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Abstract
In this study we propose and evaluate AtheroRisk, a standalone integrated computer software system for the analysis of 
carotid B-mode ultrasound (U/S) images and videos. Our goal was to provide a tool to help physicians stratify stroke risk. 
The presented system is based on outcomes from different research studies, as well as European guidelines for the evalu-
ation and treatment of carotid artery disease. The goal is to enable reproducible analysis of atherosclerotic plaques in real 
time. AtheroRisk brings together analysis of U/S image and/or video of the carotid arteries facilitating anonymization, 
standardization, noise filtering and segmentation of plaques; followed by image and motion feature extraction to derive 
plaque-composition and stability. All the above steps are combined to determine the annual stroke risk rate and the 5-year 
stroke-free survival rate. The system is powered by an SQLite local database, in which the end user can save and manage 
data extracted from processing and analysis in an anonymized way. The first version of AtheroRisk was developed following 
an incremental software development process. The developed system was verified using 54 U/S videos (27 Asymptomatic, 
AS; 27 Symptomatic, SY cases) while the clinician’s satisfaction and comments were collected through a questionnaire-
based validation process. The results show that the integrated system proposed in this study can be successfully used for the 
automated image and video analysis of the CCA plaque in ultrasound videos.
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Introduction

Internal carotid artery (ICA) atherosclerosis constitutes 
an important ischemic stroke risk factor. For many years, 
carotid endarterectomy (CEA) was considered a solution to 
eliminate the risk of stroke [1, 2]. More specifically, it has 
been previously shown that in Asymptomatic (AS) patients 
with ICA stenosis > 60 to 70% (NASCET, The North Ameri-
can Symptomatic Carotid Endarterectomy Trial method), 
CEA limited the risk of stroke from 2 to 1%, per year [1, 2]. 
It is crucial to mention that among the findings of all above 
studies, a CEA-associated to a 2–3% perioperative stroke 
rate or death appeared, pertaining to an underlying danger, 
when attempting to support affected individuals (especially 
in AS patients). For doctors and clinicians, B-mode longitu-
dinal ultrasound (U/S) has been a widely preferred method 
to derive the carotid stenosis degree, as well as character-
istics of arterial wall and morphology. These may be use-
ful in identifying possible carotid plaque growth in vivo, 
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primarily due to their non-invasive (non-ionizing) nature and 
low cost [3]. A carotid atherosclerotic plaque is often charac-
terized by a complex structure (composition such as fibrous 
cap, necrotic core, calcification, lipid core or ulcer) [4]. A 
B-mode U/S allows its overall identification by image and/
or video texture and morphology analysis, methods holding 
notable potential in predicting the risk of stroke, as shown 
in [5, 6].

However, analysis of atherosclerotic carotid plaques in 
static image can only reveal a certain representation of its 
shape and composition, in a specific moment throughout 
the cardiac cycle (CC) [5, 6]. Notably, previous studies 
have suggested that the combination of inherent plaque ris-
ing strain and the excessive mechanical forces during the 
CC may lead to plaque rupture. More specifically, Murillo 
et al. [7], set forth a multiscale amplitude-modulation and 
frequency-modulation (AM-FM) approach to measure 2-D 
plaque motion, aiming to differentiate between AS and SY 
cases. Additionally, Golemati et al. [8], presented an adap-
tive block matching (ABM) method to identify and quantify 
asynchronous motion patterns, between the carotid plaque 
top and bottom surfaces (PTS and PBS, respectively), but 
also between PTS and the carotid wall, and between PBS 
and the carotid wall, in longitudinal carotid U/S videos. 
In essence, they calculated cross-correlations (CC2) of 

waveforms between PTS and PBS, reflecting intra-plaque 
kinematics, and showed that echolucent, high-stenosis and 
high-risk carotid plaques presented higher PTS and PBS 
radial displacement phase shifts (meanCC2 at 0.26 ± 0.15 s; 
p = 0.05).

During the past decade, there was relatively limited 
research work done in the identification of carotid plaque 
motion configurations in U/S longitudinal videos, to detect 
patients in high risk of ischemic stroke. There have been 
two dominant U/S video-based methods for carotid plaque 
motion analysis, the ABM motion estimation and the 
Farnebäck’s [9] optical flow method, as used and presented 
in [10]. Interestingly, only a few studies have concluded that 
carotid plaque motion characteristics can be used to stratify 
stroke risk based on reliable computer software design and 
statistical analysis, although larger datasets of AS-carotid 
U/S video recordings are needed in many cases. Support is 
needed before the results can be generalized. More impor-
tantly, no other study was found in the current literature that 
has addressed the motion in very complex carotid plaque 
examples, such as plaque with ulcers, acoustic shadowing, 
juxtaluminal black areas (JBAs) [11] or discrete white areas 
(DWAs) [5]. As also documented in [12], it is essential to 
automate the identification of JBAs (without a visible echo-
genic cap) and the DWAs, in carotid U/S videos, as these 

Fig. 1   a The class flow diagram 
for the first version of the Ather-
oRisk software as proposed in 
this study for carotid plaque 
processing and analysis in 
B-mode ultrasound longitudinal 
images and videos, b High-level 
architecture of the AtheroRisk 
software incorporating all the 
proposed software packages. 
ROI region of interest
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constitute independent predictors of stroke. In addition, for 
experts to safely conclude on the existence or absence of 
both JBAs and DWAs in plaques of carotid U/S recordings, 
image intensity normalization is considered an indispensable 
factor in this computerized image analysis [12].

In this study, by building upon prior knowledge and com-
putational tools developed by our group, we present the first 
version of AtheroRisk, an integrated computer software for 
atherosclerotic plaque analysis in carotid U/S longitudinal 
images and videos (see also Fig. 1a). This is particularly 
focused on image/video preprocessing and standardization, 
as well as in extraction and quantification of plaque-originat-
ing spatial and temporal features, specifically for individuals 
in the high-risk group. Our aim is to assist doctors and pro-
vide a research tool for stroke risk stratification and follow 
up, based on the derivation of unified stroke risk scores, 
combining atherosclerotic plaque features from carotid U/S 
image and video analysis.

Methodology

The AtheroRisk Software Architecture 
and Computational Pathways

To develop the proposed software, we have utilized a pleth-
ora of digital images and video handling and processing 

using Python (version 3.11) language [13]. The development 
followed an incremental approach, which involved building 
the software in small, manageable segments. This approach 
allowed for frequent testing and integration of new features, 
ensuring that each addition was stable and functional before 
moving on to the next. The incremental method enabled us 
to gather continuous feedback from end-users and incorpo-
rate it promptly into the development cycle, thus refining 
the software iteratively. In Fig. 1b, a representation of the 
high-level architecture of the software is illustrated, where 
all software packages used and developed are shown. This 
approach facilitated rapid prototyping and iterative improve-
ments based on user feedback and performance evaluations. 
Additionally, a holistic view of all the carotid ultrasound 
image and video preprocessing and analysis pathways pro-
vided in the software is shown in Fig. 2. This method also 
allowed us to identify and resolve potential issues early in 
the development process, ensuring a robust and user-friendly 
final product. 

The implemented computer software as proposed in this 
work, allows the user to create a patient analysis project, 
where anonymization of the patient information takes place 
automatically, producing a random name (see also Fig. 2, top). 
Upon project folder creation, the user may import and analyze 
either carotid U/S images or video recordings. In case a video 
analysis pathway is chosen, there is also the opportunity for 

Fig. 1   (continued)
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the user to shift to image analysis for carotid plaque analysis. 
The software supports videos in ‘AVI,’ ‘MOV’ or ‘AVC’ con-
tainers, with ‘Y800’, ‘MPEG-4’ or ‘H264’ transcoding. The 
developers highly recommend the use of images in ‘tiff’ for-
mat to secure lossless compression (LZW) and eliminate data 
loss. The software also allows for conversion of Digital Imag-
ing and Communications in Medicine (DICOM) U/S image 
sequences into ‘H264’ ‘MOV’ or ‘AVI’ videos, to enable video 
visualizations and facilitate video analysis. Further details on 
the AtheroRisk software architecture are provided in Sect. 2.8.

Carotid Ultrasound Video Dataset and Clinical 
Information

During the project, a carotid U/S video database was cre-
ated, consisting of existing and newly acquired recordings 
(see also Fig. 2). A total of 339 patients were included 
(206 AS and 136 SY) with a total of 356 B-mode grayscale 
and 356 color doppler U/S longitudinal videos; in certain 
cases, there were U/S videos both from the right and left 
ICAs. The videos were captured at two different vascular 

Fig. 2   Flow diagram, demonstrating the available carotid B-mode ultrasound image and/or video preprocessing and analysis pathways for the 
proposed AtheroRisk software
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laboratories namely, at the University College London 
Hospital, Ealing Hospital, and at the Vascular Screening 
and Diagnostic Centre (United Kingdom). The new videos 
were recorded at the American Medical Center (Nicosia, 
Cyprus) and the Vascular Surgery Clinic of the National 
and Kapodistrian University of Athens (Attikon Hospital, 
Athens, Greece). The data acquisition took place upon 
approval by the London-Harrow national research eth-
ics service committee (approval no. 11/LO/0299) and the 
Cyprus national bioethics committee and upon patients’ 
written consent. The U/S videos were captured using the 
Philips iU22 U/S system (Philips Ultrasound, Bothell, 
Wash) with an L9-3 linear array probe or the Philips Affin-
ity 70G system. Digital videos were resolution-normalized 
at 20 pixels/mm and were recorded digitally on with a 
resolution of 768 × 576 pixels with 256 Gy levels. The 
majority of patients presented with carotid stenosis equal 
or higher than 50%, while some of them (assigned in the 
SY group) had already developed clinical symptoms, such 
as a stroke or a transient ischemic attack (TIA). Impor-
tantly, a patient had to be declared as AS, if there were no 
symptoms for the last six months.

In addition, a strict U/S video acquisition protocol was 
formulated by a highly experienced vascular surgeon to 
guide the ultrasonographers, followed by a patient infor-
mation sheet, which allowed the documentation of the 
degree of carotid stenosis, the systolic and diastolic blood 
pressure, the age, the symptoms (history of amaurosis 
fugax, transient ischemic attack, major stroke, total occlu-
sion) or previous surgical intervention (such as carotid 
artery stent or external carotid artery (ECA), for each 
patient. Manual carotid plaque regions of interest (ROIs) 
were provided by the vascular surgeon (coauthor Andrew 
Nicolaides, who produced one indicative ROI per video), 
defined with the help of color Doppler videos to approxi-
mate the plaque-to-lumen borders. Finally, the dataset 
includes some patient cases with more than one carotid 
plaque area in their video recordings; further analysis is 
needed to conclude on the existence of a single or multiple 
plaques, in these cases.

Carotid Ultrasound Image and Video Preprocessing

In the AtheroRisk software, the first important step involves 
a conversion of the B-mode U/S recordings into an 8-bit 
grayscale representation (see Fig. 2, steps 1 and 2 image 
and video preprocessing). To proceed with reproducible 
data analysis, the user can normalize resolution in the 
selected image or video, at 20 pixels/mm (with bicubic 
interpolation-based upscaling), a process proved to enhance 

plaque-originating image feature analysis [14]. Next, the 
user may select a blood area and a bright adventitia area 
near the plaque, on the given image or video, as reference 
pixel intensity values, to normalize the image intensity (with 
linear scaling), a step required to extract comparable plaque 
image features, as introduced in [12]. The user may also 
apply speckle noise removal, using among two different fil-
ters, namely the ‘lsmv’ (local statistics mean variance) or the 
hybrid-median filter, as proposed and evaluated in carotid 
U/S images from AS and SY cases in [15].

Motion‑Mode Image and Cardiac State Diagram 
Generation

In the proposed AtheroRisk software, the required next step 
is the identification of CCs and the U/S video states that 
correspond to cardiac early (ES), middle (MS), peak systole 
(PS) and/or cardiac diastole (D) respectively (see also Fig. 2, 
step 3 video analysis). It should be here also noted that the 
identification of the above states through the cardiac cycle 
is particularly important as also shown in previous studies 
presented by our group [16, 17]. More specifically, it was 
shown that the majority of plaque textural features are sta-
tistically significantly different at systolic and diastolic states 
and between AS and SY individuals [16]. To derive the CCs 
and CC states, AtheroRisk generates a Motion-mode image 
(M-mode, see also Fig. 3 top), which represents the move-
ment of a perpendicular line selected manually by the user 
on the first VF of the video (see also Fig. 3a, yellow line) as 
proposed in [17]. By horizontally stacking the pixel intensity 
visualizations of the selected VF column for all the given 
VFs, we produce the M-Mode image (see Fig. 3, top). At this 
point the user can lead U/S video analysis within a confined 
number of consecutive CCs (see Fig. 3, bottom), by manu-
ally selecting ES, MS, PS and D-related VFs, as well as by 
setting a starting and an ending VF for the analysis.

Manual and Automated Plaque Segmentation

In the AtheroRisk software, the user is able to manually 
select the area of interest (ROI) (see also Fig. 2, step 4), 
in pixel-level detail, but also use a deep learning method 
for automated plaque segmentation (model adapted by Lou 
et al. [18]), throughout all VFs, in a given U/S video. An 
example of an automated plaque segmentation is shown in 
Fig. 5 (top left; in green outline). Here, the user has access to 
ROI-originating geometrics metrics total plaque area (TPA), 
the minor (MinA) and major axes (MajA), the perimeter of 
the resulted ROI (P), as well as the intersection over union 
(IoU) between manual and automatic plaque segmentations 
(realized training and evaluation of the model in [19]).
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Carotid Plaque Image Analysis and Image Features

Upon carotid plaque manual or automated segmentation in 
the whole U/S video, and the selection of the CCs (includ-
ing ES, MS, PS, and D states), different groups of texture 
and morphological features from the plaque ROI may be 
automatically extracted across all VFs, and the correspond-
ing statistics may be derived [6, 16]. AtheroRisk depicts 
alterations of plaque image features among ES, MS, PS, 
and D states, but also between all given states themselves 
(e.g., across PSs). These plaque-based features belong to the 
following groups: gray level dependence method (GLDM), 
spatial gray level dependence method (SGLDM), first order 
statistics (FOS), and run length features. In Table 1 of the 
Appendix, all individual carotid plaque-based textural 
features produced in AtheroRisk are shown. Importantly, 
certain carotid plaque characteristics, such as the presence 
or absence of JBAs or DWAs, are specified by the user 
manually.

Echodensity-informed pseudo-coloring of carotid plaque 
to depict composition. It is important to mention that dif-
ferent composition components of the carotid plaque result 
in different image and motion features (e.g. derivation of 
echodensity-based plaque types [20]). AtheroRisk is also 
equipped with a plaque contouring effect (developed in 

close collaboration with an experienced vascular surgeon), 
where the color-to-composition mapping is as follows: pixel 
intensities in the 0–50 (black and blue), 51–100 (green and 
yellow), and 101–255 (orange and red), show lipid core, 
fibrous and calcified areas, respectively. A pseudo-colored 
plaque, with 10 identified composition contours, and a 
plaque depicting the medium-scale instantaneous frequency 
(IF) [19] representations, are shown in Fig. 4-left and Fig. 4-
right, respectively.

Amplitude-modulation and frequency-modulation (AM-
FM) features. AM-FM models offer a method to represent 
complex, non-stationary structures at the pixel-level resolu-
tion using multiple components characterized by physically 
meaningful descriptors [19, 22–24]. Instantaneous Ampli-
tude (IA), for instance, captures variations in local image 
intensity, identifies edges, and quantifies component contri-
butions. Instantaneous phase (IP) detects rapid changes in 
texture locally, while instantaneous frequency (IF) measures 
the local frequency content (see Fig. 4, Right). The magni-
tude of instantaneous frequency (|IF|) offers a tangible meas-
urement of local image texture and serves as a geometric 
measure of texture as well [19]. The angle of Instantaneous 
Frequency provides insight into directional structures. Addi-
tionally, employing multiple scales enables the visualization 
of otherwise imperceptible structures. AM-FM components 

Fig. 3   Example of a motion-
image (M-mode) image from an 
AS subject, aged 68 years, with 
carotid stenosis degree at 95%. 
Top: the initial M-mode image. 
Bottom: manual selection of 
the different cardiac phases for 
a given video, represented as 
colored lines; here, the user, 
can manually navigate on the 
M-mode image, to locate early, 
middle and peak systole-related 
video frames, as well as dias-
tole-related frames, based on 
which the carotid plaque motion 
analysis will later be applied. 
The colored lines follow the 
colors of the corresponding 
cardiac phase selection buttons. 
ES early systole, MS middle 
systole, PS peak systole, D 
diastole
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can also be utilized to reconstruct textures. This model has 
a solid foundation, evident in its extensive applications in 
medical imaging [23]. Multiscale AM-FM analysis, utilizing 
difference of Gaussians (DoG) filterbanks [24] or Gabor fil-
terbanks [23, 24], was used for the analysis of carotid plaque 
ultrasound images for the assessment of the risk of stroke via 
the discrimination between asymptomatic and symptomatic 
plaques. Histogram based AM-FM features were extracted 
from IA, IP and |IF|, across three scales (low, medium, and 
high), employing the methodology outlined in [19]. Statis-
tically significant features were extracted for low, medium 
and high IA, IP and |IF| [24, 25]. Moreover, the statistically 
selected histogram-based AM-FM features were used to 
develop support vector machine (SVM) models to clas-
sify the features into two classes: asymptomatic plaques, 
or symptomatic plaques. The overall classification accuracy 
was in the region of 74–75% [23, 24].

Carotid Plaque Motion Analysis and Motion 
Features

The AtheroRisk software, also introduces a carotid plaque 
motion analysis workflow, based on the derivation of opti-
cal flow, for all U/S VFs included in the consecutive CCs 
(selected by the user), as presented in [10], which is based 
on the Farnebäck’s method [25]. The aim is to character-
ize the overall plaque motion as concordant (all plaque 
components simultaneously move towards the same direc-
tion throughout the CC) or discordant (plaque components 
move in different directions, at certain times of the CC). 
These motion configurations are associated with the risk 
of stroke [10]. Carotid plaque motion analysis in Ather-
oRisk can generate the following motion features: (1) the 
plaque’s dominant orientation (DO) per CC state, (2) the 
maximum angular spread (MAXFW, the maximum fan-
width, in degrees, per fixed motion magnitudes) per CC 
state, and (3) the average of the median motion magnitudes 
per angle degree (per CC state and across all types of CC 
states). For more explainable visualizations, we utilize 

the polar directional diagrams and the scatterplots, shown 
later in Fig. 5 (middle bottom and bottom right, respec-
tively), to depict the MAXFW20 (for the first 20% of the 
analyzed plaque pixels) and the median motion magni-
tudes of the plaque per CC state. Our aim is to provide the 
average motion magnitudes and the angular spreads, across 
and between all CC states to dismantle plaque areas more 
susceptible to rupture, in specific CC moments [26, 27].

Carotid Ultrasound Video Analysis Software 
Architecture

AtheroRisk is a standalone computer application, accom-
panied by a local SQLite database [28]. It is designed to 
support carotid U/S image and video analysis, including 
DICOM image sequences, allowing both patient clinical data 
and analysis results to be dynamically saved. Its architecture 
and high-level process are depicted in Fig. 1. All the above 
diagrams illustrate the comprehensive workflow, structural 
components, and functional interactions within the software. 
Its architecture consists of three main components the user 
interface (UI), the video and image analysis modules, and 
the database.

The UI, built using Python and PyQt5, supports func-
tionalities such as loading images/videos, initiating analy-
sis, displaying results, and managing patient information. It 
allows users to create new projects or open existing ones, 
standardize images and videos, and perform manual or auto-
mated plaque segmentation. The video and image analysis 
modules utilize key Python libraries including including 
OpenCV [29], Keras [30], TensorFlow [31], Matplotlib [32], 
Scipy [33], Skimage [34], Sklearn [35], skvideo [36], and 
Numpy [37].These modules perform tasks such as image and 
video reading and writing, preprocessing, ROI segmenta-
tion, and ROI-based feature extraction for motion analysis 
and stroke risk prediction, employing deep learning models 
such as the channel-wise feature pyramid network for medi-
cine (CFPNet-M) [18]. The database, managed by SQLite, 
stores patient clinical data, analysis results, and anonymizes 

Fig. 4   Different carotid ultrasound plaque representations, depicting 
the underlying compositions. Left: a pseudo-colored plaque, related 
to the analyzed video in Fig.  3 (highly dark areas represent lipid 
cores, while red areas portray calcifications. Right: an example of the 

instantaneous frequency (IF) representations (medium scale), derived 
from the amplitude modulation-frequency modulation (AM-FM) 
analysis according to [19, 21]
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patient information to ensure data security and privacy. It 
facilitates efficient data retrieval, modification, and storage, 
supporting the dynamic needs of clinical research.

The workflow of AtheroRisk begins with data input, 
where users load ultrasound images or videos via the user 
interface. The software then performs preprocessing steps, 
including image and video standardization [12, 14] and 
despeckling [15], to ensure consistency and remove noise. 
Segmentation follows, with both manual and automated 
methods [38] available to identify and analyze regions of 
interest. The software then extracts angular motion [26], and 
other features [16] for analysis, predicting stroke risk based 
on the extracted data. All patient information, images, vid-
eos, and analysis results are stored in the SQLite database 
for easy retrieval and further analysis. Figure 2 demonstrates 
all the various functionalities and interactions within Ather-
oRisk, including creating new projects, standardizing data, 
performing segmentation, extracting features, and predicting 
stroke risk.

Stroke Risk Stratification and Evaluation Metrics

As described above, the carotid U/S image and video analy-
sis pathways in AtheroRisk serve to help us understand the 
severity of the carotid disease, with respect to the plaque’s 
inherent (echodensity-informed composition, geometrical 

measures, appearance) and induced features (plaque areas’ 
motion magnitude and orientation). Our aim is to find the 
best combinations of clinical, textural, geometrical and 
motion features of the carotid plaque, to develop models 
that will confidently stratify carotid atherosclerosis patients 
(AS and SY) into low-, intermediate- and high-risk groups. 
In close collaboration with an experienced vascular surgeon, 
we have defined an assembly of the two following types of 
stroke risk estimation metrics.

Plaque image feature classification. Following the extrac-
tion of geometrical, morphological and textural carotid 
plaque features (including GSM), accompanied by carotid 
artery stenosis degree, and the specification (by the user) 
of the existence or absence of past contralateral symptoms, 
JBAs and/or DWAs, in a given case, the AtheroRisk Soft-
ware extracts: (1) a 5-year stroke risk survival and (2) an 
average annual stroke rate.

Plaque motion feature classification. Concordant/
low-risk plaques exist when we measure MAXFW < 70°, 
moderately discordant/moderate-risk plaques exist when 
70° < MAXFW < 120° and discordant/high-risk plaques exist 
when MAXFW > 120°. The derivation of these degree ranges 
confidently resulted from the analysis of 10 consecutive car-
diac PSs (per video), in an existing dataset of 200 carotid 
B-mode U/S longitudinal videos [10].

Fig. 5   Representation of a concordant carotid plaque, using the motion analysis computational pathway in the AtheroRisk Software, for an ana-
lysed video frame corresponding to cardiac middle systole (MS). Selection of the MS is given in an intermediate orange line
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Carotid Ultrasound Video Analysis Software 
Validation and Verification

AtheroRisk software verification. In the present study, we pre-
sent AtheroRisk Version 1, which delivers carotid U/S image 
and video preprocessing, standardization and image and video 
analysis to stratify the risk of stroke (based on the studies in 
[10, 16, 26, 27, 39]), whose verification mainly refers to sin-
gle plaque cases. The software was evaluated in this study by 
assessing 27 AS and 27 SY patient videos, from the AtheroR-
isk database. In a future version, the software will also perform 
analysis in more complex cases (> 1 plaque areas/localizations 
will be present; more complex carotid artery anatomies will 
exist). Thirty-one different carotid plaque imaging features 
were extracted per AS and SY case, from a single selected VF 
as in [16], while for each AS and SY corresponding video, the 
carotid plaque MAXFW20 was extracted, along with the aver-
age of the median motion magnitudes for the given plaque, as 
in [10]. In Sect. 3, value distributions for some of the above 
mentioned image features, will be shown, between the AS and 
SY cases, as well as a statistically significant difference and 
correlation test, accompanied by a regression line will be dem-
onstrated for the carotid plaque MAXFW20 and the median 
motion magnitudes per category.

AtheroRisk software validation. Close to the onset of the 
AtheroRisk project, we collected user requirements for the 
software development process, targeting cardiologists and 
dedicated vascular surgeons, experienced in carotid athero-
sclerosis assessment and patient management, as well as bio-
medical engineering experts. The AtheroRisk software has 
been used on site, by interested parties in the context of one 
of the most prestigious conferences on Biomedical Imaging in 
May 2024, during a software Demo process. There the clini-
cians and experts who interacted with the software were also 
encouraged to answer a User Experience Questionnaire (the 
standard UEQ) [40]. However, as the audience’s background 
did not largely reflect clinicians and doctors, we plan to soon 
validate the ‘AtheroRisk Version 1’ standalone software, again, 
following the UEQ, upon a demonstration and hands-on tuto-
rial, delivered to the end users in a Workshop. The end users 
will report their satisfaction level, with respect to the met soft-
ware specifications. This questionnaire’s results will lead to the 
upgrade of the current software version.

Results

To the best of our knowledge, in this study, for the first 
time, we present results from carotid plaque image and 
motion feature analysis simultaneously (in 27 AS and 27 
SY cases), as explained in Sect. 2.

Firstly, two paradigms of the software visual envi-
ronment are given in Figs. 5 and 6, where a concordant 

(MAXFW20 = 59°) and a discordant carotid plaque 
(MAXFW20 = 341°) are depicted, respectively. In Fig. 5, 
where the analysis took plaque on a MS-related VF, we 
may notice that the majority of the plaque pixels have a 
DO on the right bottom (see the polar diagram), close to 
the 350°, as depicted also in the scatterplot, on the bottom 
right. In the discordant case (see Fig. 6), focused also on 
MS, we see that different (mostly echolucent) parts of the 
plaque move to different orientations, yielding a DO close 
to the 90° and a MAXFW20 = 341°.

Using the Mann Whitney rank sum test, we examined if 
there was a statistically significant difference at p < 0.05, 
between the MAXFW20 and the averaged (for the 3 con-
secutive MS analyzed VFs per U/S video) median motion 
magnitudes of the AS and SY cases, respectively. We found 
statistically significant differences at p = 0.006, when com-
paring the MAXFW20 of the AS versus the SY cases, and 
a p = 0.032, when comparing the averaged median motion 
magnitudes, respectively. In addition, we performed a Pear-
son correlation test, to examine if there was a statistically 
significant correlation between the MAXFW20, and the 
median motion magnitudes of the AS and SY cased, in 
this study (see Fig. 7left and right, respectively). We found 
a ρ = 0.170 (p = 0.396), when comparing the MAXFW20 
of the AS versus the SY cases, and a ρ = 0.015 (p = 0.939), 
when comparing the averaged median motion magnitudes, 
respectively. A regression analysis with a fitted line, for the 
MAXFW20 and the averaged median motion magnitudes 
of the AS versus the SY cases, respectively are shown in 
Fig. 7 (left and right, respectively). The Pearson correla-
tion analysis shows very low correlation between the two 
groups (AS and SY; ρ = 0.17 and ρ = 0.015, respectively), 
when comparing the MAXFW20 and the averaged median 
motion magnitudes, with strong p-values (p = 0.396 and 
p = 0.939, respectively), suggesting reliable separation 
between the two carotid atherosclerosis patient groups.

Next, the image analysis process, where one VF selected 
by the carotid atherosclerosis such that the whole body of 
the plaque would be exposed, for each U/S video was used to 
extract a plethora of imaging features as in [16], showed that 
certain plaque echodensity-based features could be used to 
separate AS from SY cases. Figure 8 depicts how the value 
distributions of three different plaque imaging features dif-
fer between the AS and SY cases. More specifically, Fig. 8 
illustrates boxplots, depicting the distributions for three dif-
ferent carotid plaque imaging features between all the AS 
and SY cases used in this study, where for all three features, 
the Pearson correlation analysis yielded low correlations 
(ρ =|− 0.34|, ρ =|− 0.06|, and ρ = 0.19, for First Order Statis-
tics Skewness, SGLDM Angular Second Moment, and the 
GDLM Mean, respectively), with p values > 0.05 (p = 0.08, 
p value = 0.7, and p value = 0.3, respectively), indicating reli-
able separation of the two disease groups.
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Overall, from the results of this study, evaluating the 
AtheroRisk Software, we may notice that the carotid U/S 
imaging and motion features hold capacity in distinguishing 
AS from SY cases. These results are in agreement with those 
derived in other related studies [10, 16].

Discussion and Future Directions

In the present study, we have introduced and described a new 
carotid B-mode longitudinal image and video analysis inte-
grated computer software, with the aim to assist doctors in 
stroke risk stratification, for carotid atherosclerosis patients. 
This computer standalone application enables carotid plaque 
visualizations, through image preprocessing and automatic 
delineation, with submodules that were formally evaluated 
in previous studies [11, 12, 14–17]. Additionally, different 
meaningful echodensity-, geometry-, texture- and motion-
based atherosclerotic plaque features can be extracted from 
a given U/S image or across multiple U/S VFs, preserving 
the information of the underlying plaque component com-
position and the identified cardiac states (cardiac ES, MS, 
PS and D), which combined with the reported patient clini-
cal information (such as the degree of carotid stenosis or 
past symptoms) assemble an annual stroke rate and a 5-year 
stroke free survival rate.

AtheroRisk differs from previously proposed compu-
tational tools for carotid B-mode U/S image analysis, as 
it incorporates fast plaque automatic image and/or video 
segmentation and real-time analysis of plaque echodensity-
derived composition, as well as motion, across different CC 
states, in which plaque image features have been found to 
change significantly [16], between AS and SY individuals, 
but also between different CC phases. Furthermore, one of 
the initial considerations for the development of ‘AtheroR-
isk’ was the high data quality and integrity, with respect 
to: a. the carotid U/S image and video capturing, entailing 
configuration of settings based on clinical recommendation 
(such as the use of maximum dynamic range, the use of low 
persistence and high frame rate, the Time Gain Compensa-
tion Curve sloping through tissues, while vertical through 
the blood vessel, and the use of a linear postprocessing 
curve), and b. the inclusion of truly AS patients according 
to the inclusion criteria in the ACSRS study [41, 42]. Until 
today, ACSRS consists the largest natural history study on 
patients with 50–99% AS carotid stenosis, including 1121 
patients totally, with a follow-up ranging between 6 and 
96 months; average: 48 months.

As shown from the results of the current study, image 
analysis and motion analysis of the carotid plaque in U/S 
videos (with a particular focus on the MS CC phase), can 
confidently distinguish AS from SY, and are in agreement 

Fig. 6   Representation of a highly discordant carotid plaque, using the motion analysis computational pathway in the AtheroRisk Software, for an 
analyzed video frame corresponding to cardiac middle systole. Selection of the middle systole is given in an intermediate orange line (top right)
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Fig. 7   Regression analysis with the Pearson correlation values, com-
paring the MAXFW20 of the 27 AS versus the 27 SY cases (on the 
left) for all subjects used in this study, and comparison of the aver-

aged median motion magnitudes (over 3 consecutive middle systoles) 
for these AS versus SY cases (on the right). MAXFW maximum fan 
width, MMM median motion magnitude

Fig. 8   Boxplots depicting the distributions of three different carotid 
plaque imaging features, namely the first order statistics skewness (on 
the left), the spatial gray level dependence matrix (SGLDM) values 
for angular second moment (in the middle) and the gray level depend-

ence matrix (GLDM) values for mean (on the right), between the 
asymptomatic (given as ‘0’) and symptomatic cases (given as ‘1’) in 
this study (NAS = 27; NSY = 27)
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with previous findings [10, 16]. AtheroRisk can separate 
AS from SY individuals, both based on the MAXFW20 (p 
value = 0.006), when comparing the MAXFW20 of the AS 
versus the SY cases, but also based on the 3 MS-averaged 
median motion magnitude (p value = 0.032), respectively. 
However, the current findings will be further validated, by 
conducting complementary verification, using a larger num-
ber of AS and SY U/S video samples.

One key area where AtheroRisk can be evaluated against 
existing methods is in the automatic segmentation of carotid 
plaques using deep learning models. As highlighted in the 
study [43] the segmentation performance achieved with the 
AtheroRisk software demonstrates reliable accuracy across 
various plaque types. Specifically, the deep learning model 
achieved a dice similarity coefficient (DSC) of 80.6 ± 11% 
for type I plaques, 84.3 ± 8% for type II plaques, 84.9 ± 7% 
for type III plaques, 85.3 ± 8% for type IV plaques, and 
84.8 ± 8% for type V plaques when trained and tested with 
the standardized (RND) dataset. These results underscore 
the robustness of the segmentation approach, particularly 
for challenging plaque paradigms such as highly calcified 
or uniformly echolucent plaques.In contrast, most existing 
carotid ultrasound analysis tools focus exclusively on image-
based analysis and do not extend to video-based motion 
analysis or the segmentation of complex plaque composi-
tions. This positions AtheroRisk as a unique and innovative 
system, bridging this gap by providing automated segmen-
tation coupled with motion and texture analysis for a more 
comprehensive evaluation of carotid plaques.

We foresee that AtheroRisk could assist in the manage-
ment of carotid atherosclerosis patients in a clinical setting 
could positively impact the experts’ workflow, but also the 
disease outcomes in the affected individuals, by minimiz-
ing potentially harmful invasive treatment approaches, such 
as CEAs. Although all modules in the ‘AtheroRisk Version 
1’ software have been previously evaluated, there are two 
possible current limitations we identify when utilizing the 
software for ultrasound (U/S) video analysis. The first per-
tains to the complexity of cases where more than one ath-
erosclerotic plaque is present, such as plaques localized on 
both the near and far carotid walls in a longitudinal view. In 
such scenarios, the AtheroRisk software remains effective in 
analysing the plaques, provided that the end-user (clinician) 
examines each plaque individually. This approach requires 
that all relevant preprocessing and analysis steps, such as 
plaque segmentation and motion analysis, are performed 
separately for each plaque. For example, if a clinician wishes 
to derive automated plaque annotations, the procedure must 
be applied independently to each plaque. Similarly, motion 
analysis throughout the entire U/S video can be conducted 
for each plaque separately. While a transverse view is not 
mandatory, it can complement the analysis by providing 
additional information to confirm the presence of one or 

two plaques, particularly when different motion classes (e.g., 
concordant or discordant) are detected.The second limita-
tion involves cases where carotid plaque ulcers are present, 
which are not always identifiable using U/S image features. 
This limitation is inherent to the nature of U/S imaging and 
highlights the need for further advancements in image acqui-
sition and processing techniques to better capture such chal-
lenging cases.

In summary, the AtheroRisk software architecture ensures 
a seamless workflow from data input to analysis and result 
storage, supporting the clinical needs for carotid ultrasound 
analysis. Its design prioritizes user interaction, robust anal-
ysis capabilities, and secure data management, making it 
a valuable tool in medical image research and stroke risk 
prediction. This cohesive architecture, illustrated through 
the diagrams, provides a clear and detailed view of the soft-
ware's structure and functionality, ensuring reproducibility 
and scalability in clinical settings.

Future work will focus on improving the video segmenta-
tion and motion analysis procedures such that it will process 
satisfactorily complex cases and difficult-to-analyze videos. 
Furthermore, the system proposed in this study will be incor-
porated into a computer-aided diagnostic system that supports 
the texture analysis of the segmented plaque as documented in 
[16, 26, 28], providing an automated system for the early diag-
nosis and the assessment of the risk of stroke. In the next ver-
sion of the software, we will, among others, focus on carotid 
plaque ulcer identification based on intra-plaque component 
motion analysis, and analysis of cases presenting with multiple 
plaques. Finally, the authors aspire to embed the AtheroRisk 
software as a cornerstone of clinical workflows for stroke risk 
stratification in hospitals and healthcare systems. To achieve 
this, the refined version of the AtheroRisk software will be 
provided to a group of highly motivated clinicians who are 
well-versed in computational tools for carotid plaque analysis. 
Over a six-month period, the clinicians will utilize the soft-
ware in high-paced clinical environments, analysing carotid 
plaques and generating stroke risk scores. During this period, 
their feedback will be systematically gathered through the 
user experience questionnaire (UEQ) to evaluate the practical 
usability and user experience of the software. This embed-
ding process will also involve adherence to stringent security 
guidelines, including comprehensive data anonymization 
and encryption protocols to ensure data security and patient 
confidentiality. Furthermore, the final version of the software 
is expected to comply with regulatory standards, including 
patenting and CE marking, to facilitate its widespread use in 
clinical practice. These efforts aim to establish AtheroRisk as 
a reliable and indispensable tool for the automated segmenta-
tion, motion analysis, and risk assessment of carotid plaques, 
ultimately supporting clinicians in making early and accurate 
diagnoses to mitigate the risk of stroke.
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Appendix

See Table 1 and Fig. 9.

Table 1   Textural image and video features extracted from the manually segmented atherosclerotic carotid plaques, in the AtheroRisk ultrasound 
image analysis pathway

FOS first order statistics, GLCM gray level co-occurrence matrix, RL run length, GLD gray level distribution, GLN gray level non-uniformity, 
LRE long run emphasis, RP run percentage, SGLDM spatial gray level dependence matrix, SRE short run emphasis

Feature group Feature Description

SGLDM Angular second moment Measures image homogeneity; higher values indicate more order or uniformity
Contrast Quantifies the amount of local variations present in the image
Correlation Assesses the linear dependency of the gray levels on those of neighboring pixels
Variance Measures the dispersion of the gray level distribution (GLD)
Inverse difference moment Reflects local homogeneity; higher values mean greater local homogeneity
Sum average The average sum of gray levels
Sum variance The variance of the sum of gray levels
Sum entropy Entropy of the sum of gray levels, indicating complexity
Entropy Overall complexity of the image texture
Difference variance Variance of the difference in gray levels
Difference entropy Complexity of the texture difference
Information measures of correlation Measures the complexity of texture

FOS Mean The average gray level intensity
Variance The variation of the gray level intensities
Median The middle value of gray level intensities
Skewness The asymmetry of gray level distribution around the mean
Kurtosis Peakedness or flatness of GLD compared to normal distribution
Energy The sum of squared elements in the GLCM; texture uniformity
Entropy The randomness in the distribution of the gray levels

GLDM Homogeneity The closeness of the distribution of elements in the GLCM to the GLCM diagonal
Contrast The intensity contrast between a pixel and its neighbor over the whole image
Entropy The degree of randomness of the GDL

RL SRE Gives higher values to homogeneous areas with short runs
LRE Gives higher values to homogeneous areas with longer runs
GLN Measures the non-uniformity of gray levels
RP Proportion of runs of a particular gray level and length in the image
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