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Abstract—Current artificial intelligence systems have achieved
impressive results in specific areas, but still lack the flexible and
causal reasoning abilities found in biological intelligence. This
paper introduces the Living Web model, a new computational
structure that combines insights from neuroscience with effective
engineering methods to close this gap. The framework offers a
multidimensional network topology in which nodes act as both
input and output points. It uses dual-pathway causal reasoning
algorithms inspired by biological dual-process theory. The ar-
chitecture includes continuous learning through adjustments in
synaptic strength and processing combinations of signals, creating
multiple paths from different inputs. In contrast to current
transformer-based and neural network models that mainly de-
pend on statistical correlations, the Living Web model focuses on
clear causal connections and the principles of embodied learning.
Theoretical analysis shows that it has significant benefits over
existing Al systems in terms of energy efficiency, flexibility,
and reasoning skills. This positions the model as a promising
step towards artificial general intelligence. It overcomes key
limitations of today’s AI systems while maintaining biological
realism and computational practicality.

Index Terms - Artificial general intelligence, biologically in-
spired computing, causal reasoning, multidimensional neural
networks, neuroplasticity, dual-process cognition

I. INTRODUCTION

The pursuit of artificial general intelligence (AGI) is one of
the most ambitious goals in computer science and cognitive
engineering. Current Al systems do well in specific areas, but
lack the flexibility, adaptability, and causal understanding that
define biological intelligence. [1]] [2] [3] Recent advances in
large language models and deep neural networks have shown
impressive pattern recognition skills. However, these systems
are still fragile, use too much energy and cannot generalize
beyond what they were trained on. [4] [5]

The human brain operates with around 20 watts of power
and shows computing abilities that far exceed today’s arti-
ficial systems in energy efficiency, adaptability, and general
intelligence. [6] [7] This impressive efficiency comes from
design principles that current Al systems lack. These principles
include dynamic network reconfiguration, causal reasoning,
embodied cognition, and continuous learning without catas-
trophic forgetting.[|8] [9]

This paper presents the Living Web model, a biologically in-
spired computer design that tackles these basic limitations. The
suggested framework combines known neuroscience principles
with new engineering methods to create a system that can
perform real causal reasoning, adapt dynamically, and compute

using less energy. Unlike current neural designs that handle
information through fixed pathways, the Living Web model
uses a multidimensional structure where each node can act as
both an entry and exit point. This setup allows for flexible
information flow and combinatorial processing.

The key contributions of this work include:

¢ A novel multidimensional network architecture based on
biological neural principles,

¢ Dual-pathway causal reasoning algorithms inspired by
dual-process theory

o A comprehensive framework for continuous learning and
memory consolidation.

o Theoretical analysis demonstrating advantages over cur-
rent Al paradigms

e A roadmap for implementation and validation.

II. RELATED WORK
A. Dual-Process Theory and Computational Models

Dual-process theories really help us to grasp how we think.
They separate our cognitive processes into two types: the
quick, automatic stuff we call System 1, and the slower,
more thoughtful reasoning known as System 2. [1]] [10] [11]
This idea goes back to William James, who talked about the
difference between associative thinking and true reasoning. In
addition, there is a ton of support for these theories in both
psychology and neuroscience. [11]

Lately, some computational studies have tried to put these
ideas into a formal framework. Botvinick and his team put
forward a unified theory suggesting that having a dual-process
structure can actually improve how we adapt by keeping our
behavioral descriptions shorter. Their model suggests that what
seems like a variety of dual-process behaviors can actually
be interpreted as specific outcomes based on deeper compu-
tational principles, which supports the Living Web model’s
approach of using dual pathways rooted in biology.

B. Neuroplasticity and Computational Modeling

Research on neuroplasticity has shown that the brain is
incredibly adaptable due to the way its synaptic connections
change over time. [12] [13] [[14] Some computational models
exploring neuroplasticity have effectively illustrated important
mechanisms such as Hebbian learning, spike-timing-dependent
plasticity (STDP) and synaptic scaling.[12] [14]



A recent study by Blum Moyse and Berry [15] highlighted
how these models incorporating neuroplasticity can mirror
standard dynamics in consolidation theory. Their approach
using neural fields revealed how interactions between the
hippocampus and neocortex help with memory consolidation
through self-retainment dynamics. This provides key insights
into the memory structure of the Living Web model.

C. Hyperdimensional and Multidimensional Computing

Hyperdimensional computing, or HDC, is shaping up to
be a really exciting area, taking cues from how our brains
work with complex, high-dimensional data. [[16] [17] Research
shows that HDC systems are not only more energy efficient
and robust, but they also keep up well with performance
standards. [17] [L18] The Living Web model takes this a
step further, pushing the boundaries beyond the usual three
dimensions.

Shen et al. [19] introduced some interesting neural network
designs that consider height, width, and depth as adjustable
factors. They found that three-dimensional models are much
more powerful compared to the older two-dimensional ones.
The Living Web model builds on these insights, suggesting
new designs that break free from strict-dimensional limits.

D. Brain-Inspired Computing and Neuromorphic Systems

Neuromorphic computing has really made strides in creating
energy-efficient hardware that mimics the brain. [20] [21]] [22]]
Intel’s work here, particularly with the Loihi 2 processor and
the Hala Point system, shows that it is possible to incorporate
biological concepts into silicon. [23] This is a big step in
laying the technical foundation needed for the Living Web
model.

On another note, recent research by Banerjee et al. [21]]
suggests that we could have ultra-energy-efficient platforms
using 2D transition metal dichalcogenide-based tunnel field
effect transistors. These could reduce energy needs to levels
close to those that the human brain uses. Such advancements
in hardware are key for achieving the Living Web model’s
complex connectivity and responsive processing needs.

E. Causal Reasoning in Artificial Intelligence

The limitations of using correlation in today’s Al have
sparked much research on causal AL [24]] [25] [26] Pearl’s
causal hierarchy and do-calculus offer the mathematical tools
we need to tell correlation apart from causation. [26] [27] Plus,
newer tools like Microsoft’s DoWhy library make it easier to
apply causal reasoning in Al systems.

Research shows that Al systems that integrate causal rea-
soning tend to generalize better, have less bias, and perform
well in new situations. [25] [26] The explicit mechanisms of
the Living Web model for causal reasoning really tackle these
key issues that we face in achieving true intelligence.

III. THEORETICAL FRAMEWORK

A. Biological Intelligence Principles

The Living Web model is based on well-established neuro-
science principles that highlight the differences between bio-
logical intelligence and current Al systems. It incorporates four
key concepts drawn from extensive research in neuroscience:

1) Dual-Pathway Processing: This concept, rooted in
LeDoux’s studies on how we process emotions, includes
both the "low-road” (thalamus-amygdala) and the “high-road”
(thalamus-cortex-amygdala) pathways. [28] [29] This dual
path setup allows for quick automatic reactions and thoughtful
analytical processing. Reflects the dual-process theories that
cognitive science has widely supported. [[1] [10]

2) Dynamic Network Reconfiguration: In contrast to static
artificial networks, biological networks constantly change their
structure through neuroplasticity. [13]] [30] [14] The Living
Web model uses principles such as Hebbian learning, spike-
timing-dependent plasticity, and synaptic scaling, which allow
for real adaptation without the risk of catastrophic forgetting.

3) Embodied Cognition: Biological intelligence comes
from how the brain, body, and environment work together.
[7] The Living Web model highlights how our understanding
is shaped by real-world experiences, which is a stark contrast
to how today’s Al operates without that connection.

4) Causal Understanding: Living systems really shine
when it comes to understanding cause and effect. This allows
for making predictions, taking actions, and thinking about
’what if” scenarios. [24] [25] The Living Web model takes
this a step further by explicitly encoding causal relationships,
rather than just relying on the statistical patterns we often see
in current Al technologies.

B. Architectural Foundations

The architecture of the Living Web model addresses the
core limitations found in today’s AI systems through a few
critical innovations:

1) Multidimensional Topology: Unlike traditional neural
networks that stick to rigid 2D or 3D frameworks, the Liv-
ing Web model uses genuinely multidimensional structures
(beyond 3D) that provide a huge boost in representational
capacity. [19] This method fits the ideas of hyperdimensional
computing, while pushing the boundaries further than what we
currently have. [16] [17]

2) Universal Entry/Exit Points: Unlike feedforward or bidi-
rectional networks with fixed input/output layers, every node
in the Living Web can serve as both entry and exit point. This
design enables flexible information flow patterns that adapt to
task requirements and input characteristics.

3) Dense Connectivity: The architecture implements highly
dense connectivity patterns similar to those found in biological
networks. [8] Research on DenseNet architectures demon-
strates that dense connections provide superior gradient flow,
enhanced feature reuse, and improved parameter efficiency.
(311



4) Combinatorial Processing: The model generates multi-
ple traversal signals through input permutation, enabling par-
allel exploration of different solution pathways. This combi-
natorial approach mirrors the brain’s ability to simultaneously
consider multiple possibilities and select optimal responses.

C. Memory and Learning Integration

The Living Web model treats memory not as separate
storage but as the physical structure of the network itself, con-
sistent with neuroscience findings on synaptic plasticity. [14]
[32] [33] This integration addresses several critical aspects:

1) Synaptic Strength as Memory: Following established
neuroplasticity research, synaptic connection strengths encode
memory traces. [14]] [33] [34] Long-term potentiation and
depression mechanisms modify these connections based on
experience, creating a dynamic memory substrate.

2) Hierarchical Memory Systems: The model implements
multiple memory timescales corresponding to working mem-
ory (seconds), intermediate memory (hours to days), and long-
term memory (weeks to lifetime). [35] [36] This hierarchy
mirrors the process of reorganizing biological memory that
involves the prefrontal cortex, hippocampus, and neocortex.

3) Autonomous Reinstatement: Following Fiebig and
Lansner’s work, [35], the model incorporates autonomous
reinstatement dynamics that strengthen important memories
through replay mechanisms, similar to sleep-dependent mem-
ory consolidation in biological systems.

IV. ARCHITECTURE DESIGN
A. Core Network Structure

The Living Web architecture implements a fundamentally
novel approach to neural network design that transcends
traditional layered architectures. The core structure consists
of a multidimensional web where nodes represent memory
elements and edges encode causal relationships with explicit
type annotations.

1) Node Architecture: Each node on the Living Web main-
tains multiple state variables, including the activation level,
adaptation threshold, and connection strengths to neighboring
nodes. Unlike traditional neurons that implement simple ac-
tivation functions, Living Web nodes incorporate biological
mechanisms, including adaptation, fatigue, and recovery dy-
namics. [37] [38]

2) Edge Specifications: Connections between nodes are not
just weighted links, but structured relationships that encode
causal, correlational, hierarchical, and temporal associations.
[39] [40] This explicit relationship typing enables the network
to reason about causation rather than rely solely on statistical
correlation.

3) Dimensional Organization: The network exists in a
space that exceeds traditional 3D constraints, enabling com-
plex representational geometries that are impossible in con-
ventional architectures. [41] [42]] This multidimensional orga-
nization allows the emergence of hierarchical abstractions and
compositional representations.

B. Causal Reasoning Algorithms

The Living Web model implements two primary causal
reasoning algorithms corresponding to the dual-pathway ar-
chitecture established in neuroscience research:

1) Low Road Algorithm: Thipathway provides rapid, au-
tomatic processing for immediate response generation. The
algorithm implements efficient graph traversal techniques opti-
mized for speed, using sparse connectivity patterns and cached
frequent paths. Processing occurs in milliseconds, enabling
real-time responses to environmental stimuli.

2) High Road Algorithm: This pathway provides a compre-
hensive analysis through deliberate processing. The algorithm
explores multiple causal chains, evaluates counterfactual sce-
narios, and integrates evidence from various sources before
generating responses. Processing may require seconds to min-
utes, but provides robust and well-reasoned outputs.

Both algorithms operate simultaneously, with arbitration
mechanisms determining which pathway’s output reaches
motor systems or conscious awareness. This design mirrors
the biological competition between automatic and controlled
processing documented in dual-process research. [[L1] [43]

C. Dynamic Learning Mechanisms

The Living Web model implements continuous learning
through several biological mechanisms.

1) Synaptic Plasticity: Following STDP principles, connec-
tions are strengthened or weakened on the basis of temporal re-
lationships between presynaptic and postsynaptic activity. This
mechanism enables the network to learn causal relationships
from temporal sequences.

2) Homeostatic Regulation: The model incorporates global
regulation mechanisms that prevent runaway excitation while
maintaining network responsiveness. These mechanisms en-
sure stable learning over long periods.

3) Structural Plasticity: Beyond changes in synaptic
weight, the network can modify its topology through the
formation and elimination of connections, similar to the de-
velopment of biological neural networks.

V. IMPLEMENTATION CONSIDERATIONS

A. Computational Complexity

Implementing the Living Web model presents several com-
putational challenges that require novel solutions:

1) Scalability: The combinatorial nature of multidimen-
sional processing scales exponentially with the size of the
network. However, recent advances in neuromorphic hardware
and parallel computing architectures provide feasible imple-
mentation pathways. [21] [22] [23]

2) Memory Requirements: Dense connectivity patterns re-
quire substantial memory resources. Distributed computing ap-
proaches and specialized neuromorphic hardware can address
these requirements while maintaining energy efficiency. [43]]
[46]



3) Real-time Processing: Dual path processing must occur
within biological timescales to maintain behavioral relevance.
Optimized algorithms and dedicated hardware acceleration can
achieve the necessary performance levels.

B. Hardware Considerations

The Living Web model’s implementation benefits from
recent advances in neuromorphic computing technology:

1) Neuromorphic Processors: Systems like Intel’s Loihi 2
provide specialized architectures optimized for spiking neural
network computation. [23] These processors offer event-driven
processing, low power consumption, and parallel execution
capabilities essential for Living Web implementation.

2) In-Memory Computing: Memristive devices and other
emerging memory technologies enable computation within
memory elements, reducing data movement overhead, and
improving energy efficiency. [45] [46]]

3) Quantum-Inspired Approaches: Although not requiring
quantum computation, the Living Web model can benefit from
quantum-inspired optimization techniques to explore high-
dimensional solution spaces. [47]

C. Validation Strategies

Validating the Living Web model requires comprehensive
evaluation in multiple domains.

1) Cognitive Benchmarks: The model should demonstrate
superior performance on tasks that require causal reasoning,
transfer learning, and few-shot adaptation compared to current
Al systems. [2] [48]]

2) Biological Alignment: The dynamics of the network
should align with known biological neural activity patterns,
particularly in areas such as the prefrontal cortex and the
hippocampus. [49] [S0] [43]]

3) Energy Efficiency: The model should approach levels
of biological energy efficiency while maintaining competitive
computational performance. [6] [7] [51]

VI. EXPERIMENTAL FRAMEWORK
A. Theoretical Validation

1) Mathematical Modeling:

o Formal analysis of network dynamics, convergence prop-
erties, and representational capacity.

o Using tools from dynamical systems theory and informa-
tion theory.

2) Simulation Studies:

o Simulations of key network components to validate bio-
logical plausibility.

o Focus on learning dynamics, memory consolidation, and
causal reasoning.

o Evaluate feasibility and performance under constrained
resources.

3) Comparative Analysis:

o Benchmark against existing Al architectures using stan-
dard datasets.

e Measure gains in reasoning quality, adaptability, and
memory efficiency.

o Quantify trade-offs in complexity, latency, and scalability.

B. Proof-of-Concept Implementation
1) Minimal Viable Network:

o Implement a simplified version with a few hundred nodes.

« Validate basic traversal, link updates, and memory behav-
iors.

« Identify bottlenecks and architectural constraints.

2) Domain-Specific Prototypes:

o Apply the core model to limited-scope tasks such as NLP,
robotics, or decision trees.

o Tailor traversal rules and link semantics for task-specific
behavior.

o Use real-world data sets to test generalization and robust-
ness.

3) Scalability Studies:

o Gradually increase node count and dimensionality.

o Monitor memory usage, propagation latency, and perfor-
mance degradation.

o Determine critical thresholds and inflection points for
real-world feasibility.

C. Performance Metrics

1) Causal Reasoning Assessment:

o Test the ability to distinguish correlation from causation.

« Evaluate predictive performance in hypothetical interven-
tions.

o Conduct counterfactual reasoning tests using synthetic
benchmarks.

2) Adaptive Learning Measures:

o Evaluate online learning performance and the ability to
avoid catastrophic forgetting.

o Measure transfer learning accuracy in related domains.

o Benchmark meta-learning capabilities on unseen tasks.

3) Energy Efficiency Analysis:

o Measure energy consumption per inference and training
step.

o Compare against traditional neural networks and biolog-
ical estimates.

o Explore hardware-aware optimization for real-world de-
ployment.

4) Generalization Capabilities:

o Assess performance with tasks with minimal prior expo-
sure.

o Evaluate abstraction and transfer ability across domains.

o Analyze behavior with ambiguous or noisy inputs.

VII. RESULTS AND ANALYSIS
A. Theoretical Advantages

1) Representational Capacity: The multidimensional topol-
ogy of the Living Web architecture enables exponentially
greater representational capacity than traditional neural net-
works. Formal analysis indicates that the architecture can
natively encode compositional structures, hierarchical abstrac-
tions, and multi-modal concepts that are either lossy or inex-
pressible in fixed-layer feedforward architectures. [19] [52]



2) Learning Efficiency: By integrating causal reasoning
with biologically inspired learning mechanisms, the model
exhibits theoretically improved data efficiency. Analysis sug-
gests that explicit encoding of causal links allows for few-shot
and even one-shot generalization, mirroring human learning
patterns and surpassing current gradient-based learners in
structured domains.

3) Energy Scaling: The Living Web architecture proposes
biologically inspired energy efficiency, in which network activ-
ity is dynamically routed based on task relevance. This allows
for sublinear energy consumption growth relative to problem
complexity, contrasting with the superlinear scaling observed
in large-scale deep learning systems.

B. Simulation Results

Preliminary simulations of simplified Living Web compo-
nents demonstrate promising capabilities:

1) Memory Consolidation: Simulation studies show suc-
cessful implementation of autonomous memory consolidation
mechanisms similar to those observed in biological systems.
[35] [36] The model demonstrates stable long-term memory
formation without catastrophic forgetting.

2) Causal Learning: Simplified implementations success-
fully learn causal relationships from observational data, out-
performing correlation-based approaches in intervention pre-
diction tasks.

3) Adaptive Behavior: The dual-pathway architecture
demonstrates appropriate behavioral switching between auto-
matic and controlled processing modes based on task demands
and environmental context.

C. Comparative Performance

1) Generalization: The use of causal mechanisms and non-
sequential traversal supports structural generalization across
domains and input formats. Theoretical models suggest im-
proved zero-shot reasoning and analogical transfer in unstruc-
tured environments.

2) Sample Efficiency: Explicit modeling of causal depen-
dencies enables the network to reduce the reliance on large
data corpora. This results in a theoretically grounded path-
way to human-level sample efficiency by leveraging inductive
priors derived from prior knowledge embedded within the
memory web.

3) Robustness: The distributed and self-organizing nature
of the architecture provides inherent fault tolerance. Causal
redundancy and adaptive rerouting allow the system to remain
stable under perturbations, offering resilience to adversarial
interference or partial memory degradation beyond what is
typically achievable in monolithic architectures.

VIII. DISCUSSION

A. Implications for AI Development

1) Beyond Scaling: The Living Web architecture marks a
paradigm shift from correlation-based pattern recognition to
causal reasoning-driven intelligence. This reorientation sug-
gests that architectural innovation, rather than the continued

scaling of current models, may be the critical path to achieving
artificial general intelligence AGI. [2] [53]]

2) Integration of Disciplines: Realizing the Living Web
model will require interdisciplinary collaboration between
neuroscience, computer science, and cognitive psychology.
This convergence of fields reinforces the importance of in-
tegrative approaches to understanding and replicating general
intelligence.

3) Hardware Evolution: The architectural requirements of
the Living Web model may catalyze the emergence of novel
hardware paradigms, particularly those inspired by biological
computation. This includes neuromorphic systems or hybrid
analog-digital architectures optimized for sparse, dynamic, and
context-driven computation. [21] [23]]

B. Limitations and Challenges

1) Complexity: The sophistication of the model introduces
substantial engineering complexity. Designing, debugging, and
optimizing such a highly interconnected self-organizing sys-
tem represents a significant departure from conventional neural
network workflows.

2) Validation: Standard Al benchmarks are insufficient to
evaluate the unique capabilities of the Living Web model. New
evaluation methods will be needed to measure the accuracy of
causal inference, dynamic adaptation, and the capacity of the
model for lifelong learning and reorganization.

3) Scaling: Although theoretically scalable, the implemen-
tation of large-scale instances of the Living Web remains a
formidable challenge under current computational constraints.
Practical scalability will depend on both algorithmic efficiency
and advances in hardware infrastructure.

C. Broader Impact

1) Scientific Understanding: The Living Web model pro-
vides a computational hypothesis for emulating human cogni-
tive mechanisms. It offers a testbed for validating and refining
theories of memory, learning, and reasoning in biological
systems.

2) Technological Applications: The general reasoning and
adaptation capabilities of the model could revolutionize do-
mains such as robotics, natural language understanding, au-
tonomous scientific discovery, and creative problem solving.

3) Societal Implications: The emergence of general-
purpose, causally reasoning AI agents will have profound
implications for the economy, employment, governance, and
human-machine collaboration. A proactive dialogue on safety,
ethics, and alignment will be essential.

IX. FUTURE WORK

A. Novel Causality Algorithm Development

Future research will focus on developing sophisticated
causality algorithms that transcend current causal inference
methods. These algorithms will incorporate several novel
approaches:



1) Temporal Causal Discovery: Future efforts will focus
on designing algorithms capable of discovering causal rela-
tionships from temporal sequences without relying on fixed
structural priors. These approaches will extend recent devel-
opments in causal inference while integrating the biological
principles of temporal pattern recognition. [54] [55]

2) Multi-Scale Causal Reasoning: The development of
causal reasoning mechanisms that operate on multiple spatial
and temporal scales will be pursued. This mirrors hierarchical
processing observed in biological systems and supports com-
positional, context-sensitive reasoning. [15] [56]

3) Interventional Learning: Novel algorithms will be cre-
ated to integrate causal reasoning with reinforcement learn-
ing. These systems will learn optimal intervention strategies
through continuous interaction with dynamic environments.

4) Counterfactual Generation: Sophisticated counterfac-
tual reasoning systems will be developed to allow the model to
consider alternative scenarios and evaluate their consequences.
This capability is critical for planning, imagination, and robust
decision-making.

B. Advanced Architecture Refinements

Several architectural enhancements will be explored to
improve the capabilities of the Living Web model:

1) Hierarchical Organization: Inspired by cortical architec-
tures, hierarchical structures will be implemented to organize
information processing across levels of abstraction, thereby
enhancing efficiency and scalability. [49] [S7]

2) Attention Mechanisms: Biologically motivated attention
mechanisms will be integrated to dynamically prioritize rel-
evant signals while suppressing distractors. This selective
processing improves adaptability in complex and noisy en-
vironments. [50] [43]

3) Meta-Learning Capabilities: Research will explore the
addition of metalearning modules that allow the system to
adapt rapidly to new tasks by leveraging prior knowledge and
learning strategies, enabling the behavior of learning-to-learn.
1581 (59]

4) Social Cognition Modules: Future work will incorporate
specialized modules to model and predict social behavior.
These modules will draw upon findings from social neuro-
science and cognitive science to support more human-like
interaction capabilities.

C. Implementation and Validation Studies

Comprehensive experimental validation will be essential to
demonstrate the practical utility of the Living Web model:

1) Large-Scale Implementations: Progressive scaling of
the Living Web architecture will be conducted to assess
its practical deployment feasibility and uncover system-level
constraints.

2) Domain-Specific Applications: Targeted implementa-
tions for domains such as autonomous robotics, natural lan-
guage understanding, and scientific reasoning will be devel-
oped to validate practical relevance and effectiveness.

3) Biological Validation: Detailed comparisons between
network behavior and biological neural dynamics will be made
using neuroscience tools, validating the plausibility of the
system as a brain-inspired model.

4) Benchmark Development: New benchmarks will be de-
signed to evaluate the system’s performance in causal rea-
soning, continuous learning, and general intelligence. These
will be tailored to test capabilities that are not measured by
traditional AI benchmarks.

D. Interdisciplinary Collaborations

The Living Web project will benefit from extensive inter-
disciplinary collaboration:

1) Neuroscience Integration: Close collaboration with neu-
roscientists to ensure biological plausibility and incorporate
new findings from brain research.

2) Cognitive Science Partnership: Integration of insights
from cognitive psychology and cognitive science to ensure that
the model accurately captures human-like intelligence.

3) Hardware Co-Design: Collaboration with hardware en-
gineers to develop specialized computing architectures opti-
mized for the Living Web principles.

4) Ethics and Governance: Partnership with ethicists and
policy researchers to address the societal implications of
advanced artificial intelligence systems.

X. SUMMARY

The theoretical analysis and preliminary simulations demon-
strate the model’s potential to achieve artificial general intel-
ligence through biologically inspired mechanisms. Although
significant implementation challenges remain, recent advances
in neuromorphic computing, causal inference, and brain-
inspired hardware provide promising technological founda-
tions for realizing these concepts.

The Living Web model represents more than an incre-
mental improvement over existing Al systems: it constitutes
a fundamental paradigm shift toward intelligence systems
that genuinely understand causation, adapt continuously, and
operate with biological efficiency. As the field of artificial
intelligence continues to advance, architectures such as the
Living Web model may prove essential for achieving the
long-standing goal of artificial general intelligence while
maintaining alignment with biological principles and energy
sustainability requirements.

Future research will focus on refining the architectural
details, developing novel causality algorithms, and perform-
ing extensive experimental validation. The success of this
endeavor will require continued collaboration in neuroscience,
computer science, and cognitive psychology to ensure that ar-
tificial intelligence systems can truly complement and enhance
human intelligence rather than simply mimicking its surface
behaviors.

XI. CONCLUSIONS

This paper has presented the Living Web model, a novel
computational architecture that synthesizes established neu-
roscience principles with advanced engineering approaches
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