
=

∂

∂ω

 d∑
j=1

ω
2
j

 =



∂

∂ω1

∑d
j=1 ω

2
j

...

∂

∂ωd

∑d
j=1 ω

2
j


= 2


ω1

...

ωd


= 2 ω.

Similarly, for a column vector xi ∈ Rd :

∂ (x⊤
i ω)

∂ω
=

∂

∂ω

 d∑
j=1

xi,j ωj

 =



∂

∂ω1

∑d
j=1 xi,j ωj

...

∂

∂ωd

∑d
j=1 xi,j ωj


=


xi,1

...

xi,d


= xi .

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 198 / 208

Appendix Derivation of the SVM Dual Program

Appendix A: Derivation of the SVM Dual Program

Introducing the KKT conditions yields an optimization that depends only on the multipliers:

L(ω, b, λ) =
1
2
⟨ω, ω⟩ −

n∑
i=1

λi yi⟨ω, xi⟩ − b
n∑

i=1

λi yi +
n∑

i=1

λi .

L(ω, b, λ) =
1
2
⟨ω, ω⟩ −

n∑
i=1

λi yi⟨ω, xi⟩ +
n∑

i=1

λi , since
n∑

i=1

λi yi = 0.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 199 / 208

Appendix Derivation of the SVM Dual Program

Appendix A: Derivation of the SVM Dual Program

L(ω, b, λ) =
1
2
⟨ω, ω⟩ −

n∑
i=1

λi yi⟨ω, xi⟩ +
n∑

i=1

λi .

Moreover, since ω =
n∑

i=1

λi yi xi , we obtain:

L(ω, b, λ) =
1
2

n∑
i=1

n∑
j=1

λiλj yi yj⟨xi , xj⟩ −
n∑

i=1

n∑
j=1

λiλj yi yj⟨xi , xj⟩ +
n∑

i=1

λi .

L(ω, b, λ) = −
1
2

n∑
i=1

n∑
j=1

λiλj yi yj⟨xi , xj⟩ +
n∑

i=1

λi .

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 200 / 208

Appendix Derivation of the SVM Dual Program

Appendix A: Derivation of the SVM Dual Program

Indeed:
n∑

i=1

λi yi⟨ω, xi⟩ =
n∑

i=1

λi yi

〈
n∑

j=1

λj yj xj , xi

〉

=
n∑

i=1

λi yi [⟨λ1y1x1, xi⟩ + · · · + ⟨λnynxn, xi⟩]

=
n∑

i=1

λi yi [λ1y1⟨x1, xi⟩ + · · · + λnyn⟨xn, xi⟩]

=
n∑

i=1

n∑
j=1

λiλj yi yj⟨xj , xi⟩.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 201 / 208

Appendix Derivation of the SVM Dual Program

Appendix A: Derivation of the SVM Dual Program

We also have:
1
2
⟨ω, ω⟩ =

1
2

〈
n∑

i=1

λi yi xi ,
n∑

j=1

λj yj xj

〉

=
1
2

〈
λ1y1x1 + λ2y2x2 + · · · + λnynxn,

n∑
j=1

λj yj xj

〉

=
1
2

n∑
i=1

〈
λi yi xi ,

n∑
j=1

λj yj xj

〉

=
1
2

n∑
i=1

λi yi

〈
xi ,

n∑
j=1

λj yj xj

〉

=
1
2

n∑
i=1

λi yi

 n∑
j=1

λj yj⟨xj , xi⟩


⇒

1
2
⟨ω, ω⟩ =

1
2

n∑
i=1

n∑
j=1

λiλj yi yj⟨xj , xi⟩.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 202 / 208

Appendix Derivation of the SVM Dual Program

Appendix A: SVM Dual Problem

Definition: SVM Dual Problem

The SVM program can be written in dual form as:

λ
∗ = arg max

λ1,...,λn

n∑
i=1

λi −
1
2

n∑
i=1

n∑
j=1

λiλj yi yj⟨xi , xj⟩

subject to λi ≥ 0 ∀ i = 1, . . . , n

and
n∑

i=1

λi yi = 0.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 203 / 208

Appendix Derivation of the SVM Dual Program with Soft Margin

Appendix A: Derivation of the SVM Dual Program with Soft Margin

Appendix B

Derivation of the SVM Dual Program with Soft Margin

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 204 / 208

Appendix Derivation of the SVM Dual Program with Soft Margin

Appendix B: Lagrangian Formulation

Definition: Lagrangian Formulation (Non-separable Case)

For the soft-margin SVM, the Lagrangian is

L(ω, b, ξ, λ, µ) =
1
2
∥ω∥2 + C

n∑
i=1

ξi

−
n∑

i=1

λi

[
yi
(
⟨ω, xi⟩ + b

)
−

(
1 − ξi

)]
−

n∑
i=1

µi ξi ,

with multipliers λ = (λ1, . . . , λn)
′ and µ = (µ1, . . . , µn)

′ satisfying, for all i = 1, . . . , n,

λi ≥ 0, µi ≥ 0, ξi ≥ 0,

and the complementary slackness conditions

λi

[
yi
(
⟨ω, xi⟩ + b

)
−

(
1 − ξi

)]
= 0, µi ξi = 0.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 205 / 208

Appendix Derivation of the SVM Dual Program with Soft Margin

Appendix B: Karush–Kuhn–Tucker Conditions

Karush–Kuhn–Tucker Conditions

The Karush–Kuhn–Tucker (KKT) conditions for the soft-margin SVM primal are:

∂L
∂ω

= ω −
n∑

i=1

λi yi xi = 0,
∂L
∂b

= −
n∑

i=1

λi yi = 0,

∂L
∂ξi

= C − µi − λi = 0, i = 1, . . . , n,

λi

[
yi
(
⟨ω, xi⟩ + b

)
−

(
1 − ξi

)]
= 0, µi ξi = 0,

λi ≥ 0, µi ≥ 0, ξi ≥ 0, i = 1, . . . , n.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 206 / 208

Appendix Derivation of the SVM Dual Program with Soft Margin

Appendix B: Dual Problem with Soft Margin

Definition: Dual Problem with Soft Margin

The dual program of the soft-margin SVM is

λ
∗ = arg max

λ1,...,λn

n∑
i=1

λi −
1
2

n∑
i=1

n∑
j=1

λiλj yi yj ⟨xi , xj⟩

s.t. 0 ≤ λi ≤ C (i = 1, . . . , n),
n∑

i=1

λi yi = 0,

where C > 0 is the penalty (cost) parameter.

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 207 / 208

Appendix Derivation of the SVM Dual Program with Soft Margin

End of Session

Christophe Hurlin (University of Orléans and IUF)

Christophe HURLIN (University of Orléans and IUF) Support Vector Machines August 24, 2025 208 / 208

	Introduction
	SVM Intuition
	Formalization of the Support Vector Machine
	Soft Margin
	Kernel Trick
	SVM Variants
	Appendix

