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Abstract—360° video streaming is one of the prevalent
communication technologies for enhancing user experience and
has thus seen widespread adoption in virtual and mixed reality
applications. However, delivering content at scale while securing
the quality of wirelessly communicated 360° videos in real-time
poses significant challenges. 360° videos come in ultra-high
definition, necessitate unprecedented bitrate demands and involve
high encoding complexity. The time-varying nature of underlying
wireless channels further introduces a destabilizing factor, calling
for video systems to seamlessly adjust to varying bandwidth

throughput to maintain adequate quality of service and experience.

To address this issue, in this study, we have developed a multi-
objective optimization framework for real-time video encoding
adaptation. The objective is to optimize both video quality and
encoding efficiency while minimizing the required bitrate, subject
to real-time application constraints. To achieve this, we relied on
generating (offline) precise forward prediction models of video
quality, bitrate demands, and encoding time, that can be used to
select the optimum encoding configuration in real-time. To
validate our methods, we implemented an adaptive video encoding
controller, and ran emulations employing actual network traces
from 5G mobile video streaming scenarios, using the popular
open-source x264 and x265 codecs for video encoding. A dataset of
4K omnidirectional videos at 30 frames per second was used.

Keywords—Adaptive Video Streaming, 360° videos, Video
compression, HEVC, H264, 360° Video Streaming

I. INTRODUCTION

The ongoing hype in virtual reality (VR) and 360° video
applications has triggered significant research interest, fueling
the development of novel video streaming methods. Panoramic
videos, offering a vast 360°x180° field of view (FoV) are
pivotal in VR advancements [1]. Users, equipped with head-
mounted displays (HMDs), can immerse and interact in a visual
experience in a spherical panorama [2], seamlessly navigating
through the omnidirectional video by simply moving their
heads toward the desired directions [3]. At the same time, the
prevalence of 360° video content has triggered new challenges
in both the processing and streaming domains. To achieve high
fidelity and prevent motion sickness in 360° video rendering,
ultra-high definition (UHD) resolutions (e.g., 4K, 8K) and
frame rates, are essential [1][4]. As a result, in addition to the
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already heavy demands on storage, streaming services need to
address the associated high bitrate demands and tight latency
requirements [5]. In that sequence, efficient video compression
and transmission methods are invaluable [6] [7].

5G (and beyond) wireless networks promise improved
connectivity with significantly higher data rate and lower
latency compared to 4G systems, driven by applications like
social media, gaming, and augmented/virtual reality, while
specifically supporting the breadth of IoT applications [8][9].
Predictions suggest a significant increase in connected IoT
devices by 2025 [10]. In fact, the surge of connected devices
associated with multimedia traffic, and particularly video, is a
key factor pushing towards 5G networks’ adoption. However,
securing the quality of real-time, wireless 360° video streaming
applications is challenging. The complexity arises from the
dynamic nature of the underlying communication channels,
which tend to fluctuate over time. Consequently, video systems
must seamlessly adjust to the varying, instantaneous bandwidth
throughput of the wireless medium at a given time, while
maintaining the perceptual quality of the communicated videos.

In this study, we propose a multi-objective optimization
approach that jointly maximizes a communicated video’s
quality and encoding rate while minimizing the associated
bitrate demands, subject to time-varying, real-time application
constraints. For that purpose, an adaptive video encoding
controller is implemented that uses offline-generated forward
prediction models for each of the optimization (constraint)
objectives, namely video quality, bitrate demands, and
encoding rate, resulting in the best possible encoding setup
subject to the real-time constraints (objectives).

In Section II, we provide a brief overview of the state-of-
the-art approaches in 360° video streaming. In Section III, we
introduce the techniques used to develop forward prediction
models, followed by the implementation of the multi-objective
optimization framework aimed at achieving real-time video
encoding adaptation to varying application and infrastructure
specific constraints. Then, in Section IV we provide the
experimental evaluation results along with the discussion of the
key findings. Finally, in Section V we summarize the
concluding remarks.
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Fig. 1. 360° video image examples, Video Resolution: 4069 x 2048, Frame Rate: 40 fps, Projection Type: Equirectangular projection

II. RELATED WORK

The unprecedent interest and potential of 360° video
applications is evident via an increasingly dense body of
literature, especially over the past 5 years. Different methods
have been proposed, each addressing unique aspects and
characteristics of 360° videos, to optimize available resources
and trigger wider adoption. Tile-based 360° video streaming
linked with viewport prediction is a key concept for
equirectangular projection (ERP) -based video format. The goal
is to prioritize the user’s FoV over the background, less
important regions [3][11]. Assigning higher bitrate budget to
the user’s FoV has been found to increase the overall quality of
experience (QoE), for both unicast and multicast scenarios. In
the latter case, network-assisted techniques investigate the
sharing of high-quality tile-based FoV regions and the caching
of these video regions closer to the user [12]. At the same time,
new or customized objective video quality assessment (VQA)
metrics have been proposed that consider the FoV in the final
(weighted) score, to achieve higher correlation to perceptual
ratings [8]. In that context, a significant number of studies
propose various viewport (i.e., FoV) prediction methods, based
on historical viewport values captured via HMDs, using models
like long short-term memory (LSTM) and deep reinforcement
learning [11][13][14][15]. Deep learning models for automated
region(s)-of-interest (ROIs) identification and translation to
viewport are also gaining attention [16].

For real-time streaming services, an adaptation decision is
considered at pre-defined intervals to maximize the user’s QoE
and a session’s Quality of Service (QoS). In both 2D and 360°
video communication systems, adaptive video streaming
standards such as MPEG-DASH and HLS are used, primarily
via the use of pre-constructed bitrate ladders. The latter is true
for the proposed 360° video streaming approaches described
earlier, that encompass customized bitrate ladders that consider
and encode the user’s viewport in higher quality [17]. Moreover,
the use of base encoding layers and enhancement viewport
layers, in a concept like scalable video coding is a popular
approach. As a result, switching between pre-encoded states
essentially limits the optimization process to a simple selection
of the available encoding(s) that match the underlying
bandwidth. To address this issue, more sophisticated methods
have been proposed that utilize multi-objective optimization
methods to examine and maximize additional objectives that go
beyond the traditional rate-distortion optimization [18][19].
Such examples, include consumed encoding energy, dynamic
viewport tiles selection and decisions based on multi-user video
quality optimization as described above, but also self-organized
network infrastructures [20] [21].

This study extends the multi-objective optimization
approach developed by our group for conventional and medical
2D video transmission [18][19]. It jointly considers the

optimization of video quality, bitrate demands, and encoding
rate. The approach is codec-agnostic, in the sense that it is
applicable using any video codec and is underlying wireless
network independent. Importantly, the proposed framework is
complementary to other approaches in literature. In fact,
ongoing work is tasked to investigate its effectiveness for tile-
based video streaming using viewport prediction methods.

III. METHODOLOGY

In this section, we provide a detailed description of our
proposed approach for adaptive video delivery of 360° video.
Firstly, the methodology relies on an offline training phase,
where 360° video instances involving different video encoding
configurations are processed to derive objective forward
prediction models for video quality, bitrate demands, and
encoding time. Both the H.264/AVC [22] and H.265/ HEVC
[23] video compression standards are used for this purpose.
Figure 1 captures a subset of the dataset’s video content
diversity. Then, the approach focuses on implementing an
adaptive video encoding controller (see Fig. 3) that uses the
generated forward prediction models and multi-objective
optimization to materialize adaptive 360° video streaming, by
triggering the encoding setup that maximizes the
communicated video’s quality (video quality objective), while
matching the available bandwidth of the underlying wireless
channel (bitrate demands constraint), in real-time (encoding
time constraint).

A. Dataset

For validating the proposed approach, a dataset comprised
of 5 omnidirectional videos of diverse content (see Fig. 1) was
used, with 4K resolution (4096x2048 pixels), at 30 fps and a
ten-second duration [24]. The raw videos were organized in 25
distinct video segments of 2 seconds each, using the ERP
format.

B. Adaptive Video Delivery using Multi-objective

Optimization

1) Video Compression Experimental Setup

In this study, we use open-source x264 and x265 [25][26]
implementations that facilitate encoding optimizations enabling
real-time encoding performance, being orders of magnitude
faster than the JM and HM reference implementations of
H.264/AVC [22] and HEVC/H.265 [23] video compression
standards, respectively [18]. We consider different compression
levels by adjusting the quantization parameter (QP), ranging
from 16 to 37 with a step size of 1. The medium preset is used,
which invokes the main profile for both codecs. As a result, for
each codec used, we generated a total of 550 video segment
instances (5 videos x 5 segments each x 22 different QPs).
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2) Forward Prediction Models Generation

Forward prediction models are critical for implementing
real-time adaptive video delivery using multi-objective
optimization. The offline process for generating these models
is depicted in the upper part of Figure 2. For each optimization
objective, namely video quality, bitrate demands, and encoding
frame rate (i.e. encoding time), a corresponding model is
generated. For this purpose, a dense encoding space is needed,
as tabulated in Table I. This space provides the critical mass of
compressed video’s outcome characteristics, that allows to
investigate linear model estimation, which encompasses
logistic regression, to derive accurate forward prediction
models per optimization objective. This process underpins
lightweight models, whose inverse solving 1is not
computationally intensive, and hence qualifies for real-time
streaming, provided that adequate accuracy is achieved.

TABLE L. VIDEO ENCODING CONFIGURATIONS
Forward Prediction Models
Codecs X264, X265
Preset Medium
QP Range 16-37
Total configurations 22
per codec
Total configurations 44
Offline Processing
VIDEO
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Fig. 2. Adaptive Video Encoding And Simulator Diagram

During the offline process, a dataset comprising five 360° omnidirectional
videos with 4K resolution (4096x2048 pixels) at 30 frames per second was
utilized. These videos were organized into 25 distinct video segments, each one
with a 2 seconds duration. Each segment was then encoded using the libx264
and libx265 ffmpeg libraries, and the resulting encodings were employed to
develop forward prediction models using linear and logistic regression,
following video segments’ clustering. During real-time simulation, inverse
model prediction is employed to select the optimal encoding configuration that
meets the application’s constraints at each encoding adaptation interval.

a) Content-based Adaptation

Different video sequences have different, unique content
characteristics. Some could be rich in spatial content while
others could be rich in the temporal domain, involving high
motion scenes. This variability can also be observed at an intra-
video level. Thus, each video involves different spatiotemporal
complexity, which is in turn translated into encoding
complexity, resulting in diverse bitrate demands and encoding
time. To address this issue, we propose a clustering approach to
enhance the produced models’ accuracy. Specifically, we apply

the k-means clustering method to organize the 25 segments of
the videos into two distinct clusters. As shown in Figure 4, all
segments of three of the videos belong in a single cluster, while
video chunks of two of the videos are assigned to both clusters.
A video’s 5 constituent video segments are outlined with a red
line while the two distinct clusters appear in yellow and purple,
respectively. Based on this observation, we generate forward
prediction models for each of the two clusters, aiming to
minimize the overall prediction error during real-time video
streaming sessions.

Algorithm 1 Pseudocode for Buffer Initialization

Buf ferTarget + Buf ferSize x Buf fer Percentage
encodingCon figuration + SelectedEncodingConfiguration()
while buf fer FillingLevel < Buf ferTarget do

bandwidth + ReadBandwidthFromNetwrokTraces()

if bandwidth # NULL then

compute Buf ferFillingLevel, segmentSize, available Bytes
end if
simulationTime + simulationTime + 1

end while
return Buf ferFillingLevel, SimulationTime

Algorithm 2 Pseudocode for Selected Encoding Configuration
Bandwidth <+ ReadBandwidthFromNetwrokTraces()
FairnessSignal + Bandwidth x BwAdjW eight
if Buf ferFillingLevel < Buf fer Min then

compute input Bandwidth
return encodingCon figuration = maxSSIM (inputbandwidth, FPS)
else
while True do
compute input Bandwidth, encodingCon figuration,
compute Estimated DownloadTime, BwAdjWeight
if encodingCon figuration.Bitrate < Buf fer Min OR
EstBuf ferFillevel > Buf ferMin then
break
end if
end while
end if
return encodingCon figuration

Algorithm 3 Pseudocode for Adaptive Streaming

while (segments_to_encode > 0) do
if (simulationTime == adaptation_interval) then
inTransitSeg < originalValue
encodingCon figuration < SelectedEncodingConfiguration()
end if
bandwidth + readBandwidthFromNetworkTraces()
if (bandwidih # 0 and inTransitSeg # 0) then
compute downloadBytes, remainingSegBytes,
compute Buf ferFillingLevel, InTransitSeg
update simulationTime
else
if (Buf ferFillingLevel — 1 > 0) then
Buf ferFillingLevel + Buf ferFillingLevel — 1
stmulationTime < simulationTime + 1
else
initializeBuffer()
simulationTime + simulationTime + buf feringTime
end if
end if
end while

Fig. 3. Overview of the Adaptive Video Streaming Simulator

Algorithm 1: Buffer Initialization occurs at the onset of every video streaming
session or following a buffer drainage event.

Algorithm 2: Encoding Configuration is selected dynamically based on the
real-time bandwidth readings extracted from the 5G network traces.
Algorithm 3: Adaptive Video Streaming simulator implementation.
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Fig. 4. K-means clustering of video segments, illustrating the division into two
clusters (yellow and purple) based on the bitrate demands for QP of 22. The
red outline depicts the segments belonging to the same video.

3) Multi-objective Optimization Framework

The approach here is to maximize video quality (denoted as
VQ) measured in terms of Structure Similarity Index (SSIM)
[27], minimize bitrate demands (denoted as B), and maximize
encoding efficiency (or minimize encoding time), captured in
encoding frames per second (denoted as FPS). Overall, the
approach is depicted in the following equation:

MAX (VO (SSIM), -Bitrate (B), FPS) )

Based on (1), several multi-objective optimization modes
can be defined [18][19]. In this study, the Maximum Video
Quality Mode is used. The goal is to maximize the
communicated video’s quality, while adhering to onstraints on
bandwidth availability imposed by the wireless infrastructure
and encoding frames per second, imposed by the video’s
framerate. Hence, maximum video quality mode (maxSSIM) is
characterized by the following constraints:

Bandwidth constraint: B < Bmax 2)
Frame rate constraint: FPS = FPSmin 3)

C. Adaptive Video Encoding and Streaming Simulator

An adaptive video streaming simulator has been developed
in Python to evaluate the performance of the proposed adaptive
video encoding and control mechanisms under realistic wireless
communication scenarios. The simulator parses real-life
wireless network video traces to extract the instantaneous
bitrate at any given point in time. The wireless network video
traces comprise of 5G traces collected from two distinct
mobility patterns, namely Static (indoors) and Driving (car).
The car mobility scenario involved driving through city and
suburban areas during the morning and evening hours.
Experiments were conducted between 2019-11-20 and 2020-
01-06, while the streaming video content was initiated from
Amazon Prime services [9].

The adaptive streaming simulator uses a video buffer and
dynamically adjusts video quality based on the available
bandwidth, adhering to the logic of adaptive HTTP streaming
standards [28]. Figure 3 summarizes the adaptive video
simulator's algorithmic approach in pseudocode format.
Algorithm 3 delineates the implementation philosophy of the
video streaming session. In the setup phase of the streaming
process, the video buffer is populated up to a predefined target

level to prevent video stalling and premature depletion of the
buffer, as detailed in Algorithm 1 of Figure 3. During buffer
initialization, the buffer is filled using a single encoding
configuration to minimize the video streaming session’s launch
delay. Once the video starts at the receiver's end, and thereafter,
the adaptive video simulator encodes successive video
segments considering the available bandwidth and encoding
rate constraints, aiming to select the best encoding
configuration based on forward prediction models that
maximizes video quality. The process involves making
adaptation decisions every 2 seconds, known as the adaptation
interval and is depicted in Algorithm 2 of Fig. 3.

TABLEII. FORWARD MODELS ADJUSTED R? MEDIAN VALUES
Log Log Log
(Bitrate) (SSIM) (FPS)
Cluster 1 0.963 0.811 0.806
x264
Cluster 2 0.933 0.878 0.719
Cluster 1 0.963 0.81 0.778
x265
Cluster 2 0.95 0.868 0.724

1) Adaptive Video Streaming Simulator Properties

Additional functionalities have been integrated into the
adaptive video streaming procedure to enhance the effective
utilization of the buffer, thereby improving the simulator's
generalizability and scalability. Firstly, defining the in-transit
value allows the simulator to download multiple segments
simultaneously within a single simulation second. This
functionality resembles a realistic approach concerning video
segments’ download subject to bandwidth availability that
can extend over multiple simulation seconds. Secondly,
implementing rules that aim to minimize buffer drainage
incidents. Specifically, when the buffer level falls below a
certain critical threshold during low-bandwidth conditions
(i.e., less than 40%), the adaptation control algorithm
automatically switches to a low-bitrate video encoding
configuration, to facilitate the timely buffer fill-up.

IV. RESULTS

In this section, we provide adaptive video encoding and
delivery, experimental evaluation results. The experiments
were performed on a Windows 10 64-bit HP OMEN Tower
10 (v.22 H2), with 12th Gen Intel(R) Core (TM) i9-12900K
(16 cores, 3.20 GHz).

1) Forward Prediction Models Generation
The logistic linear models displayed below as a function
of the quantization parameter were determined to be the best
and most resilient, in terms of the achieved adjusted R squared
values and overall prediction error minimization:

log (Bitrate) = al * QP + bl @)
log (SSIM) = a2 * QP + b2 5)
log (FPS) = a3 *QP + b3 6)

Here, al, a2, a3 represent the QP coefficients, while b1, b2, b3
denote constants. The equations (4), (5), and (6) are utilized to
differentiate between the Bitrate, SSIM and FPS objectives,
respectively.

4
Authorized licensed use limited to: Cyprus University of Technology. Downloaged on June 14,2025 at 15:47:59 UTC from IEEE Xplore. Restrictions apply.



Table II demonstrates the results for the median values of
the adjusted R? per optimization objective, for both the x264
and x265 codecs, and the two clusters. The adjusted R square
was calculated using the leave-one-out 5-fold cross validation
method. In all cases, adjusted R? values are higher than 0.72.
These high values demonstrate the robustness of the derived
forward prediction models.

B. Average Prediction Error under Realistic Conditions

Figure 5 demonstrates the percentage (%) prediction error
for (a) bitrate demands and (b) video quality, after averaging
the difference between the predicted values using the forward
prediction models and the actual video encoding results, over
all simulation runs, encompassing the total number of wireless
network video traces, for the driving mobility scenario. The
static mobility scenario yields similar results but is not depicted
here due to space constraints. For each graph, the average
prediction error per investigated video codec is given, namely
x264 and x265, for in-transit values of 2 and 4 (in-transit value
of 3 achieves similar results to in-transit value of 4, as shown
later in Figure 6), respectively. Moreover, results are given for
the two distinct scenarios involving content-adaptation (i.e.,
different forward prediction models used per the two clusters
highlighted in Figure 4) and no content-adaptation (i.e., one set
of forward prediction models). Lastly, the average percentage

14 ==
=

Bitrate % Prediction error

!

(a
[ in-transit=2 | x264 | Cluster Adaptation
@@ in-transit=4 | x264 | Cluster Adaptation

Hl in-transit=2 | x264
I in-transit=4 | x264

SSIM % Prediction error

prediction error is computed based only on the QP range values
{12-37} that the models were trained upon that further portray
the typical video streaming content compression levels [29][30].

Three key observations can be deduced by the bitrate
demands prediction error results appearing in Figure 5 (a). First,
the x265 codec is associated with a lower, approximately half
average prediction error compared to its predecessor, the x264
codec. Second, the content adaptation approach reduced the
prediction error for both codecs. Here, it is important to
highlight that switching between the generated forward
prediction models per identified cluster(s) is considered every
10 seconds, with a switch taking place to the forward prediction
model set that minimizes the prediction error. In that context,
the depicted results agree with the afore-described
methodology. Third, there is no significant difference between
the in-transit value, as expected.

In terms of video quality, the average error measured using
the SSIM index is less than 1% for all investigated models. The
latter emphasizes the accuracy and robustness of the video
quality prediction models. Like bitrate demands, the average
SSIM prediction error decreases when using the content
adaptation approach. However, this does not constitute a
statistically significant reduction in the present experiments.
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Fig. 5. Boxplots (a), (b) depict the percentage (%) prediction error for (a) bitrate demands and (b) video quality, based on the QP range values {12-37}, for Amazon
Prime network video traces during the driving mobility. Figures illustrate the prediction errors for in-transit values of {2 and 4} while utilizing the maximum video

quality mode with and without cluster adaptation.
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Fig. 6. 360° Video Streaming QoS Buffer Statistics for (a) Buffering Incidents, (b) Buffer Fullness >50%, and (b) Buffer Panic Size (buffer fullness <40%).
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C. 360° Video Streaming Quality of Service Metrics

The results presented in Figure 6 document a notable
enhancement in all Quality of Service (QoS) metrics when the
number of in-transit segments is increased from 2 to {3 and 4}.
The latter option defines the maximum number of video
segments (in seconds) that can be downloaded and added to the
buffer within a single adaptation interval. Specifically, when
the in-transit value was set to 2, the buffer fullness remained
below the buffer panic threshold of 4 seconds for a period
between 24%-35%, depending on the investigated scenarios.
On the contrary, with in-transit set to 3 and 4, the maximum
time percentage near the rebuffering limit was significantly
lower, in the range of 1%-3%. Similarly, for an in-transit value
of 2, the buffer fullness exceeded the 50% threshold for only
47%-49% of the total simulation time for all scenarios, whereas
this percentage was notably raised when in-transit value was set
to 3 and 4, reaching up to 91% and 88% for the static and
driving mobility scenarios, respectively. With respect to the
number of buffering incidents that cause a video to stall due to
buffer drainage, continuing until an adequate buffer threshold
is restored, again, there is a significant reduction when the in-
transit values are increased, as we can see in Figure 6. Based on
the above observations, we can conclude that the duration of
downloaded segments may exceed the adaptation interval. This
approach can enhance the user’s Quality of Experience by
allowing the simulator to achieve high buffer fullness, thereby
helping to mitigate the number of video stalling incidents.

V. CONCLUSIONS

This study proposed an adaptive 360° video encoding and
streaming approach that utilizes multi-objective optimization to
address real time varying constraints. Using lightweight
forward prediction models per optimization objective, the
proposed approach can be used to achieve effective and
efficient adaptation, with low prediction error. Moreover, for
unicast applications, the depicted methods are far more elastic
and responsive compared to adaptive HTTP streaming methods
that are limited to the pre-encoded bitrate ladder. Currently,
ongoing work investigates the applicability of the proposed
approach for multicast applications. Using the maximum video
quality mode with content adaptation support resulted in better
prediction results, reducing the average prediction errors for all
the investigated parameters. Moreover, the suggested
techniques enhance the user's QoE and session’s QoS,
associated with reduced video stalling and buffering incidents.
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