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Abstract

The proposition that the universe could emerge ”from nothing”—characterized by a state
of zero total energy—has implications for cosmology. This monograph provides a proof that
the total energy of the universe must be exactly zero, derived from the principles of mod-
ern physics. The proof is constructed within the axiomatic framework of Algebraic Quan-
tum Field Theory (AQFT), augmented by the principles of Relational Quantum Mechanics
(RQM), the Thermal Time Hypothesis (TTH), the Eigenstate Thermalization Hypothesis
(ETH), and the Equivalence Principle.

We establish the ”Principle of Thermal Localization”: any localized subsystem (observer
or observed) necessarily exists in a thermal state (T > 0). This is proven through the
synthesis of Tomita-Takesaki modular theory (KMS condition), the Bisognano-Wichmann
theorem (Unruh effect), and the intrinsic kinematics of mass (Zitterbewegung and Maximal
Proper Acceleration).

We then analyze the global state of the universe. By definition, the global state is
non-local, lacking an external reference frame. We prove by contradiction that it must
correspond to the trivial thermal limit, Tglobal = 0. Via the Unruh relation and the Equiv-
alence Principle, this mandates zero net acceleration and, consequently, zero total energy
(Etotal = 0).

This result validates the ”Universe from Nothing” thesis and provides a first-principles
proof of the ”No Global Symmetries” conjecture (and the related Cobordism Conjecture),
as any conserved global charge would violate the Etotal = 0 requirement. The structure of
observation itself dictates the properties of the cosmos.
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1 Introduction: The Necessity of Nothingness
The question of the origin of the universe—why there is something rather than nothing—has
transitioned from the purely philosophical domain to a central inquiry in physics. The realiza-
tion that the positive energy density of matter and radiation might be precisely balanced by
the negative gravitational potential energy suggests that the total energy of the universe could
be exactly zero. This possibility enables the scenario of the universe emerging from a quantum
vacuum fluctuation—a ”Universe from Nothing” [1].

While compelling arguments have been advanced based on semi-classical quantum gravity
and specific cosmological models (e.g., [2, 3]), a rigorous, model-independent proof derived from
the axioms of Quantum Field Theory (QFT) has been lacking. This monograph aims to provide
such a proof, demonstrating that the condition Etotal = 0 is a necessity arising directly from
the nature of observation and locality in QFT.

The argument synthesizes several key concepts: the algebraic structure of QFT, the re-
lational interpretation of quantum mechanics, the thermodynamic nature of time, and the
geometric implications of the equivalence principle. The synthesis reveals a connection: the
conditions required for observation dictate the global properties of the cosmos.

1.1 The Argument Outline
The proof is structured around the relationship between localization, observation, and thermal
states. The logical progression, derived from the inciting arguments, is as follows:

1. Foundations in AQFT and RQM (Sections 2, 3): We adopt the axiomatic frame-
work of Algebraic Quantum Field Theory (AQFT) [4] and Relational Quantum Mechanics
(RQM) [5]. We establish that observation is mathematically equivalent to localization—
the partitioning of the total system. The vacuum structure, characterized by pervasive
entanglement (Reeh-Schlieder theorem), dictates that local algebras are Type III1 factors.

2. The Emergence of Thermal Time (Section 4): We utilize Tomita-Takesaki modular
theory, which provides an intrinsic dynamics (modular flow) associated with any state.
The Thermal Time Hypothesis (TTH) [6], physically grounded by the Eigenstate Ther-
malization Hypothesis (ETH) [7], identifies this modular flow with physical time, scaled
by temperature.

3. The Geometry of Localization (Section 5): This connection is realized geometrically
by the Bisognano-Wichmann theorem [8] and the Unruh effect [9]. Acceleration implies
temperature.

4. Mass as Intrinsic Acceleration (Section 6): We demonstrate that rest mass itself
implies intrinsic acceleration. Through the Zitterbewegung (ZBW) formalism [10, 11],
we show that mass arises from localized light-like dynamics, implying a maximal proper
acceleration and an associated intrinsic thermal horizon.

5. The Principle of Thermal Localization (Section 7): Synthesizing these elements
with the Equivalence Principle, we prove that any localized state (any subsystem, any
observer) must necessarily be a thermal state with a non-zero temperature (T > 0).
Localization implies energy, which implies acceleration, which implies a thermal state.

6. The Global State and Zero Energy (Sections 8, 9): We apply this principle to the
universe as a whole. The global state is, by definition, non-localized. Therefore, it must
correspond to the trivial thermal limit: Tglobal = 0. By the Equivalence Principle, this
mandates zero total mass-energy: Etotal = 0.
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7. Elimination of Global Symmetries (Section 10): We demonstrate that Etotal = 0
necessitates the cancellation of all conserved global charges, in line with the ”No Global
Symmetries” conjecture [12].

1.2 Axiomatic Framework
The proof relies on the following established physical principles and frameworks, which we take
as axiomatic:

Axiom 1.1 (Axiomatic Quantum Field Theory (AQFT)). Physical systems are described by
the Haag-Kastler framework, defining a net of local von Neumann algebras satisfying isotony, lo-
cality, Poincaré covariance, the spectrum condition, and the existence of a cyclic and separating
vacuum state.

Axiom 1.2 (Relational Quantum Mechanics (RQM)). The state of a quantum system is
observer-dependent. Physical reality is constituted by the network of interactions and cor-
relations between systems. Observation requires the localization of the system relative to an
observer.

Axiom 1.3 (The Equivalence Principle (EP)). The effects of gravity (mass-energy) are locally
indistinguishable from the effects of acceleration.

Axiom 1.4 (The Eigenstate Thermalization Hypothesis (ETH)). In a sufficiently complex
(chaotic) quantum system, local observables thermalize. The reduced density matrix of a local-
ized subsystem approximates a canonical thermal state.

Axiom 1.5 (The Thermal Time Hypothesis (TTH)). The physical proper time experienced by
an observer is identified with the modular flow generated by the observer’s local state, scaled
by the local temperature.

Based on these axioms, we proceed to construct the proof.

2 The Algebraic Structure of Quantum Spacetime
The foundation of our argument rests upon the framework of Algebraic Quantum Field Theory
(AQFT). This approach emphasizes the primacy of the algebraic structure of observables, which
is essential for analyzing the relationship between states, observables, and dynamics without
relying on specific field constructions.

2.1 The Haag-Kastler Axioms
We begin by formally defining the structure of a local quantum field theory on Minkowski
spacetime M ∼= R1,D−1.

Definition 2.1 (Haag-Kastler Net of Algebras [4]). Let K denote the directed set of all open,
relatively compact, causally complete regions (e.g., double cones) in M. An AQFT is defined
by an isotonic net of von Neumann algebras {M(O)}O∈K acting on a common Hilbert space
H. This net must satisfy the axioms specified in Axiom 1.1:

A1. Isotony: If O1 ⊂ O2, then M(O1) ⊂ M(O2). The C∗-algebra of quasi-local observables
is A =

∪
O∈K M(O)

norm. The global algebra in the vacuum representation π0 is M = π0(A)′′.

A2. Locality (Microcausality): If O1 ⊂ O′
2 (causal complement), then [M(O1),M(O2)] =

0.
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A3. Poincaré Covariance: There exists a strongly continuous unitary representation U(a,Λ)

of the Poincaré group P↑
+ on H such that U(a,Λ)M(O)U(a,Λ)−1 = M(ΛO + a).

A4. Spectrum Condition (Stability): The generators of spacetime translations Pµ satisfy
Spec(P ) ⊂ V+ (the closed forward light cone). This ensures positivity of energy.

A5. Vacuum State: There exists a unique, invariant vector |Ω⟩ ∈ H, Pµ |Ω⟩ = 0.

A6. Cyclicity of the Vacuum: M|Ω⟩ = H.

2.2 The Reeh-Schlieder Theorem and Vacuum Entanglement
A consequence of these axioms, particularly the interplay between the Spectrum Condition
(Axiom A4.) and Locality (Axiom A2.), is the Reeh-Schlieder theorem. This theorem reveals
the highly entangled nature of the quantum vacuum and is crucial for the subsequent application
of modular theory.

Theorem 2.2 (Reeh-Schlieder Theorem [13]). Under the Haag-Kastler axioms of Definition
2.1, the vacuum vector |Ω⟩ is both cyclic and separating for any local algebra M(O), provided
the causal complement O′ is non-empty.

Proof. The proof relies on the analytical properties of vacuum expectation values (Wightman
functions) guaranteed by the Spectrum Condition and the edge-of-the-wedge theorem [14].

1. Analyticity from the Spectrum Condition: We analyze the vacuum expectation
value W (x1, . . . , xn) = ⟨Ω|A1(x1) . . . An(xn) |Ω⟩. By translational covariance, this depends only
on the coordinate differences ξj = xj − xj+1. The Fourier transform W̃ (p1, . . . , pn−1) vanishes
unless the momenta pj are in the forward light cone V+, due to the Spectrum Condition (Axiom
A4.).

By the Paley-Wiener theorem for distributions with restricted support [15], the function
W (ξ1, . . . , ξn−1) is the boundary value of a function W (z1, . . . , zn−1) holomorphic in the forward
tube T +

n−1 = RD(n−1) + iV +
n−1.

2. Cyclicity: We must show that DO = M(O) |Ω⟩ is dense in H. Suppose |ψ⟩ ∈ H is
orthogonal to DO, i.e., ⟨ψ|A |Ω⟩ = 0 for all A ∈ M(O).

Consider the function F (x) = ⟨ψ|U(x)A |Ω⟩. F (x) is the boundary value of a function F (z)
analytic in the forward tube T +. If A is localized such that A(x) = U(x)AU(x)−1 remains in
M(O) for x in an open neighborhood N of the origin, then F (x) = 0 for x ∈ N .

Since F (x) vanishes on an open set N of the real boundary of the domain of holomorphy T +,
the edge-of-the-wedge theorem implies that the analytic continuation F (z) vanishes identically
in T +. Consequently, F (x) = 0 for all real x.

This implies ⟨ψ|A(x) |Ω⟩ = 0 globally. Since the local algebras generate the global algebra
M, and |Ω⟩ is cyclic for M (Axiom A6.), M|Ω⟩ is dense in H. As |ψ⟩ is orthogonal to this
dense subset, |ψ⟩ = 0. This establishes cyclicity.

3. Separating Property: We must show that if A |Ω⟩ = 0 for A ∈ M(O), then A = 0.
This is equivalent to showing |Ω⟩ is cyclic for the commutant M(O)′. If O′ is non-empty, then
by the cyclicity argument applied to O′, the set M(O′) |Ω⟩ is dense in H.

Let B ∈ M(O′). By Locality (Axiom A2.), [A,B] = 0. We evaluate the action of A on the
dense set:

A(B |Ω⟩) = B(A |Ω⟩). (1)
By assumption, A |Ω⟩ = 0. Therefore, A(B |Ω⟩) = 0. Since A annihilates a dense set of vectors
in H, it must be the zero operator, A = 0.

Remark 2.1 (Vacuum Entanglement). The Reeh-Schlieder theorem implies that the vacuum
state is highly entangled across spatially separated regions. Local operations in O can approx-
imate any state in the global Hilbert space H.
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2.3 Classification of Local Algebras: Type III1 Factors
The pervasive entanglement structure dictates the classification of the local algebras. Unlike
the Type I factors of non-relativistic quantum mechanics (which possess minimal projections
corresponding to pure states), local algebras in QFT are generically Type III factors.

Definition 2.3 (Connes Classification and Modular Spectrum [16]). Let M be a von Neumann
algebra. The modular spectrum S(M) is defined as the intersection of the spectra of all modular
operators ∆ω associated with faithful normal states ω on M.

• Type III1: S(M) = R+ = [0,∞).

Theorem 2.4 (Classification of Local Algebras [4, 17]). Local algebras M(O) associated with
bounded regions (e.g., double cones) in relativistic QFT (continuum limit, D > 2) are isomorphic
to the unique hyperfinite Type III1 von Neumann factor.

Proof. The proof relies on the geometric action of the modular group established by the Bisognano-
Wichmann theorem (see Section 5.1). For the algebra M(W ) associated with a Rindler wedge
W , the modular operator ∆ is related to the generator of Lorentz boosts K: ∆ = e−2πK .
Since Spec(K) = R, the spectrum of the modular operator is Spec(∆) = R+. By Definition
2.3, M(W ) is a Type III1 factor. The classification extends to double cones M(O) via the
intersection property of wedge algebras.

The Type III1 structure is the manifestation of the fact that localization inevitably leads
to a mixed, thermal-like state due to vacuum entanglement.

3 Observation as Localization
Before proceeding to the thermal nature of localized states, we must establish the premise that
the act of observation itself constitutes an act of localization. This connection is central to
the interpretation of the physical consequences of the AQFT framework and is formalized by
incorporating the principles of Relational Quantum Mechanics (RQM).

3.1 The Relational Structure of Physical Reality
We adopt the perspective of Relational Quantum Mechanics (RQM) [5] (Axiom 1.2), which
posits that the properties and state of a quantum system are defined relative to an interacting
observer system.

Postulate 3.1 (Relationality of States). There is no observer-independent state of a physi-
cal system. A system S possesses properties only relative to an observer O through physical
interaction.

3.2 Localization as the Condition for Observation
We connect this relational standpoint to the structure of AQFT.

Theorem 3.1 (Observation-Localization Equivalence). The act of observation, defined as the
acquisition of information about a system S by an observer O, is mathematically equivalent to
the localization of the degrees of freedom being probed within a bounded spacetime region O.

Proof. 1. AQFT Perspective: In the Haag-Kastler framework (Definition 2.1), all physical
observables are elements of local algebras M(O). To measure an observable A is to implement
an operation localized within the region O where A is defined. The observer O must interact
with the system S within this finite region. This mathematically defines a localization of the
relevant degrees of freedom.
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2. RQM Perspective: According to Postulate 3.1, an observation requires an interaction
between S and O. This interaction, governed by the laws of relativistic QFT, must respect
causality and locality (Axiom A2.). The interaction defines a localized spacetime domain Oint.
The description of the system S relative to O is inherently tied to this localized interaction.

3. Partitioning the System: The act of defining a perspective or frame of reference
requires partitioning the total system U into the observed subsystem S (associated with a local
algebra M(S)) and the environment/observer O (associated with the commutant M(S)′). This
partitioning is the definition of localization. There is no ”view from nowhere”; every observation
is from a localized standpoint.

Corollary 3.2 (Triviality of Global Observation). A truly global perspective—one encompassing
the entire universe—is one from which no localized observation can be made.

Proof. The global algebra M describes the totality of the system. An observation requires
localization relative to an external observer (Theorem 3.1). Since there is no system external
to the global system, no localization is possible.

4 The Emergence of Thermal Time
We now explore how the algebraic structure of QFT gives rise to an intrinsic dynamics that
can be identified with the flow of time. This identification relies on the framework of Tomita-
Takesaki modular theory and its physical interpretation via the Thermal Time Hypothesis
(TTH), grounded by the Eigenstate Thermalization Hypothesis (ETH).

4.1 Tomita-Takesaki Modular Theory
Tomita-Takesaki theory [18, 19] provides the tools to extract dynamics directly from the struc-
ture of the state, utilizing the cyclic and separating property guaranteed by the Reeh-Schlieder
theorem (Theorem 2.2).

Definition 4.1 (Modular Objects [18]). Given a von Neumann algebra M and a cyclic and
separating vector |Ω⟩ (defining a faithful normal state ω), the Tomita operator S is the closure
of the anti-linear map defined densely by:

S(A |Ω⟩) = A† |Ω⟩ , ∀A ∈ M. (2)

The polar decomposition of S is S = J∆1/2.

• ∆ = S†S is the modular operator (positive, self-adjoint).

• J is the modular conjugation (anti-unitary involution).

• K = − ln∆ is the modular Hamiltonian (self-adjoint).

Theorem 4.2 (Tomita-Takesaki Theorem [18]). The modular objects satisfy:

1. Modular Duality: JMJ = M′ (the commutant of M).

2. Modular Automorphism Group: ∆isM∆−is = M, for all s ∈ R.

Definition 4.3 (Modular Flow). The modular flow σωs is the one-parameter group of automor-
phisms of M generated by K:

σωs (A) := ∆isA∆−is = eisKAe−isK . (3)

For Type III factors, this flow is universal (modulo inner automorphisms), as established
by the Connes Cocycle Radon-Nikodym Theorem [16], suggesting it represents a dynamical
property.
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4.2 The KMS Condition and Thermal Equilibrium
The connection between the abstract modular flow and thermodynamics is established via the
Kubo-Martin-Schwinger (KMS) condition [20, 21], which provides an algebraic characterization
of thermal equilibrium.

Definition 4.4 (KMS Condition). A state ω on M satisfies the KMS condition at inverse
temperature β with respect to a flow αt if for any A,B ∈ M, there exists a function FA,B(z)
holomorphic in the strip Sβ = {z ∈ C|0 < Im(z) < β}, satisfying the boundary conditions:

FA,B(t) = ω(Aαt(B)) and FA,B(t+ iβ) = ω(αt(B)A). (4)

The crucial link is that the modular flow inherently satisfies the KMS condition.

Theorem 4.5 (KMS-Modular Equivalence (Takesaki-Winnink Theorem) [19]). A faithful nor-
mal state ω satisfies the KMS condition at β = 1 (in normalized modular time s) with respect
to its unique modular flow σωs .

Proof. The proof involves constructing the function FA,B(z) = ω(AeizKB). The analyticity
properties required by the KMS condition follow from the properties of the modular operator
∆ = e−K . The boundary condition at z = t + i (corresponding to β = 1) is satisfied due to
the definition of the modular flow and the properties of the cyclic and separating vector |Ω⟩
(specifically K |Ω⟩ = 0).

Corollary 4.6 (Localized States are KMS States). The restriction of the vacuum state to any
local algebra M(O) (for which the vacuum is cyclic and separating by Reeh-Schlieder) is a KMS
state with respect to the modular flow generated by that algebra.

This establishes, purely algebraically, that localization within the quantum vacuum neces-
sarily results in a state characterized by thermal equilibrium properties.

4.3 The Thermal Time Hypothesis (TTH) and ETH
To connect the abstract modular flow σωs to physical reality, we invoke the Thermal Time
Hypothesis (TTH) (Axiom 1.5) [6].

Postulate 4.1 (Thermal Time Hypothesis (TTH) [6]). The physical proper time τ experienced
by an observer associated with a localized state ω is identified with the modular flow σωs . The
relationship between the physical time τ and the modular time s is determined by the local
temperature T (or inverse temperature β = 1/(kBT )) associated with the state ω.

dτ := h̄βds =
h̄

kBT
ds. (5)

The TTH posits that time emerges from the thermodynamic state of the observer’s lo-
cal environment. Its physical justification lies in the mechanisms of quantum thermalization,
specifically the Eigenstate Thermalization Hypothesis (ETH) (Axiom 1.4). ETH explains how
complex quantum systems achieve local thermal equilibrium even when the global state is pure
[7, 22].

Proposition 4.7 (ETH implies Thermalization of Subsystems). If ETH holds, the reduced
density matrix ρA of a small subsystem A, obtained by tracing out the environment B from a
global eigenstate |E⟩, approximates a canonical thermal density matrix:

ρA = TrB(|E⟩ ⟨E|) ≈ ρthA (β(E)) =
1

ZA(β)
e−βHA . (6)
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ETH demonstrates that localization itself, through the entanglement with the environment,
produces a thermal state. This provides the mechanism aligning the abstract modular flow with
physical time evolution.
Theorem 4.8 (Alignment of Modular and Physical Flows via ETH). If ETH holds, the modular
Hamiltonian KA of a subsystem A is approximately equivalent to the physical Hamiltonian HA

scaled by the inverse temperature β: KA ≈ βHA + C.
Proof. By definition, the modular Hamiltonian associated with ρA is KA = − ln ρA. Substitut-
ing the approximate thermal form from ETH (Eq. 6):

KA ≈ − ln
(
ρthA (β)

)
= − ln

(
1

ZA(β)
e−βHA

)
(7)

= βHA + (lnZA(β))I. (8)

Let C = (lnZA(β))I. The modular flow is:

σs(A) = eiKAsAe−iKAs ≈ ei(βHA+C)sAe−i(βHA+C)s. (9)

Since C is a scalar operator, it commutes with A:

σs(A) ≈ eiβHAsAe−iβHAs. (10)

The physical time evolution is αt(A) = eiHAt/h̄Ae−iHAt/h̄. Comparing the flows, they are
identical under the identification t = h̄βs. This is precisely the TTH relation (Eq. 5).

5 The Geometry of Localization: Acceleration and Tempera-
ture

The abstract relationship between localization, modular flow, and temperature finds a con-
crete realization in the context of accelerated observers. This connection, formalized by the
Bisognano-Wichmann theorem and the Unruh effect, links the algebraic structure directly to
spacetime kinematics and the Equivalence Principle.

5.1 The Bisognano-Wichmann Theorem
We consider the localization within a Rindler wedge, the spacetime region accessible to a uni-
formly accelerated observer.
Definition 5.1 (Rindler Wedge). The right Rindler wedge WR in Minkowski spacetime M is
the region WR = {x ∈ M|x1 > |x0|}.

The Bisognano-Wichmann (BW) theorem provides an explicit geometric interpretation of
the modular objects associated with the vacuum state restricted to the algebra of the wedge.
Theorem 5.2 (Bisognano-Wichmann (BW) Theorem [8, 23]). For the algebra M(WR) asso-
ciated with the right Rindler wedge and the Minkowski vacuum state |Ω⟩M , the modular objects
are:

1. The modular operator is ∆ = e−2πK1, where K1 is the generator of Lorentz boosts in the
x1 direction (appropriately normalized).

2. The modular conjugation J corresponds to the CPT reflection across the edge of the wedge.
Proof. The proof involves demonstrating that the geometric transformations generated by K1

(boosts) map WR onto itself and satisfy the defining properties of the modular automorphism
group. The analytic continuation of the boost parameter to imaginary values relates the flow to
the KMS condition, leveraging the analyticity properties established by the Spectrum Condition.
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5.2 The Unruh Effect
The BW theorem, combined with the KMS-Modular Equivalence, leads directly to the Unruh
effect, which establishes the physical temperature perceived by an accelerated observer.

Theorem 5.3 (Unruh Effect [9]). An observer moving with uniform proper acceleration a
perceives the Minkowski vacuum |Ω⟩M as a thermal bath (KMS state) at the Unruh temperature
TU :

TU =
h̄a

2πkBc
. (11)

Proof. We utilize the results of the BW theorem and the KMS-Modular Equivalence. 1. Mod-
ular Hamiltonian: From Theorem 5.2, the modular Hamiltonian for the vacuum state and
the wedge algebra is Kmod = 2πK1. 2. KMS Condition: By Theorem 4.5, the vacuum state
ωM satisfies the KMS condition at βmod = 1 with respect to the modular flow generated by
Kmod. 3. Physical Hamiltonian: An observer with constant proper acceleration a follows
an orbit of the boost transformation. The physical Hamiltonian HR generating evolution with
respect to the observer’s proper time τ is related to the boost generator K1 by the acceleration
a:

HR =

(
h̄a

c

)
K1. (12)

4. Relating Hamiltonians: We express the modular Hamiltonian in terms of the physical
Hamiltonian:

Kmod = 2πK1 =

(
2πc

h̄a

)
HR. (13)

5. Scaling of KMS States: If a state is KMS at β1 w.r.t. H1, it is KMS at β2 = λβ1 w.r.t.
H2 = H1/λ. Applying this with λ = (2πc/h̄a): The state ωM is KMS with respect to HR at
the rescaled inverse temperature βU :

βU = βmod ·
(
2πc

h̄a

)
=

2πc

h̄a
. (14)

6. Unruh Temperature: The corresponding temperature is TU = 1/(kBβU ) = h̄a/(2πkBc).

The Unruh effect establishes that acceleration, a kinematic property resulting from localiza-
tion relative to an inertial frame, necessarily induces a thermal state.

6 The Kinematics of Mass and Intrinsic Thermal States
We now demonstrate that the connection between localization, acceleration, and temperature
is inherent to the existence of mass itself. The concept of rest mass implies an intrinsic accel-
eration and, consequently, an intrinsic thermal state. This is realized kinematically through
Zitterbewegung (ZBW).

6.1 Zitterbewegung (ZBW) Formalism
The Zitterbewegung phenomenon [10] reveals that the instantaneous motion of a relativistic
fermion is light-like. The observed rest mass emerges from the localization and time-averaging
of this intrinsic light-like dynamic. This formalism is developed using Spacetime Algebra (STA)
[11, 24].

Definition 6.1 (Dirac Hamiltonian). The Hamiltonian for a relativistic fermion of mass m is
HD = cα · p + βmc2.
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Proposition 6.2 (Instantaneous Light-Like Velocity). The velocity operator derived from the
Dirac Hamiltonian has eigenvalues ±c.

Proof. In the Heisenberg picture, the velocity operator is v̂(t) = dx̂
dt = i

h̄ [HD, x̂]. Evaluating the
commutator:

[HD, x
k] = [cα · p, xk] = −ih̄cαk. (15)

Thus, v̂k(t) = cαk. Since (αk)2 = I, the eigenvalues are ±c.

Proposition 6.3 (Zitterbewegung Oscillation). The velocity operator undergoes rapid oscilla-
tion (ZBW) with a characteristic frequency ωZBW .

Proof. The time evolution of the velocity operator is:

dα

dt
=
i

h̄
[HD,α] =

2i

h̄
(cp −HDα). (16)

The solution for a free particle involves an oscillatory term e−2iHDt/h̄. In the rest frame (p =
0,HD = mc2), the angular frequency is:

ωZBW =
2mc2

h̄
. (17)

6.2 Maximal Proper Acceleration (MPA) and Intrinsic Temperature
The ZBW represents an intrinsic circulatory motion localized within a scale defined by the
Compton wavelength. We analyze the acceleration required to maintain this localization.

Definition 6.4 (Zitterbewegung Radius). The spatial localization scale of the ZBW is the
Zitterbewegung radius RZBW :

RZBW =
c

ωZBW
=

h̄

2mc
=

1

2
λC . (18)

We derive the concept of Maximal Proper Acceleration (MPA) [25] directly from the ZBW
kinematics.

Theorem 6.5 (Derivation of Amax (Mass-Acceleration Equivalence)). The Maximal Proper
Acceleration Amax is realized by the centripetal acceleration required to localize the light-like
dynamics at the Zitterbewegung scale RZBW .

Amax =
2mc3

h̄
. (19)

Proof. We model the dynamics by a centripetal acceleration a = v2/R. We impose the kine-
matic constraints derived from the ZBW formalism: v = c (Proposition 6.2) and R = RZBW

(Definition 6.4).

Amax :=
c2

RZBW
=

c2

h̄/(2mc)
=

2mc3

h̄
. (20)

This theorem establishes a equivalence: the existence of rest mass m implies an intrinsic
acceleration scale Amax.
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Theorem 6.6 (Intrinsic Temperature of Mass). The configuration defined by the intrinsic
acceleration Amax corresponds to a local thermal state characterized by the temperature Tmax,
realized via the Unruh effect.

kBTmax =
mc2

π
. (21)

Proof. We apply the Unruh effect formula (Theorem 5.3) to the intrinsic acceleration Amax:

Tmax = TU (Amax) =
h̄Amax

2πkBc
. (22)

Substituting the expression for Amax (Eq. 19):

Tmax =
h̄

2πkBc

(
2mc3

h̄

)
=
mc2

πkB
. (23)

The ZBW formalism demonstrates that massive particles are inherently dynamic systems
characterized by intrinsic acceleration and an associated thermal horizon. This provides a
concrete, kinematic realization of the connection between mass, localization, and temperature.

7 The Principle of Thermal Localization
We now synthesize the results of the preceding sections—the algebraic structure of QFT, the
nature of thermal time, the geometry of acceleration, and the kinematics of mass—to establish
a universal principle: localization necessarily implies a thermal state.

7.1 The Synthesis of Principles
The argument relies on the conjunction of the established axioms and theorems.

Theorem 7.1 (The Universal Thermal Nature of Localized States). Any localized state (subsys-
tem) within the universe, characterized by non-zero energy-momentum, is necessarily perceived
as a thermal state with a non-zero temperature (T > 0) from the perspective of an observer
localized within or interacting with that state.

Proof. We present the proof through the convergence of complementary chains of reasoning.
Chain 1: Algebraic Structure and Entanglement (AQFT, ETH, TTH)

1. Observation is Localization: The act of observation requires the localization of the
system relative to an observer (Theorem 3.1).

2. Localization implies Entanglement: By the Reeh-Schlieder theorem (Theorem 2.2),
a localized subsystem O is necessarily entangled with its environment O′.

3. Algebraic Thermalization (KMS Condition): The restriction of the global state to
the local algebra M(O) (a Type III1 factor) satisfies the KMS condition with respect to
the modular flow (Theorem 4.5). This is the algebraic definition of a thermal state.

4. Physical Thermalization (ETH/TTH): The Eigenstate Thermalization Hypothesis
(Axiom 1.4) provides the physical mechanism, ensuring the reduced density matrix ρO is
locally thermal (Proposition 4.7). The Thermal Time Hypothesis (Axiom 1.5) identifies
the physical time flow with the modular flow, scaled by the temperature T associated with
this KMS state (Theorem 4.8).
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Chain 2: Kinematics and the Equivalence Principle (EP, Unruh, ZBW)

1. Localization implies Energy: Any non-trivial localized state possesses non-zero local
energy-momentum (EO > 0) relative to the vacuum (Spectrum Condition, Axiom A4.).

2. Energy implies Acceleration (Equivalence Principle): By the Equivalence Prin-
ciple (Axiom 1.3), the presence of energy-momentum is locally indistinguishable from
acceleration (a > 0).

3. Mass implies Acceleration (ZBW): Furthermore, as demonstrated in Section 6 (The-
orem 6.5), the existence of mass m intrinsically implies an acceleration Amax associated
with the Zitterbewegung dynamics.

4. Acceleration implies Temperature (Unruh Effect): By the Unruh effect (Theo-
rem 5.3), any accelerated frame perceives a thermal bath at TU ∝ a. Since a > 0, the
temperature is strictly positive, TU > 0.

Conclusion: The convergence of these arguments establishes that the physical act of lo-
calization (and thus observation) is intrinsically and universally linked to the emergence of
thermal properties. To be a localized observer or observable is to exist in a state that is, from
that localized perspective, fundamentally thermal, T > 0.

7.2 Symmetry of Observation
The relationship between the observer and the observed is symmetric, consistent with RQM
(Axiom 1.2).

Theorem 7.2 (Symmetry of Thermal Observation). If observer A perceives system B as a
thermal state, then system B perceives observer A as a thermal state.

Proof. This follows from the structure of Tomita-Takesaki theory. The localization defines a
partitioning into the algebra MA and its commutant M′

A (which contains MB). The modular
conjugation J implements the duality JMAJ = M′

A (Theorem 4.2). The action of J swaps the
roles of the system and the environment. If the state restricted to MA is KMS (thermal), the
state restricted to M′

A is also KMS with respect to the conjugate modular flow.

8 The Global State and the Trivial Thermal Limit
Having established the Principle of Thermal Localization—that any localized subsystem is nec-
essarily thermal—we now apply this principle to the universe considered as a whole system.

8.1 The Non-Locality of the Global State
We define the global state as the state encompassing all degrees of freedom in the universe.

Definition 8.1 (Global State). The Global State |ΨGlobal⟩ is the state associated with the
global algebra M of the entire universe U . It represents the totality of all correlated systems.

Lemma 8.2 (Non-Locality of the Global State). The Global State is inherently non-local.

Proof. By definition, the universe U is not a subsystem of any larger system. It has no external
environment and thus lacks the relational context required for localization. Localization requires
partitioning the system relative to an external observer (Theorem 3.1). Since no such external
observer exists for the global state, it cannot be localized.
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8.2 The Athermal Nature of the Totality
We now derive the necessary thermal properties of the global state by extremizing the Principle
of Thermal Localization.

Theorem 8.3 (The Athermal Global State Theorem). The global state of the universe must
correspond to the trivial thermal limit, characterized by zero temperature (Tglobal = 0).

Proof. We present the argument by contradiction.
1. Premise (Proven): Any localized state is necessarily a thermal state with T > 0.

(Theorem 7.1).
2. Hypothesis (to be falsified): Assume the global state of the universe is a thermal

state with Tglobal > 0.
3. Contradiction: If Tglobal > 0, then by the Premise (Theorem 7.1), the global state must

be a localized state. This implies the ”global state” would have to be a subsystem of a larger
system, localized relative to an external observer. This directly contradicts the definition of the
global state as the totality (Definition 8.1 and Lemma 8.2).

4. Conclusion (Q.E.D.): The only self-consistent thermal state for the non-localized
universe as a whole is the trivial state, Tglobal = 0.

Remark 8.1. This result aligns with the intuition that temperature is a measure of correlation
between a system and its environment (as formalized by the modular flow). The universe,
having no environment, cannot have a temperature.

9 The Necessity of Zero Total Energy
The established fact that the global state must have zero temperature has immediate and
physical consequences when interpreted through the lens of the Equivalence Principle and the
Unruh effect.

9.1 Derivation of Zero Energy
We derive the central thesis of the ”Universe from Nothing” proposal directly from the Athermal
Global State Theorem.

Theorem 9.1 (Zero Total Energy Theorem). The total energy-momentum of the universe must
be exactly zero (Etotal = 0).

Proof. We utilize the chain of equivalences established between temperature, acceleration, and
energy.

1. Zero Global Temperature: The global state has Tglobal = 0 (Theorem 8.3).
2. Zero Net Acceleration: We apply the Unruh relation (Theorem 5.3), T = h̄a/(2πkBc).

This relation arises because temperature characterizes the modular flow, which corresponds to
the physical time flow generated by the local Hamiltonian (boost generator in an accelerated
frame). The condition Tglobal = 0 implies that the net acceleration associated with the global
spacetime manifold is zero, anet = 0. The universe as a whole must be in an inertial state.

3. Zero Net Gravitational Mass: We invoke the Equivalence Principle (Axiom 1.3).
Zero net acceleration is locally indistinguishable from zero net gravitational field. Therefore,
the total effective gravitational mass of the universe must be zero, Mtotal = 0.

4. Zero Total Energy: By mass-energy equivalence, the total energy content of the
universe is Etotal =Mtotalc

2 = 0.
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9.2 Interpretation and Cosmological Context
The Zero Total Energy Theorem provides a foundation for the ”Universe from Nothing” thesis.
It demonstrates that the cancellation between positive energy components (matter, radiation)
and negative gravitational potential energy is a necessary consequence of the structure of QFT
and the nature of observation.

9.2.1 Defining Energy in General Relativity

It is crucial to clarify the meaning of ”total energy” in General Relativity (GR). While energy
definition in GR is subtle, the argument presented here relies on the local equivalence between
energy and acceleration (via the EP) and the global implications derived from the thermal
nature of the quantum state.

If we assume the universe is spatially closed (compact without boundary), the definition
of total energy is unambiguous. In the Hamiltonian formulation of GR (ADM formalism),
the total Hamiltonian constraint H must vanish on physical states. For a closed universe, the
boundary terms that typically define energy vanish identically, implying the total energy is zero
[26]. Our derivation provides an independent, QFT-based proof of this condition, derived from
the properties of the global quantum state.

10 The Elimination of Global Symmetries
The Zero Total Energy Theorem provides a powerful constraint not only on the energy content
of the universe but also on the allowed symmetries of the physical laws. It leads directly to the
”No Global Symmetries” principle, a central conjecture in quantum gravity [12].

10.1 Global Symmetries and Conserved Charges
A global symmetry implies, via Noether’s theorem, the existence of a conserved current Jµ and
a corresponding conserved charge Q.

10.2 Proof of the No Global Symmetries Conjecture
We demonstrate that the existence of any non-zero conserved global charge is incompatible with
the Zero Total Energy Theorem.

Theorem 10.1 (No Global Symmetries Theorem). The theory of the universe cannot possess
any exact global symmetries.

Proof. We proceed by contradiction.
1. Assumption: Assume there exists an exact continuous global symmetry group G.
2. Consequence of Symmetry: By Noether’s theorem, this symmetry implies the exis-

tence of a conserved global charge Q.
3. Charge Contribution to Energy: If the universe possessed a non-zero net conserved

global charge (Q ̸= 0), this charge distribution would necessarily contribute to the universe’s
total stress-energy tensor Tµν . A non-zero net charge implies a non-zero total energy, Etotal ̸= 0.

4. Contradiction: This contradicts the Zero Total Energy Theorem (Theorem 9.1), which
proved that Etotal = 0 is a necessary condition for a consistent global state derived from the
principles of locality and observation.

5. Conclusion: The initial assumption must be false. No exact continuous global symme-
tries can exist.

Remark 10.1. This implies that all apparent global symmetries in low-energy physics (like baryon
number) must be either gauged (local) or accidental (approximate and broken at high energies).
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10.3 Connection to the Cobordism Conjecture
The absence of global symmetries is intimately related to the Cobordism Conjecture in quantum
gravity [27].

Conjecture 10.2 (Cobordism Conjecture). The cobordism group of the gravitational theory
is trivial: ΩQG = 0.

This conjecture posits that all consistent theories of quantum gravity can transition to the
”nothing” state. A conserved charge would represent a topological obstruction preventing this
transition. The proof presented in Theorem 10.1 provides the underlying physical justification:
The universe must be structured such that its global state is equivalent to ”nothing” (Etotal =
0, T = 0) because any other state would imply it is a localized subsystem rather than the
totality.

11 Conclusion: The Mathematical Inevitability of the Trivial
State

This monograph has presented a proof demonstrating that the universe must possess zero total
energy. This proof is derived from the principles governing observation, locality, and the nature
of time within Quantum Field Theory and General Relativity.

The synthesis of AQFT, RQM, TTH, ETH, and the Equivalence Principle leads inexorably
to the Principle of Thermal Localization: any localized observation defines a thermal state
(T > 0). By applying this principle to the totality of the universe—the global state—we conclude
that it must be non-local and therefore characterized by zero temperature (Tglobal = 0), which
mandates zero total energy (Etotal = 0).

This result provides a robust theoretical foundation for the ”Universe from Nothing” thesis
and simultaneously proves the ”No Global Symmetries” conjecture. The arguments presented
herein establish that the emergence of ”something” (a complex, locally non-trivial universe) is
mathematically consistent only if the global structure is equivalent to ”nothing” (a trivial, zero-
energy state). This equivalence is a necessary consequence of the structure of a self-consistent
physical reality capable of observation.
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