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Abstract—360° video streaming is one of the prevalent 
communication technologies for enhancing user experience and 
has thus seen widespread adoption in virtual and mixed reality 
applications. However, delivering content at scale while securing 
the quality of wirelessly communicated 360° videos in real-time 
poses significant challenges. 360° videos come in ultra-high 
definition, necessitate unprecedented bitrate demands and involve 
high encoding complexity. The time-varying nature of underlying 
wireless channels further introduces a destabilizing factor, calling 
for video systems to seamlessly adjust to varying bandwidth 
throughput to maintain adequate quality of service and experience. 
To address this issue, in this study, we have developed a multi-
objective optimization framework for real-time video encoding 
adaptation. The objective is to optimize both video quality and 
encoding efficiency while minimizing the required bitrate, subject 
to real-time application constraints. To achieve this, we relied on 
generating (offline) precise forward prediction models of video 
quality, bitrate demands, and encoding time, that can be used to 
select the optimum encoding configuration in real-time. To 
validate our methods, we implemented an adaptive video encoding 
controller, and ran emulations employing actual network traces 
from 5G mobile video streaming scenarios, using the popular 
open-source x264 and x265 codecs for video encoding. A dataset of 
4K omnidirectional videos at 30 frames per second was used. 

Keywords—Adaptive Video Streaming, 360° videos, Video 
compression, HEVC, H264, 360° Video Streaming 

I. INTRODUCTION

The ongoing hype in virtual reality (VR) and 360° video 
applications has triggered significant research interest, fueling 
the development of novel video streaming methods. Panoramic 
videos, offering a vast 360°×180° field of view (FoV) are 
pivotal in VR advancements [1]. Users, equipped with head-
mounted displays (HMDs), can immerse and interact in a visual 
experience in a spherical panorama [2], seamlessly navigating 
through the omnidirectional video by simply moving their 
heads toward the desired directions [3]. At the same time, the 
prevalence of 360° video content has triggered new challenges 
in both the processing and streaming domains. To achieve high 
fidelity and prevent motion sickness in 360° video rendering, 
ultra-high definition (UHD) resolutions (e.g., 4K, 8K) and 
frame rates, are essential [1][4]. As a result, in addition to the 

already heavy demands on storage, streaming services need to 
address the associated high bitrate demands and tight latency 
requirements [5]. In that sequence, efficient video compression 
and transmission methods are invaluable [6] [7]. 

5G (and beyond) wireless networks promise improved 
connectivity with significantly higher data rate and lower 
latency compared to 4G systems, driven by applications like 
social media, gaming, and augmented/virtual reality, while 
specifically supporting the breadth of IoT applications [8][9]. 
Predictions suggest a significant increase in connected IoT 
devices by 2025 [10]. In fact, the surge of connected devices 
associated with multimedia traffic, and particularly video, is a 
key factor pushing towards 5G networks’ adoption. However, 
securing the quality of real-time, wireless 360o video streaming 
applications is challenging. The complexity arises from the 
dynamic nature of the underlying communication channels, 
which tend to fluctuate over time. Consequently, video systems 
must seamlessly adjust to the varying, instantaneous bandwidth 
throughput of the wireless medium at a given time, while 
maintaining the perceptual quality of the communicated videos. 

In this study, we propose a multi-objective optimization 
approach that jointly maximizes a communicated video’s 
quality and encoding rate while minimizing the associated 
bitrate demands, subject to time-varying, real-time application 
constraints. For that purpose, an adaptive video encoding 
controller is implemented that uses offline-generated forward 
prediction models for each of the optimization (constraint) 
objectives, namely video quality, bitrate demands, and 
encoding rate, resulting in the best possible encoding setup 
subject to the real-time constraints (objectives). 

In Section II, we provide a brief overview of the state-of-
the-art approaches in 360o video streaming. In Section III, we 
introduce the techniques used to develop forward prediction 
models, followed by the implementation of the multi-objective 
optimization framework aimed at achieving real-time video 
encoding adaptation to varying application and infrastructure 
specific constraints. Then, in Section IV we provide the 
experimental evaluation results along with the discussion of the 
key findings. Finally, in Section V we summarize the 
concluding remarks. 
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(a) Shooting                     (b) Press Conference  (c) Xiao Guang              (d) Concert Live       (e) Football Match 
Fig. 1.  360o video image examples, Video Resolution: 4069 x 2048, Frame Rate: 40 fps, Projection Type:  Equirectangular projection 

II. RELATED WORK 
The unprecedent interest and potential of 360o video 

applications is evident via an increasingly dense body of 
literature, especially over the past 5 years. Different methods 
have been proposed, each addressing unique aspects and 
characteristics of 360o videos, to optimize available resources 
and trigger wider adoption. Tile-based 360o video streaming 
linked with viewport prediction is a key concept for 
equirectangular projection (ERP) -based video format. The goal 
is to prioritize the user’s FoV over the background, less 
important regions [3][11]. Assigning higher bitrate budget to 
the user’s FoV has been found to increase the overall quality of 
experience (QoE), for both unicast and multicast scenarios. In 
the latter case, network-assisted techniques investigate the 
sharing of high-quality tile-based FoV regions and the caching 
of these video regions closer to the user [12]. At the same time, 
new or customized objective video quality assessment (VQA) 
metrics have been proposed that consider the FoV in the final 
(weighted) score, to achieve higher correlation to perceptual 
ratings [8]. In that context, a significant number of studies 
propose various viewport (i.e., FoV) prediction methods, based 
on historical viewport values captured via HMDs, using models 
like long short-term memory (LSTM) and deep reinforcement 
learning [11][13][14][15]. Deep learning models for automated 
region(s)-of-interest (ROIs) identification and translation to 
viewport are also gaining attention [16]. 

For real-time streaming services, an adaptation decision is 
considered at pre-defined intervals to maximize the user’s QoE 
and a session’s Quality of Service (QoS). In both 2D and 360o 
video communication systems, adaptive video streaming 
standards such as MPEG-DASH and HLS are used, primarily 
via the use of pre-constructed bitrate ladders. The latter is true 
for the proposed 360o video streaming approaches described 
earlier, that encompass customized bitrate ladders that consider 
and encode the user’s viewport in higher quality [17]. Moreover, 
the use of base encoding layers and enhancement viewport 
layers, in a concept like scalable video coding is a popular 
approach. As a result, switching between pre-encoded states 
essentially limits the optimization process to a simple selection 
of the available encoding(s) that match the underlying 
bandwidth. To address this issue, more sophisticated methods 
have been proposed that utilize multi-objective optimization 
methods to examine and maximize additional objectives that go 
beyond the traditional rate-distortion optimization [18][19]. 
Such examples, include consumed encoding energy, dynamic 
viewport tiles selection and decisions based on multi-user video 
quality optimization as described above, but also self-organized 
network infrastructures [20] [21].  

This study extends the multi-objective optimization 
approach developed by our group for conventional and medical 
2D video transmission [18][19]. It jointly considers the 

optimization of video quality, bitrate demands, and encoding 
rate. The approach is codec-agnostic, in the sense that it is 
applicable using any video codec and is underlying wireless 
network independent. Importantly, the proposed framework is 
complementary to other approaches in literature. In fact, 
ongoing work is tasked to investigate its effectiveness for tile-
based video streaming using viewport prediction methods. 

III. METHODOLOGY 
In this section, we provide a detailed description of our 

proposed approach for adaptive video delivery of 360o video. 
Firstly, the methodology relies on an offline training phase, 
where 360o video instances involving different video encoding 
configurations are processed to derive objective forward 
prediction models for video quality, bitrate demands, and 
encoding time. Both the H.264/AVC [22] and H.265/ HEVC 
[23] video compression standards are used for this purpose. 
Figure 1 captures a subset of the dataset’s video content 
diversity. Then, the approach focuses on implementing an 
adaptive video encoding controller (see Fig. 3) that uses the 
generated forward prediction models and multi-objective 
optimization to materialize adaptive 360o video streaming, by 
triggering the encoding setup that maximizes the 
communicated video’s quality (video quality objective), while 
matching the available bandwidth of the underlying wireless 
channel (bitrate demands constraint), in real-time (encoding 
time constraint).  

A. Dataset 
For validating the proposed approach, a dataset comprised 

of 5 omnidirectional videos of diverse content (see Fig. 1) was 
used, with 4K resolution (4096x2048 pixels), at 30 fps and a 
ten-second duration [24]. The raw videos were organized in 25 
distinct video segments of 2 seconds each, using the ERP 
format.  

B. Adaptive Video Delivery using Multi-objective 
Optimization 
1) Video Compression Experimental Setup 
In this study, we use open-source x264 and x265  [25][26] 

implementations that facilitate encoding optimizations enabling 
real-time encoding performance, being orders of magnitude 
faster than the JM and HM reference implementations of 
H.264/AVC [22] and HEVC/H.265 [23] video compression 
standards, respectively [18]. We consider different compression 
levels by adjusting the quantization parameter (QP), ranging 
from 16 to 37 with a step size of 1. The medium preset is used, 
which invokes the main profile for both codecs. As a result, for 
each codec used, we generated a total of 550 video segment 
instances (5 videos x 5 segments each x 22 different QPs).  
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2) Forward Prediction Models Generation 
Forward prediction models are critical for implementing 

real-time adaptive video delivery using multi-objective 
optimization. The offline process for generating these models 
is depicted in the upper part of Figure 2. For each optimization 
objective, namely video quality, bitrate demands, and encoding 
frame rate (i.e. encoding time), a corresponding model is 
generated. For this purpose, a dense encoding space is needed, 
as tabulated in Table I. This space provides the critical mass of 
compressed video’s outcome characteristics, that allows to 
investigate linear model estimation, which encompasses 
logistic regression, to derive accurate forward prediction 
models per optimization objective. This process underpins 
lightweight models, whose inverse solving is not 
computationally intensive, and hence qualifies for real-time 
streaming, provided that adequate accuracy is achieved. 

TABLE I.  VIDEO ENCODING CONFIGURATIONS 

 Forward Prediction Models 
Codecs x264, x265 
Preset Medium 

QP Range 16-37 
Total configurations 

per codec 22 
Total configurations 44 

 

 
Fig. 2.  Adaptive Video Encoding And Simulator Diagram 

During the offline process, a dataset comprising five 360° omnidirectional 
videos with 4K resolution (4096x2048 pixels) at 30 frames per second was 
utilized. These videos were organized into 25 distinct video segments, each one 
with a 2 seconds duration. Each segment was then encoded using the libx264 
and libx265 ffmpeg libraries, and the resulting encodings were employed to 
develop forward prediction models using linear and logistic regression, 
following video segments’ clustering. During real-time simulation, inverse 
model prediction is employed to select the optimal encoding configuration that 
meets the application’s constraints at each encoding adaptation interval. 

a) Content-based Adaptation 
Different video sequences have different, unique content 

characteristics. Some could be rich in spatial content while 
others could be rich in the temporal domain, involving high 
motion scenes. This variability can also be observed at an intra-
video level. Thus, each video involves different spatiotemporal 
complexity, which is in turn translated into encoding 
complexity, resulting in diverse bitrate demands and encoding 
time. To address this issue, we propose a clustering approach to 
enhance the produced models’ accuracy. Specifically, we apply 

the k-means clustering method to organize the 25 segments of 
the videos into two distinct clusters. As shown in Figure 4, all 
segments of three of the videos belong in a single cluster, while 
video chunks of two of the videos are assigned to both clusters. 
A video’s 5 constituent video segments are outlined with a red 
line while the two distinct clusters appear in yellow and purple, 
respectively. Based on this observation, we generate forward 
prediction models for each of the two clusters, aiming to 
minimize the overall prediction error during real-time video 
streaming sessions. 

 

 
Fig. 3.  Overview of the Adaptive Video Streaming Simulator 

Algorithm 1: Buffer Initialization occurs at the onset of every video streaming 
session or following a buffer drainage event.  
Algorithm 2: Encoding Configuration is selected dynamically based on the 
real-time bandwidth readings extracted from the 5G network traces.  
Algorithm 3: Adaptive Video Streaming simulator implementation. 

45
Authorized licensed use limited to: Cyprus University of Technology. Downloaded on June 14,2025 at 15:47:59 UTC from IEEE Xplore.  Restrictions apply. 



 
Fig. 4.  K-means clustering of video segments, illustrating the division into two 
clusters (yellow and purple) based on the bitrate demands for QP of 22.  The 
red outline depicts the segments belonging to the same video. 

3) Multi-objective Optimization Framework 
The approach here is to maximize video quality (denoted as 

VQ) measured in terms of Structure Similarity Index (SSIM) 
[27], minimize bitrate demands (denoted as B), and maximize 
encoding efficiency (or minimize encoding time), captured in 
encoding frames per second (denoted as FPS). Overall, the 
approach is depicted in the following equation: 

MAX (VQ (SSIM), -Bitrate (B), FPS)  (1) 

Based on (1), several multi-objective optimization modes 
can be defined [18][19]. In this study, the Maximum Video 
Quality Mode is used. The goal is to maximize the 
communicated video’s quality, while adhering to onstraints on 
bandwidth availability imposed by the wireless infrastructure 
and encoding frames per second, imposed by the video’s 
framerate. Hence, maximum video quality mode (maxSSIM) is 
characterized by the following constraints: 

Bandwidth constraint: B ≤ Bmax  (2) 
Frame rate constraint: FPS ≥ FPSmin         (3) 

C. Adaptive Video Encoding and Streaming Simulator 
An adaptive video streaming simulator has been developed 

in Python to evaluate the performance of the proposed adaptive 
video encoding and control mechanisms under realistic wireless 
communication scenarios. The simulator parses real-life 
wireless network video traces to extract the instantaneous 
bitrate at any given point in time. The wireless network video 
traces comprise of 5G traces collected from two distinct 
mobility patterns, namely Static (indoors) and Driving (car). 
The car mobility scenario involved driving through city and 
suburban areas during the morning and evening hours. 
Experiments were conducted between 2019-11-20 and 2020-
01-06, while the streaming video content was initiated from 
Amazon Prime services [9]. 

The adaptive streaming simulator uses a video buffer and 
dynamically adjusts video quality based on the available 
bandwidth, adhering to the logic of adaptive HTTP streaming 
standards [28]. Figure 3 summarizes the adaptive video 
simulator's algorithmic approach in pseudocode format.  
Algorithm 3 delineates the implementation philosophy of the 
video streaming session. In the setup phase of the streaming 
process, the video buffer is populated up to a predefined target 

level to prevent video stalling and premature depletion of the 
buffer, as detailed in Algorithm 1 of Figure 3.  During buffer 
initialization, the buffer is filled using a single encoding 
configuration to minimize the video streaming session’s launch 
delay. Once the video starts at the receiver's end, and thereafter, 
the adaptive video simulator encodes successive video 
segments considering the available bandwidth and encoding 
rate constraints, aiming to select the best encoding 
configuration based on forward prediction models that 
maximizes video quality. The process involves making 
adaptation decisions every 2 seconds, known as the adaptation 
interval and is depicted in Algorithm 2 of Fig. 3.  

TABLE II.  FORWARD MODELS ADJUSTED R2 MEDIAN VALUES 

  Log 
(Bitrate) 

Log 
(SSIM) 

Log 
(FPS) 

x264 
Cluster 1 0.963 0.811 0.806 

Cluster 2 0.933 0.878 0.719 

x265 
Cluster 1 0.963 0.81 0.778 

Cluster 2 0.95 0.868 0.724 

 
1) Adaptive Video Streaming Simulator Properties 

Additional functionalities have been integrated into the 
adaptive video streaming procedure to enhance the effective 
utilization of the buffer, thereby improving the simulator's 
generalizability and scalability. Firstly, defining the in-transit 
value allows the simulator to download multiple segments 
simultaneously within a single simulation second. This 
functionality resembles a realistic approach concerning video 
segments’ download subject to bandwidth availability that 
can extend over multiple simulation seconds. Secondly, 
implementing rules that aim to minimize buffer drainage 
incidents. Specifically, when the buffer level falls below a 
certain critical threshold during low-bandwidth conditions 
(i.e., less than 40%), the adaptation control algorithm 
automatically switches to a low-bitrate video encoding 
configuration, to facilitate the timely buffer fill-up.  

IV. RESULTS 
In this section, we provide adaptive video encoding and 

delivery, experimental evaluation results. The experiments 
were performed on a Windows 10 64-bit HP OMEN Tower 
10 (v.22 H2), with 12th Gen Intel(R) Core (TM) i9-12900K 
(16 cores, 3.20 GHz). 

1) Forward Prediction Models Generation 
The logistic linear models displayed below as a function 

of the quantization parameter were determined to be the best 
and most resilient, in terms of the achieved adjusted R squared 
values and overall prediction error minimization: 

log (Bitrate) = a1 * QP + b1    (4) 
log (SSIM) = a2 * QP + b2   (5) 
log (FPS) = a3 * QP + b3         (6) 

 
Here, a1, a2, a3 represent the QP coefficients, while b1, b2, b3 
denote constants. The equations (4), (5), and (6) are utilized to 
differentiate between the Bitrate, SSIM and FPS objectives, 
respectively.  
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Table II demonstrates the results for the median values of 
the adjusted R2 per optimization objective, for both the x264 
and x265 codecs, and the two clusters. The adjusted R square 
was calculated using the leave-one-out 5-fold cross validation 
method. In all cases, adjusted R2 values are higher than 0.72. 
These high values demonstrate the robustness of the derived 
forward prediction models. 

B. Average Prediction Error under Realistic Conditions 
Figure 5 demonstrates the percentage (%) prediction error 

for (a) bitrate demands and (b) video quality, after averaging 
the difference between the predicted values using the forward 
prediction models and the actual video encoding results, over 
all simulation runs, encompassing the total number of wireless 
network video traces, for the driving mobility scenario. The 
static mobility scenario yields similar results but is not depicted 
here due to space constraints. For each graph, the average 
prediction error per investigated video codec is given, namely 
x264 and x265, for in-transit values of 2 and 4 (in-transit value 
of 3 achieves similar results to in-transit value of 4, as shown 
later in Figure 6), respectively. Moreover, results are given for 
the two distinct scenarios involving content-adaptation (i.e., 
different forward prediction models used per the two clusters 
highlighted in Figure 4) and no content-adaptation (i.e., one set 
of forward prediction models). Lastly, the average percentage 

prediction error is computed based only on the QP range values 
{12-37} that the models were trained upon that further portray 
the typical video streaming content compression levels [29][30].  

Three key observations can be deduced by the bitrate 
demands prediction error results appearing in Figure 5 (a). First, 
the x265 codec is associated with a lower, approximately half 
average prediction error compared to its predecessor, the x264 
codec. Second, the content adaptation approach reduced the 
prediction error for both codecs. Here, it is important to 
highlight that switching between the generated forward 
prediction models per identified cluster(s) is considered every 
10 seconds, with a switch taking place to the forward prediction 
model set that minimizes the prediction error. In that context, 
the depicted results agree with the afore-described 
methodology. Third, there is no significant difference between 
the in-transit value, as expected.  

In terms of video quality, the average error measured using 
the SSIM index is less than 1% for all investigated models. The 
latter emphasizes the accuracy and robustness of the video 
quality prediction models. Like bitrate demands, the average 
SSIM prediction error decreases when using the content 
adaptation approach. However, this does not constitute a 
statistically significant reduction in the present experiments.  

 
(a)                                                        (b)                                                     

 
Fig. 5.  Boxplots (a), (b) depict the percentage (%) prediction error for (a) bitrate demands and (b) video quality, based on the QP range values {12-37}, for Amazon 
Prime network video traces during the driving mobility. Figures illustrate the prediction errors for in-transit values of {2 and 4} while utilizing the maximum video 
quality mode with and without cluster adaptation. 
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C. 360o Video Streaming Quality of Service Metrics 
The results presented in Figure 6 document a notable 

enhancement in all Quality of Service (QoS) metrics when the 
number of in-transit segments is increased from 2 to {3 and 4}. 
The latter option defines the maximum number of video 
segments (in seconds) that can be downloaded and added to the 
buffer within a single adaptation interval. Specifically, when 
the in-transit value was set to 2, the buffer fullness remained 
below the buffer panic threshold of 4 seconds for a period 
between 24%-35%, depending on the investigated scenarios. 
On the contrary, with in-transit set to 3 and 4, the maximum 
time percentage near the rebuffering limit was significantly 
lower, in the range of 1%-3%. Similarly, for an in-transit value 
of 2, the buffer fullness exceeded the 50% threshold for only 
47%-49% of the total simulation time for all scenarios, whereas 
this percentage was notably raised when in-transit value was set 
to 3 and 4, reaching up to 91% and 88% for the static and 
driving mobility scenarios, respectively. With respect to the 
number of buffering incidents that cause a video to stall due to 
buffer drainage, continuing until an adequate buffer threshold 
is restored, again, there is a significant reduction when the in-
transit values are increased, as we can see in Figure 6. Based on 
the above observations, we can conclude that the duration of 
downloaded segments may exceed the adaptation interval. This 
approach can enhance the user’s Quality of Experience by 
allowing the simulator to achieve high buffer fullness, thereby 
helping to mitigate the number of video stalling incidents. 

V. CONCLUSIONS 
This study proposed an adaptive 360o video encoding and 

streaming approach that utilizes multi-objective optimization to 
address real time varying constraints. Using lightweight 
forward prediction models per optimization objective, the 
proposed approach can be used to achieve effective and 
efficient adaptation, with low prediction error. Moreover, for 
unicast applications, the depicted methods are far more elastic 
and responsive compared to adaptive HTTP streaming methods 
that are limited to the pre-encoded bitrate ladder. Currently, 
ongoing work investigates the applicability of the proposed 
approach for multicast applications. Using the maximum video 
quality mode with content adaptation support resulted in better 
prediction results, reducing the average prediction errors for all 
the investigated parameters. Moreover, the suggested 
techniques enhance the user's QoE and session’s QoS, 
associated with reduced video stalling and buffering incidents.  
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