
EPID: The Enfield PCB Inspection Dataset for

Visual Defect Detection
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Abstract

We present EPID, the Enfield PCB Inspection Dataset, a high-resolution image
collection designed for benchmarking visual defect detection systems in printed
circuit boards (PCBs). The dataset consists of 446 annotated images split into
two subsets: a primary training set of 345 images and a separate validation set
of 101 images. All images depict progressive physical damage to components
such as integrated circuits (ICs) and capacitors, supporting temporal modeling
and low-data learning scenarios. Each component is manually labeled as defec-
tive, non-defective, or ignored. EPID enables research in object detection, neural
architecture search, and robust model generalization for industrial inspection
tasks.
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1 Introduction

Printed circuit boards (PCBs) are critical components in virtually all electronic sys-
tems, and ensuring their quality is essential for industrial reliability, safety, and
performance. Automated visual inspection of PCBs has become increasingly impor-
tant for identifying defects early in the production cycle, but modern deep learning
approaches depend heavily on access to large, well-annotated datasets.

While several PCB-related datasets exist, most are limited in scope, fail to reflect
realistic industrial conditions, or lack granular annotations at the component level.
In particular, publicly available datasets rarely capture the progressive nature of
physical damage, nor do they support studying defect emergence over time, both of
which are essential for developing robust and generalizable machine learning models
in manufacturing contexts.

To address these gaps, we introduce the Enfield PCB Inspection Dataset (EPID),
a high-resolution, manually annotated image collection designed for benchmarking
visual defect detection systems under realistic and constrained data conditions. EPID
includes two subsets: a training set with 345 images of 107 unique boards showing
incremental damage across multiple stages per PCB, and a validation set with 101
additional images spanning 33 unique boards.

The dataset supports key tasks such as object detection, temporal modeling, and
low-data learning. It also enables evaluation of methods such as neural architecture
search (NAS), anomaly localization, and generalization across PCB geometries and
damage types. All components are labeled as defective, non-defective, or ignored, with
clear metadata and reproducible acquisition protocols.

EPID fills an important gap in the landscape of visual inspection benchmarks by
offering realistic, component-level annotations and damage progression in a compact,
accessible format for academic and industrial research.

2 Dataset Description

The Enfield PCB Inspection Dataset (EPID) consists of 446 high-resolution images
capturing a range of physical defects in printed circuit board (PCB) components. The
dataset is divided into two subsets: a training set with 345 images and a validation
set with 101 images. Both subsets feature annotations for integrated circuits (ICs)
and capacitors, enabling fine-grained analysis at the component level. Although both
subsets were created using the same acquisition protocol, they were produced indepen-
dently by two different teams. This deliberate separation introduces natural variability
in execution while preserving methodological consistency. As a result, the validation
set provides a more robust test of model generalization across operators and subtle
shifts in data characteristics, even under standardized conditions. All images are cap-
tured from a fixed top-down perspective using a smartphone camera (3840 × 2160
resolution) under naturally varying lighting conditions. The types of artificially intro-
duced defects fall into two main categories: (1) IC-related defects, including burn
marks, melted or detached pins, and darkened or disfigured package surfaces; and
(2) capacitor-related defects, most notably physical rupturing or popping of the
capacitor canister. These defects were designed to simulate common fault conditions
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observed in industrial PCB failure cases, while also enabling clear visual annotation for
supervised learning tasks. Example images of these defect types are shown in Figure 1.

Fig. 1: Examples of defect types included in the dataset. Left: IC with burn marks;
Middle: IC with dismantled pins; Right: Popped capacitor.

Each PCB in the training set was subjected to multiple damaging operations,
with images captured after each step. This progressive approach enables modeling of
defect emergence over time and supports sequence-based or low-data learning strate-
gies. Defects include burn marks, melted or detached pins, popped capacitors, and
combinations thereof.

The validation set includes 101 images representing 33 distinct PCBs, with an aver-
age of approximately 3 images per board. As with the training set, annotations follow a
consistent policy: components of interest are labeled as defective or non-defective.
Components that are extremely small, unidentifiable, or irrelevant to the target tasks
(e.g., passive SMT elements or LED-like parts) are excluded from annotation.

The complete dataset provides:

• 446 high-resolution JPG images (345 training, 101 validation),
• Component-level annotations with bounding boxes and defect labels,
• Step-wise metadata logs and naming conventions that enable recon-

struction of progressive damage sequences,
• Clear image naming conventions aligned with acquisition steps.

Together, these elements make EPID suitable for benchmarking visual inspection
models under realistic and constrained data scenarios.

Descriptive Statistics and Insights

We summarize per-PCB (RunID) statistics computed from the step-wise damage log
in Table 1. On average, each PCB is captured over multiple steps, with a varying
portion of its components recorded as damaged. This variety provides a rich basis for
analyzing component damage in different configurations.
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Metric Value

Avg. ratio of damaged ICs (per PCB) 0.238

Avg. ratio of damaged capacitors (per PCB) 0.123

Avg. number of ICs per PCB 1.907

Avg. number of capacitors per PCB 5.000

Avg. number of steps per PCB 3.224

Min/Max steps per PCB 1 / 6

Min/Max ICs per PCB 0 / 8

Min/Max capacitors per PCB 0 / 31

Table 1: Aggregate per-PCB statistics from damage log.csv.

Figure 2 shows the distribution of IC counts per PCB. Boards range from those
with no ICs to those with up to eight, with a substantial representation of boards
containing one, two or three ICs. Figure 3 presents the capacitor counts, spanning
from none to 31, reflecting a wide diversity in PCB layouts.

The dataset contains a mixture of boards where certain component types may
be absent, as well as boards with high component counts. This diversity supports
the evaluation of algorithms under different levels of visual complexity and instance
density. The observed proportions of damaged components - approximately 24% for
ICs and 12% for capacitors - ensure that both intact and damaged instances are well
represented, which can be advantageous for training and testing balanced detection
models.

Fig. 2: PCBs by number of ICs (histogram across unique boards).
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Fig. 3: PCBs by number of capacitors (histogram across unique boards).

Exploration insights:

1. Diverse component counts. The wide range of IC and capacitor counts
enables benchmarking models across both sparse and dense component
arrangements.

2. Balanced representation of states. The presence of both damaged
and intact components in meaningful proportions supports training and
evaluation in realistic defect detection scenarios.

3. Step-wise sequences. An average of 3.2 images per PCB allows explo-
ration of algorithms that leverage limited temporal progression, such as
change detection or step-aware feature learning.

4. Variation in board composition. The dataset includes PCBs that range
from having no instances of a particular component type to others with a
high number of components. This variation supports evaluation of inspection
methods across both minimal and densely populated layouts.

3 Data Acquisition and Annotation

The EPID dataset was acquired using a controlled, stepwise process in which physical
defects were intentionally applied to printed circuit boards (PCBs). All PCBs were
imaged from a fixed top-down perspective using a high-resolution smartphone camera
(3840 × 2160 pixels), with minimal environmental interference and only naturally
varying lighting conditions. Each board was photographed multiple times throughout
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the damage procedure, resulting in a sequence of images capturing incremental defect
progression.

Defect Creation Procedure

The damaging process was carried out by a two-person team: an actuator, who physi-
cally applied the defects, and a supervisor, who oversaw the process and operated the
annotation planning script. For each PCB, the supervisor executed a custom Python
script, generate damage policy.py1, which generated a randomized sequence of step-
by-step instructions specifying which components to damage and how. This script
accounted for the number of ICs and capacitors present on the board and returned a
damage plan indicating component indexes and damage types for each step.

The actuator followed these instructions to apply physical damage using a set of
simple, reproducible tools:

• Simulating burn marks on IC packages using a permanent marker; in cases
where the mark was not sufficiently visible, a light application of oil was
used to enhance contrast,

• Melting or detaching IC pins using a soldering iron,
• Damaging capacitors mechanically using a screwdriver or utility knife.

After each damage step, a high-resolution image of the PCB was captured using a
fixed camera setup. Every action and resulting image was logged to damage log.csv,
which includes the run ID, timestamp, number of components, step number, and the
list of components damaged at that stage. Image filenames follow a consistent format
(<run id> <step number>.jpg) to maintain alignment with metadata.

To ensure reproducibility and traceability, each action was logged into
damage log.csv, which stores metadata such as run ID, timestamp, step number,
component counts, and the specific damage applied at each stage. Image filenames
follow the format <run id> <step number>.jpg, directly linking each image to its
corresponding metadata.

Component Indexing and Naming Conventions

Before applying any damage, each component on the PCB was indexed based on its
spatial location in the initial intact image. ICs and capacitors were numbered in a left-
to-right, top-to-bottom order (e.g., IC#1, Cap#1), as illustrated in Figure 4. These
indexes were used consistently in both damage instructions and annotations, providing
a uniform reference throughout the dataset.

1https://github.com/Fain-Tech/lowdata-pcb-nas/blob/main/dataset/generate damage policy.py
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Fig. 4: Example of component indexing used during annotation and data acquisition.
ICs and capacitors are labeled left-to-right, top-to-bottom.

Annotation Protocol

All images were manually annotated using the Computer Vision Annotation Tool
(CVAT). Annotations consist of bounding boxes around visible ICs and capacitors.
Each component is labeled according to one of three categories:

• Defective - visibly damaged and/or listed in the metadata log,
• Non-defective - visually intact and not mentioned in damage logs,
• Ignored - components deemed irrelevant or unidentifiable (e.g., small SMTs,

passive elements, or LED-like packages).

Only components relevant to the learning objectives were annotated. Small or
ambiguous elements were excluded to reduce noise and preserve annotation clarity.
The annotation files are provided in a consistent format aligned with each image and
its corresponding damage metadata. An example annotation interface is shown in
Figure 5.
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Fig. 5: Example of image annotations in CVAT. Bounding boxes are drawn around
ICs and capacitors and labeled as either defective or non-defective.

Bounding box size distribution.

We further analyzed the relative scale of annotated objects by computing each bound-
ing box area as a percentage of the corresponding image area (3840 × 2160 pixels).
No annotated instance in the dataset exceeds 1% of the image area. Figure 6 shows
the complete distribution, where the vast majority of boxes occupy less than 0.5%
of the image. The largest group falls into the 0.0–0.1% range (874 boxes), followed
by 0.1–0.2% (550 boxes), with progressively fewer instances in higher ranges. This
highlights that the dataset predominantly contains very small objects, making it a
suitable benchmark for evaluating fine-grained detection and small-object recognition
techniques.
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Fig. 6: Bounding box size distribution (relative to image area) for objects occupying
0%–1% of the image. Each bar represents the number of annotated instances within
a given area range.

4 Use Cases and Applications

The EPID dataset is designed to support a range of tasks in both academic and indus-
trial research related to visual inspection and quality control of electronic components.
Its high-resolution images, step-wise progression of damage, and component-level
annotations make it especially suitable for evaluating models under constrained data
regimes and realistic defect scenarios.

• Object Detection and Localization: EPID enables training and evalu-
ation of models that detect and localize defective components, such as ICs
and capacitors, within complex PCB layouts.

• Low-Data Learning: Due to its modest size and incremental label-
ing, EPID is well-suited for benchmarking few-shot, semi-supervised, and
transfer learning approaches in visual inspection contexts.

• Temporal Reasoning: The structured progression of images across dam-
age steps allows for the study of temporal consistency and change detection
models, despite the data being static images rather than video.

• Neural Architecture Search (NAS): The dataset has been used in
practice to evaluate the performance of automatically designed neural net-
works under low-data constraints, offering a reproducible benchmark for
architecture optimization.

• Generalization and Robustness: The separation between training and
validation data by team, despite shared methodology, enables controlled
testing of model generalization to inter-operator variability and minor
acquisition shifts.
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In addition to academic exploration, EPID can serve as a lightweight benchmark
for industrial inspection tools targeting embedded systems, edge AI deployment, or
training pipelines for real-time visual inspection in manufacturing environments.

5 Availability

The EPID dataset is publicly available on Zenodo2 under the Creative Commons
Attribution 4.0 International (CC BY 4.0) license. This ensures unrestricted access
for academic and industrial use, with proper attribution.

The release package includes:

• All 446 high-resolution JPG images (345 training, 101 validation),
• Component-level annotations in COCO-style JSON format,
• Step-wise metadata logs (damage log.csv),
• A README file with usage instructions and license terms.

Citation information and a permanent DOI are provided on the Zenodo landing
page to support reproducibility and proper dataset attribution in publications.
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