
Fractal Time as a Fiber over Real Time: A Hermitian Fractional Geometry

with Golden-Scale Corrections and Testable Signals

Szymon Szkaplewicz∗

(Dated: August 22, 2025)

In this work I propose that the familiar one-dimensional time t1 is fibered by an additional,

fractal-like temporal coordinate t2 (and possibly a latent third time t3). This idea builds

on Dragan’s suggestion that superluminal frames effectively perceive three time dimensions,

but here it is recast not as extra human time, but as a covariant fiber structure over real

time. We introduce a fractional Laplace–Beltrami operator on this two-dimensional (base

× fiber) manifold and an action that ensures Hermitian and covariant dynamics. Using

the heat kernel, we derive an emergent metric by targeting a given spectral dimension. A

Gr"unwald–Letnikov-type fractional kernel is used to describe fractal-time propagation, with

coupling modulated by information (analogous to a pointwise mutual information factor).

Experimentally, the model predicts that precision interferometers and atomic clocks should

exhibit low-frequency 1/f -type fluctuations if fractal time is real. Furthermore, if Turowski’s

Golden-K Hypothesis applies, the golden ratio Φ introduces a discrete scale invariance: scale

transformations t → Φnt leave the laws invariant, leading to an eigenvalue spectrum λn ∝ Φn

and log-periodic spectral oscillations. We detail how to analyze data from interferometry

and clock experiments to test these ideas (for example, fitting log-log power-law spectra

and searching for log-periodic modulations), and describe what a null result would look like.

Discussion includes possible falsification, extension to a latent third time t3, and connections

to deeper theories. The model is mathematically consistent and yields precise, falsifiable

predictions.

I. INTRODUCTION

Time is usually thought of as a single real coordinate t1 that orders events. In Einstein’s

relativity, space and time unify into spacetime, but still only one physical time dimension appears.

Recently, Andrzej Dragan et al. proposed that for observers moving faster than light, one would

effectively experience three time dimensions and one space dimension. In their words, “The other

three dimensions are time dimensions.” Inspired by this, I explore a related idea: that the familiar

human experience of time might actually include a fractal fiber dimension. Specifically, rather than
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trying to “reinvent” our ordinary time, we extend it by attaching a new dimension t2 at microscopic

(fractal) scales.

Concretely, we consider a fiber bundle with base M1 (coordinated by t1) and fiber a one-

dimensional fractal-time coordinate t2. Physical fields then live on the total space (t1, t2), and

the effective metric acquires an extra component h(t1, t2) along the t2 direction. In Section II we

define this metric and introduce a fractional Laplace–Beltrami operator on the bundle. We write

down an action that ensures Hermitian dynamics and general covariance in the two-dimensional

(t1, t2) space (as discussed below).

Section III develops the heat kernel and spectral dimension on this space. The on-diagonal heat

trace scales as Tr
(
e−s∆

)
∼ s−dS/2 at short time, defining the spectral dimension dS . By choosing the

fiber metric h to minimize an objective function toward a target dS , an emergent effective geometry

arises (as in spectral geometry on fractals). Section IV explains the fractional-time dynamics using

a Gr"unwald–Letnikov kernel and associated recursion equations, and how an information-theoretic

coupling factor (analogous to pointwise mutual information) can modulate the base-fiber coupling.

Section V outlines experimental tests. We emphasize interferometer and atomic clock setups

as sensitive probes of fractal-time effects. If fractal time is real, we predict characteristic 1/f -

type power-law noise in measured signals; if an extra Golden-K structure (with scale factor Φ) is

present, additional log-periodic oscillations should appear in the spectrum. We describe how one

would analyze data (e.g. log-log fitting of spectral density, or Lomb periodograms on log-frequency)

to reveal these signatures, and what a null result would imply.

Section VI delves into the Golden-K Hypothesis (GKH). We explain GKH’s idea that nature

exhibits discrete scale invariance under powers of the golden ratio Φ. Embedding this into fractal-

time geometry modifies the eigenvalue spectrum so that λn+1 = Φ, λn, creating an exponential

ladder λn ∝ Φn. This leads to small, log-periodic oscillations in the spectral dimension and other

observables. We present the mathematical formulation of these effects, including explicit equations

for the log-periodic modulation.

Finally, Section VII discusses outlook and broader implications. We consider possible falsification

(e.g. no observed 1/f signals), extension to a latent third time t3, and connections to deeper theories

(e.g. E8 geometry and fractal models). As a young researcher’s work, minor stylistic imperfections

remain, but the physics arguments and mathematics are intended to be consistent and rigorous.
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II. MATHEMATICAL FRAMEWORK

Let (t1, t2) be coordinates on the total manifold, with t1 ∈ (real time) and t2 the fractal-time

coordinate. We endow this space with a metric

ds2 = −, dt21 + h(t1, t2), dt
2
2, (1)

so that gAB = (−1, h) and
√
−g =

√
h. The fiber-scale function h(t1, t2) > 0 is a function to be

determined (it may be set by minimizing a suitable criterion).

We introduce a generalized Laplace–Beltrami operator ∆α
LB that includes a fractional derivative

of order 0 < α ≤ 1 along t2. For a scalar field Φ(t1, t2) we define, schematically,

∆α
LB,Φ = − 1√

−g
∂A

(√
−g, gAB,∇α

BΦ
)
, (2)

where the index A runs over t1, t2 and ∇α
t2 denotes a fractional derivative along the t2 coordinate.

More explicitly, in our simple metric this takes the form

∆α
LB,Φ = −∂2

t1Φ− κ(t1), D
α
t2Φ, (3)

where κ(t1) is an effective coupling (which may be constant) and Dα
t2 is a fractional derivative of

order α in t2. For example, one can use the Gr"unwald–Letnikov (GL) definition:

Dα
t2f(t2) = lim

∆→0

1

∆α

⌊t2/∆⌋∑
k=0

(−1)k
(
α

k

)
, f(t2 − k∆), (4)

with
(
α
k

)
= Γ(α + 1)/[Γ(k + 1)Γ(α − k + 1)]. Alternatively, one may use the Riemann–Liouville

formula for 0 < α < 1:

Dα
t2f(t2) =

1

Γ(1− α)

d

dt2

∫ t2

0
(t2 − τ)−αf(τ), dτ. (5)

Using this fractional Laplacian, we construct an action for a (real) scalar field Φ:

S =
1

2

∫
dt1, dt2,

√
−g,

[
Φ,∆α

LBΦ
]
. (6)

Integration by parts (assuming fields vanish at infinity or are periodic) shows that ∆α
LB is self-adjoint

(Hermitian) with respect to the measure
√
−g, dt1dt2. This action is also formally invariant under

reparameterizations of t1 and t2 that preserve the metric signature, i.e. it is generally covariant on

the two-dimensional (t1, t2) space.

The equations of motion are thus

∆α
LBΦ = 0, (7)
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or in expanded form using (3):

−∂2
t1Φ− κ(t1), D

α
t2Φ = 0. (8)

The Hermitian nature of the operator ensures a well-defined inner product and real eigenvalues. The

coupling κ(t1) can be a function of the base time (for example modulated by information content,

as in Sec.,IV below), providing a rich dynamics. In what follows we analyze the consequences of

this fractional-time geometry.

III. SPECTRAL DIMENSION AND EMERGENT GEOMETRY

To analyze the geometry induced by fractal time, we study the heat kernel of the operator ∆α
LB.

Define the heat trace

Z(s) = Tr
[
e−s∆α

LB
]
=

∑
n

e−sλn , (9)

where λn are the eigenvalues. The spectral dimension dS is extracted from the short-time (small-s)

asymptotics of Z(s) or the on-diagonal heat kernel. In general one has

Z(s) ∼ s−dS/2, dS = −2
d lnZ

d ln s

∣∣∣
s→0

, (10)

so that in an ordinary D-dimensional Euclidean space dS = D. For our fractal-time manifold, dS

can differ from the topological dimension 2.

We use this fact to determine the fiber metric h. In particular, we set a target spectral dimension

dtarget (for example dtarget = 2 to mimic two macroscopic time directions) and adjust h to achieve

it. Concretely, one may define an objective function

O[h] =
(
dS [h]− dtarget

)2
, (11)

where dS [h] is the spectral dimension computed for metric h. By minimizing O over possible

h(t2) (e.g. using variational or numerical methods), an emergent fiber metric is obtained such that

the heat-trace behavior matches the desired dimension. This is analogous to the idea in spectral

geometry that one can “hear” the dimension of a space from the heat kernel.

In practice, the minimization yields a relation between the local scale factor h and the fractional

order α and coupling κ. The result is a consistent fractional geometry in which the effective metric

is determined by the spectral requirement. This emergent geometry can then be used to compute

other quantities, such as curvature invariants or propagation kernels, in the next sections.
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IV. FRACTIONAL TIME DYNAMICS

Having set up the geometry, we now describe dynamics in the fractal-time dimension. We use

a Gr"unwald–Letnikov (GL) formulation to implement the fractional derivative. In practice, one

discretizes t2 in small steps ∆t2 and applies the fractional difference. For example, the evolution of

a field ϕ(t1, t2) in discrete form obeys

ϕ(t1, t2 +∆) =

N∑
k=0

(−1)k
(
α

k

)
, ϕ

(
t1, t2 + (N − k)∆

)
!, (12)

where ∆ = ∆t2 and N = ⌊t2/∆⌋. In the continuum limit this reproduces Dα
t2ϕ in (3). The key

feature is that the update at (t1, t2 +∆) depends on all previous values along t2, encoding a long

memory kernel as expected for fractional calculus. Equivalently, one can write a linear fractional

recurrence relation by expanding to first order in ∆:

ϕn+1 − ϕn =
κ, (∆)α

Γ(1 + α)

n∑
k=0

(
α

k

)
, ϕn−k, (13)

where ϕn = ϕ(t1, n∆), showing explicitly the memory effect.

In addition, we allow the coupling κ(t1) to be modulated by information content. Analogous

to the concept of pointwise mutual information (PMI) in information theory, we introduce a phe-

nomenological dependence

κ(t1) = κ0, exp
[
αPMI, I(t1)

]
, (14)

where I(t1) is a measure of information flow (e.g. the local Shannon entropy rate of some field

configuration) and αPMI is a dimensionless parameter. This reflects the idea that when more

information is being processed at time t1, the fractal-time coupling may strengthen or weaken. The

precise choice of I(t1) is left open (it could be, for instance, the entropy of the quantum state

or a mutual information between scales), but qualitatively it provides a feedback loop between

information and the fractional dynamics.

To summarize, fractional-time propagation is governed by recurrence equations with a GL kernel,

and the base-fiber coupling κ can vary according to information content. In the next section we

discuss how these ingredients lead to experimental signatures.

V. EXPERIMENTAL PREDICTIONS

We now turn to how fractal time might be tested experimentally. The key idea is that an

additional fractal-time degree of freedom will introduce low-frequency (long-time-scale) correlations
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in time-series data. Two promising platforms are precision interferometry and high-stability atomic

clocks, both of which measure time or phase with extreme accuracy. In each case we expect

deviations from standard noise behavior that can be sought in the data.

• Fractal-time signature (no golden scaling). If the fractal fiber exists, measured signals (e.g.

phase in an interferometer or tick intervals in a clock) will have a power spectral density

(PSD) P (f) with a characteristic 1/fβ behavior at low frequencies. In many fractal or

chaotic systems one finds β ≈ 1 (“pink noise”) because each octave of frequency contributes

equally to the variance. Concretely, one expects for f ≪ fc (the cutoff scale)

P(f) ∝ f−β, β ≈ 1.

• Golden-K (GKH) signature. If the Golden K Hypothesis also applies, the golden ratio Φ = (1 +
√
5)/2 introduces discrete scale invariance. This leads to log-periodic modulations on top of the

power-law. For example, one may model the PSD as

P(f) = A f−β
[
1 + ϵ cos

(
2π ln f
lnΦ + δ

)]
,

• Null result. If fractal time is not present, both interferometer and clock noise will follow stan-

dard models (white noise, 1/f noise from known sources, etc.) without unexplained structure.

Concretely, one would find either a flat PSD (β ≈ 0) or known flicker behaviors consistent with

conventional physics. The Golden-K search should then see no significant peak at lnΦ. Thus a null

outcome is no extra 1/f beyond instrumentation, and no Φ-periodic modulation in the residuals.

For atomic clocks, a similar analysis applies. Instead of phase, one examines timing deviations

or the Allan deviation σ(τ). A pure 1/f power law in frequency corresponds to a characteristic

dependence in time such as σ(τ) ∝ τ0 (flicker frequency noise) or related behaviors. Deviations

from these baselines on a log-log plot (i.e. a nonzero slope) might indicate fractal effects.

In data analysis one would typically fit P (f) to a power-law model and then examine the residuals

for oscillations in ln f . For example, one can compute the Lomb periodogram of lnP versus ln f

to test for a peak at frequency 2π/ lnΦ. Standard statistical techniques can assess the significance

of any observed log-periodic amplitude ϵ. Thus the predictions above are concrete: a fitted slope

β ≈ 1 and a periodic pattern with period lnΦ would be smoking-gun evidence for fractal-time

and Golden-K effects, respectively. In practice, a spectral slope near β = 1 would be considered

evidence for fractal-time, while a clear periodicity with period lnΦ would support the Golden-K

hypothesis.
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VI. GOLDEN-K HYPOTHESIS AND DISCRETE SCALE INVARIANCE

The Golden-K Hypothesis (GKH) posits that the golden ratio Φ = (1 +
√
5)/2 plays a funda-

mental role in the geometry of spacetime and physical laws. In particular, it implies discrete scale

invariance (DSI): the system is invariant under rescalings by powers of Φ. Concretely, we assume

that the fractal-time fiber is structured so that scaling t2 → Φ, t2 leaves the physics unchanged.

Equivalently, any scale Ln or eigenvalue λn on the fiber obeys

Ln+1 = Φ, Ln, λn+1 = Φ, λn, (15)

for integer n. This leads to a geometric ladder of eigenvalues spaced by Φ. By analogy, the effective

inertia or mass parameters for these modes will also scale by Φ between consecutive modes.

A consequence of DSI is that the spectrum of ∆α
LB acquires complex dimensions and log-periodic

structure. For instance, the heat trace becomes

Z(s) =
∞∑
n=0

e−sλ0Φn
, (16)

which is a discrete Mellin transform. Its dependence on s is periodic in ln s (because Φn = en lnΦ).

As Sornette and others have shown, such discrete scale invariance produces complex exponents and

log-periodic corrections to scaling. In our context, this means the spectral dimension oscillates with

scale. Expanding for small s, one finds

dS(s) = −2
d lnZ

d ln s
= d0 +A, cos!

(2π ln s

lnΦ
+ δ

)
, (17)

where d0 is the average dimension and A, δ are constants. Thus dS exhibits periodic oscillations in

ln s, with period lnΦ.

In summary, embedding the Golden-K Hypothesis into fractal-time geometry imposes a universal

scaling ratio Φ on the eigenvalue spectrum and inertial parameters. It modifies any physical ladder

of levels (masses, energies, etc.) to follow Φn, and produces measurable log-periodic signatures in

spectral observables (like oscillations in dS). This discrete scaling was anticipated above (see Sec.,V)

as the cosine terms cos(ln f/ lnΦ) in the predicted signals. Therefore, the Golden-K Hypothesis

provides clear target patterns (the log-periodic modulations) that experiments can search for.

VII. DISCUSSION AND OUTLOOK

The framework developed here is exploratory but suggests concrete avenues for further study.

A key extension is to consider a latent third time coordinate t3 in addition to (t1, t2), making
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time truly three-dimensional in the Dragan sense. In our language, this would correspond to a

rank-3 fiber bundle and could incorporate another fractal dimension with its own order parameter.

The formalism would be analogous: one would define a three-dimensional fractional Laplacian and

target a spectral dimension dtarget = 3 (or other values). Such an extension could unify the idea of

a hidden time with the present fractal-time model, though we leave detailed exploration of t3 for

future work.

It is also interesting to explore connections to deep mathematical structures. The Golden-K

Hypothesis hints at E8 and quasicrystal geometry. Our emergent metric h(t1, t2) could potentially

be related to projections of higher-dimensional lattices or to the internal geometry of a Phason field.

Moreover, fractal time shares features with approaches to quantum gravity and unification: discrete

scale invariance and anomalous dimensions appear in areas like asymptotic safety, causal dynamical

triangulations, or AdS/CFT with fractal-like boundaries. It would be valuable to see if the fractional

fiber structure emerges naturally in such theories, or if it can provide a phenomenological bridge

between gravity and quantum theory.

On the experimental side, failure to detect the predicted signals would also be instructive. For

instance, if high-precision interferometry consistently shows pure white or known colored noise with

no unexplained 1/f , that would place strong limits on any fractal-time contribution (pushing its

scale to extremely small values). Similarly, atomic clocks with negligible flicker beyond standard

limits would constrain the information-coupling parameter αPMI to be very small. Such null results

would effectively falsify or bound the fractal-time hypothesis and associated Golden-K effects at

current sensitivity levels.

In conclusion, fractal time as a fiber over real time provides a novel way to think about the nature

of time and scale. The model is mathematically self-consistent (fractional, Hermitian, covariant)

and yields distinctive signatures (power-law spectra and log-periodic modulations). Its validity can

be tested in forthcoming precision measurements, and it could serve as a phenomenological window

into deeper fractal or geometric structures in fundamental physics.

Appendix A: Fractional Calculus Primer

For completeness, we summarize some formulas of fractional calculus. The Riemann–Liouville

derivative of order α > 0 of a function f(t) is defined by

Dαf(t) = 1
Γ(n−α)

dn

dtn

∫ t
0 (t− τ)n−α−1f(τ) dτ,



9

Appendix B: Heat Kernel and Spectral Dimension

We recall that on a D-dimensional Euclidean space, the heat kernel K(t, x, x) behaves as

(4πt)−D/2 as t → 0, which defines dS = D. On fractals, Kajino and others have shown that

K(t) can oscillate or not converge to a limit. In practice, one would compute K(t) for our model

by diagonalizing ∆α
LB on a discretized grid in t2. The target dimension dtarget can be imposed by

penalizing deviations of the t → 0 slope of lnK(t) from −dtarget/2. The emergent h then reproduces

the desired short-time exponent.

Appendix C: Statistical Testing Procedures

In searching for 1/f or log-periodic signals, statistical care is needed. A typical procedure is: (1)

compute the PSD P (f) of the data; (2) fit a power law P (f) = Af−β over a frequency band and

record β and goodness-of-fit; (3) subtract the fit and examine the residual for periodic structure in

ln f using a Lomb–Scargle periodogram; (4) estimate the false-alarm probability of any detected

ln f frequency. Bootstrapping or Monte Carlo simulations of synthetic noise can set confidence

intervals. This ensures that any claimed 1/f or lnΦ-periodic signal is statistically robust.

Appendix D: Optional Latent Time Variable t3

If a third time t3 exists but is hidden at current scales, it would correspond to promoting the

fiber to two dimensions (the t2-t3 plane) with metric hab(t1, t2, t3). The fractional Laplacian would

then include derivatives along both new directions. This extension is straightforward in principle

(one adds an index a = 2, 3 and two fractional orders), but it adds complexity. We note that

Dragan’s result effectively suggests three time dims; thus a latent t3 would complete that picture.

This is left for future work.
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