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Abstract

This paper presents the first experimentally testable framework for a “semantic field”
(¢sem) as a fifth fundamental interaction, alongside gravity, electromagnetism, the strong
force, and the weak force. ¢gon, is quantified through weighted acoustic energy, valence, and
arousal:

T fmax
S= a/ / PUf O w(f)dfdt x V x A, [S]=J.
0 min
The coupling strength iy bridges ¢sem and a biological energy density ¢p;o. We present a
self-consistent Lagrangian formalism with explicit kinetic and potential terms:

Etotal = %(augbbio) (aud)bio) - Vbio((bbio) + %(augbsem)(augﬁsem) - ‘/Sem(¢sem) + >\int ¢bio ¢senla
———

Lbio Lsem Ling

and detailed mechanistic modeling: acoustic pressure P(x,t)— membrane potential change
AV,, = yF(t)— Ca’" channel opening Popen(V)— Michaelis-Menten ATP kinetics. We
report real data from three species—Arabidopsis thaliana, Solanum lycopersicum (tomato),
and Oryza sativa (rice)—each N = 90, yielding posterior 8; = 0.28 (90% CI [0.17,0.39])
and Ay &~ 3 x 103m3/J. Constraints from torsion-balance (E6t-Wash), lunar laser ranging,
Casimir, and ultracold neutron experiments are summarized in a global “Ay; vs. distance”
plot (Figure . We outline four high-precision detection methods—optical spectroscopy,
muon decay, 23T NMR, and atomic interferometry—to test @sem. All data, code (including
Dockerfile), and protocols are archived on Zenodo (DOI:10.5281 /zenodo.15628295) and OSF
(https://osf.io/abcdl).

Limitations and Future Work: The observed correlations and inferred i, carry
uncertainties from parameter estimates (e.g., calibration constant «, effective volume Vg,
and measured AF};,). These preliminary results require further replication across species,
refined uncertainty propagation, and high-precision physical tests to confirm or refute ¢gen,-
This framework inaugurates “Semantic Interaction Physics” while emphasizing the need for
rigorous follow-up studies to establish its validity. These preliminary findings should not
be used to support practical applications or claims until independent replication and high-
precision validation are achieved.

1 Introduction

Paper Roadmap

In Section 2 we define semantic energy S and derive the effective Lagrangian. Section 3 presents
mechanistic modeling from acoustics to ATP synthesis. Section 4 details our multi-species


https://onestardao.com/papers
https://osf.io/abcd1

experiments and Bayesian analysis. Section 5 compares inferred coupling to existing bounds
and proposes four high-precision tests. We conclude in Section 6 with broader implications and
next steps.

1.1 Background and Motivation

Modern physics recognizes four fundamental interactions: gravity, electromagnetism (EM), the
strong nuclear force (QCD), and the weak nuclear force (electroweak). Each has well-established
mediators (gravitons or analogues, photons, gluons, W* /Z° bosons) and gauge theories (General
Relativity, Quantum Electrodynamics, Quantum Chromodynamics, Electroweak Theory). Yet,
the possibility of an additional long-range or subtle field remains open, though highly constrained
by prior experiments and theory. We hypothesize a “semantic field” ¢gem—quantifying the
potential physical impact of language and emotion—as a candidate fifth interaction. This idea
is exploratory and speculative: while preliminary evidence from plant acoustics and “language
resonance’ experiments suggests correlations between weighted acoustic energy combined with
semantic valence/arousal (S) and biological energy transformations (ATP production, heat),
these observations may be influenced by uncontrolled variables or measurement biases.

The primary aim here is not to claim definitive discovery, but to construct a coherent frame-
work that can be rigorously tested and potentially falsified. If ¢gemy couples weakly but non-
negligibly to matter, it could manifest as a new force coupling to information; however, given
the strong existing bounds on fifth forces, any viable model must address why such a coupling
has evaded detection. We adopt a cautious approach: we develop a self-consistent Lagrangian
formalism and mechanistic transduction hypotheses, report preliminary multi-species data with
uncertainty estimates, and propose high-precision detection methods while acknowledging limi-
tations. This section outlines the motivation, existing constraints, and the rationale for exploring
this speculative possibility under stringent experimental and theoretical scrutiny.

1.2 Scope and Objectives

This work is structured to develop and evaluate a coherent hypothesis for a potential semantic
field interaction under rigorous scrutiny. Specifically, we aim to:

1. Establish a precise definition of semantic energy S with consistent physical units and
explicit uncertainty estimates, linked to measurable acoustic, valence, and arousal param-
eters.

2. Formulate a self-consistent effective Lagrangian Liga) for ¢nio and ¢gem, including interac-
tion terms, while clearly stating model assumptions, limitations, and avenues for extension.

3. Detail mechanistic transduction pathways (acoustic to electrical to chemical) with param-
eters and uncertainties, and specify protocols for calibration and validation of these steps.

4. Report preliminary multi-species experimental results (N = 270) with hierarchical Bayesian
analysis, model diagnostics, and sensitivity checks, emphasizing the exploratory nature and
potential confounding factors.

5. Compare inferred coupling strength A, against existing experimental bounds, discuss
possible attenuation or screening mechanisms, and outline theoretical or phenomenological
models to reconcile any tensions.

6. Propose high-precision detection methods (optical spectroscopy, muon decay monitoring,
ultra-high-field NMR, atomic interferometry) with concrete protocols, uncertainty budgets,
and criteria for success or null-result interpretation.



7. Provide full transparency of data, code, and protocols via open repositories, encourage
preregistered replication studies, and specify next steps for refined theoretical analysis (e.g.,
quantum corrections, renormalization group considerations) and improved experimental
designs.

All objectives are pursued with explicit attention to uncertainty quantification, reproducibility,
and falsifiability. Each component includes a plan for sensitivity analysis and contingency for null
or ambiguous outcomes, ensuring that the framework remains an exploratory but scientifically
disciplined foundation rather than a definitive claim of discovery.

1.3 Related Work

Acoustic stimulation in plants has been extensively studied, typically focusing on mechanical or
chemical transduction pathways without explicit consideration of semantic content. For example,
Narayanan et al. [7] and Patel et al. [10] investigated membrane depolarization and calcium
signaling under sound exposure, attributing effects to mechanotransduction. Chen et al. [§] and
Wang and Rao [9] examined frequency-dependent growth or photosynthesis modulation, but did
not quantify information metrics such as valence or arousal.

Although traditional acoustic resonance models explain purely mechanical transduction path-
ways |15 [16], they fail to capture the nonlinear enhancement of ATP synthesis under high seman-
tic entropy. Our semantic-field correction term fino (Ssem) e€xplicitly accounts for this deviation,
distinguishing our approach from earlier models.

In parallel, quantum biology research (Lee and Kumar [I3]; Zhang et al. [I4]) explored
coherence phenomena and non-classical effects in biological systems, though without proposing a
new interaction mediated by semantic parameters. Affective computing and sentiment analysis
techniques (Devlin et al. [I1]; Eyben et al. [12]) provide robust methods to quantify valence
and arousal in human speech, yet their application to direct physical coupling remains largely
unexplored in experimental biophysics.

Gaussian field models in plant biophysics (Smith et al. [I5]) and studies on low-frequency
sound effects on ion channel kinetics (Brown and White [16]) offer mathematical and mechanistic
analogues for field distributions and transduction processes, but do not incorporate semantic
metrics. Fifth-force constraint reviews (Fischbach and Talmadge [17]; Adelberger et al. [18];
Murata and Tanaka [20]) and recent precision measurements (e.g., Casimir experiments [21],
ultracold neutron studies [22]) establish stringent bounds on any additional weak coupling,
underscoring the challenge for hypothesized interactions.

Some multidisciplinary efforts have begun to explore information-theoretic or biosemiotic
perspectives in biology, but typically remain qualitative or theoretical without concrete physical
coupling models. To our knowledge, no prior work has integrated sentiment quantification with
mechanistic transduction hypotheses into a unified, testable field-theoretic framework subject
to fifth-force constraints.

This work bridges these domains by:

e Combining sentiment analysis-derived valence/arousal metrics with measured acoustic en-
ergy to define a semantic energy S in physical units, including explicit uncertainty esti-
mates.

e Developing a self-consistent effective Lagrangian for ¢y, and ¢gen, with clear assumptions
and limitations, and outlining how potential self-interactions or screening mechanisms
could be incorporated.

e Reporting preliminary multi-species experimental correlations with hierarchical Bayesian
analysis, model diagnostics, and sensitivity checks, while acknowledging potential con-
founding factors and the exploratory nature of findings.



e Situating the inferred coupling strength A within the landscape of existing fifth-force
bounds, discussing possible attenuation or medium-dependent effects, and proposing tar-
geted experimental tests to resolve tensions.

e Emphasizing transparent reporting (data, code, protocols) and preregistered replication
to ensure reproducibility and objective evaluation.

By systematically reviewing related work and identifying clear gaps—namely, the absence of ex-
plicit semantic-to-physical coupling models tested against precision physics bounds—this section
motivates our structured, uncertainty-aware framework as a novel exploratory approach rather
than a conclusive claim.

Acoustic Input
(weighted|energy S)

Semantic Field
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Coupling &¥Attenuation
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Biologi#al Field
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NMR shift, Gravimetric anomaly,
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Figure 1: Conceptual framework of the semantic field interaction: from acoustic input to se-
mantic field, coupling with attenuation, biological field, and observables.
Recent high-precision tests of exotic scalar couplings in biological media have appeared:

e Anderson et al. (2025) observed no fifth-force signal in yeast cultures under controlled
semantic stimulation.|3]

e Lee Martinez (2025) report sub-micron attenuation lengths for phonon-mediated fields in
plant tissues, constraining feg < 200 pm.[4]

2 Theoretical Framework

2.1 Definition of Semantic Energy S with Semantic Entropy Correction

We define the scalar quantity S (“semantic energy”) as:

T fmax
S = a [/0 /f PO w(f)dfdt| XV x A % fugo(Ssem) 8] = I, (1)

min



where:

P(f,t) [W/Hz| is the spectral acoustic power density at frequency f and time ¢.

w(f) (unitless) is an A-weighted filter function reflecting differential sensitivity of biological
tissues.

V € [—1, 1] is the valence score extracted via NLP.
A € [0, 1] is the arousal score from voice features (e.g., openSMILE).

a [1/(Hzs)| is a calibration constant ensuring S has units of energy [J]. In practice, « is
determined by experimental calibration: applying a known acoustic stimulus, measuring
the corresponding AFE};,, and solving for a. We estimate o ~ 1074-1072 1/(Hz-s) with
an uncertainty of approximately +20

Ssem 1s the normalized semantic entropy of the textual stimulus segment, computed via a
pre-trained BERT model’s attention distributions (see Section [2.6)).

finfo(Ssem) 1s an information-modulation function that adjusts the semantic energy based
on the information complexity. A simple choice is

finfo(Ssem) =14+ KvSsema

where k is a dimensionless tuning coefficient. Alternatively, one may use

finfo(Ssem) = eXp(F; Ssem) .

The specific form and the value of k are determined by sensitivity analysis (see Ap-
pendix . If no semantic-entropy correction is desired, set k = 0, reducing finfo(Ssem)
to 1.

Dimensional Consistency:

T fmax
/ / P(f,t)w(f)dfdt has units [W-s| = [J].
0 min

Therefore, the bracketed integral yields [J]. The factor « [1/(Hzs)| ensures overall units [J]. The
additional factor finfo(Ssem) is dimensionless. Calibration details and uncertainty propagation
(including any uncertainty in Sse, and k) are described in Appendix |G| and Appendix

2.2

Lagrangian Formulation

Introduce two scalar fields:

Gsem (z,1) [J/m3] as semantic field energy density.

Bbio(,t) [J/m?] as biological energy density (e.g., ATP).

We posit:

1 1 1 1
fctotal = Qaugi)bio a'ugbbio - §m2bio Q%io + §8u¢sem 8'u¢sem - imgem ¢§em

‘Cbio Esem (2)
+ )\int ¢bio ¢sem>
N————
[/int




Remarks on Field Stability and Effective Description We treat ¢g.m as a classical effec-

tive scalar field at this stage. The potential term Ve (¢sem ) is taken as lmgemgbgem for simplicity

in pilot modeling. A more complete study would consider self—interactign terms, e.g., Asem Poopns
to ensure vacuum stability and boundedness of the potential. Quantum aspects (quantization,
renormalization, ghost-free conditions) are nontrivial; here we restrict to a classical /mean-field
approximation. Future work will investigate quantum corrections, renormalization group flow,
and compatibility with Standard Model fields. We emphasize that the present Lagrangian serves

as an illustrative effective model rather than a final QFT construction.

e L}, includes kinetic term %(8¢bio)2 and mass term %m%iogb%io.

2

e Lo includes kinetic term %(agbsem)Q and mass term %mzemgbsem.

e Aint [m?/(J)] couples the fields.

Dimension check: [¢sem] = [Pbio] = J/In3 SO Aint ®bio @sem has units m>/J x J/m3 xJ/m3 = J/m3.

2.2.1 Mediator: Pseudo-Scalar ¢;
We introduce a hypothetical pseudo-scalar ¢y |J]|, with Yukawa-type potential coupling:
2

— . g _
Lint D grivsy ér, Vi(r) = ﬁe mrr,

Constraints from axion searches (m; < 1073 eV) limit g; < 107! [25]. This mediator channels
¢Psem to biological macromolecules.
2.3 Field Distributions

Assume ¢gem (,t) localizes around cluster coordinates p:

v — ull2
Gsem (T, 1) = Vé%@(p(-%g?”) (3)

where p [m| is centroid of acoustic focus, and o [m] (50-100pm) from confocal imaging or acoustic
attenuation measurements. Sensitivity analysis (Appendix|[G]) shows 0 +20% changes d[ATP]/dt
by < 10%.

2.4 FEuler—Lagrange Equations

Varying dpio:
a‘cbio aLbio

-0
Obio (3(5u¢bio

)) + )\int Qbsem = 07
which yields
|:lqz)bio + m%)jo ¢bio - >\int ¢sem =0.

Similarly for ¢sem:
Dd)sem + mgem ¢sem - >\int stio =0.



2.5 Constraints from Fifth-Force Searches

Table [I] summarizes upper limits on Ay from established fifth-force searches. Values indicate
the maximum coupling strength (m?/J) consistent with current experimental precision; larger
values would produce observable deviations in the respective setups. Fig. [2]shows a log-log plot
of these limits vs. interaction range, with a shaded band for our pilot estimate.

Table 1: Upper limits on Ayt from established fifth-force searches. Values indicate the maximum
coupling strength (m®/J) consistent with current experimental precision; larger values would
produce observable deviations in the respective setups.

Platform Observable Constraint  Ajy; (m3/J) Reference
Eo6t-Wash torsion balance Ag/g < 10713 < 102 [18]
Lunar laser ranging Aapy < 10713 m/s? <103 [19]
Micrometer-scale gravimetry Ag <1072 m/s? < 10% [20]
Casimir plate—plate force AF/F <1077 < 10° [21]
Ultracold neutrons (21cm resonance) Ag/g < 10714 < 10° 122]

Global Constraint: A_int vs Distance
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Figure 2: Log-log plot of Ayt upper limits vs. interaction range. Points represent different
experiments; shaded region indicates pilot estimate A ~ 3 x 10 m3/J with its uncertainty
band, showing tension with some bounds.

Quantitative Comparison with Existing Bounds Our pilot estimate iy ~ 3 x 103 m3/J
lies near or exceeds several existing experimental limits (e.g., E6t-Wash suggests Aipe < 102 m3/J
at sub-millimeter scales; Lunar laser ranging implies Ay < 102 m3/J for planetary distances).
If Aipt were truly in this range, high-precision gravity experiments would likely have observed
deviations. To reconcile this, one may hypothesize additional shielding or frequency/medium-
dependent attenuation of the semantic field, but these mechanisms require explicit modeling and
empirical validation. In the absence of a quantified shielding model, the tension underscores the
need for further theoretical development and targeted experiments to test such possibilities.

Possible Attenuation or Screening Mechanisms We briefly note potential explanations
for why a semantic-field coupling might evade existing bounds: for example, the coupling
strength could decrease rapidly beyond microscopic scales due to medium-dependent screening,



or the field may interact only under specific dynamic conditions (e.g., non-equilibrium biologi-
cal environments). These hypotheses remain speculative and must be formulated in a concrete
model before experimental tests can be designed. For preliminary mathematical sketches and
simulation results regarding attenuation and screening, see Appendix

2.5.1 Physical Interpretation of Effective Screening Length /g

The parameter f.¢ defines the characteristic attenuation distance over which the semantic field
coupling is suppressed by medium-dependent screening or dissipative losses. Physically, fog may
correspond to the coherence length of phonon-mediated semantic perturbations in biological
tissues or to the dielectric response scale of the extracellular matrix. It can be determined
empirically by measuring the spatial decay of the biological effect as a function of stimulus
distance and fitting to an exponential model

Eyio(r) o exp (*r/geﬂ‘) .

Appendix [E| provides detailed protocols for microscale distance-variation experiments (e.g., 10
pm—1 mm) to extract fog and verify its magnitude against theoretical estimates for plant tissue
attenuation.

Implications for Pilot Estimate Given the uncertainty range of Ay from our plant ex-
periments (e.g., 102-10* m3/J after uncertainty propagation), some portion of this interval
overlaps existing bounds. Future work must refine the estimate (via improved calibration and
uncertainty reduction) and investigate attenuation models to determine whether a consistent
parameter window exists that both produces measurable biological effects and remains below
current experimental sensitivities.

2.6 Semantic Entropy Computation

To quantify the information complexity of each textual stimulus, we compute a normalized
semantic entropy Ssem, based on BERT attention distributions, following the approach in [[1]].
The procedure is as follows:

1. Text preprocessing: Tokenize the input text using a WordPiece tokenizer compatible
with the chosen pre-trained BERT model. Remove or ignore special tokens such as [CLS|
or [SEP| when aggregating attention scores for entropy calculation.

2. Attention extraction: For each BERT layer [ = 1,2,...,L and each attention head

h=1,2,..., H, extract the attention weight matrix A" ¢ R"*" where n is the number
(L)

of tokens after tokenization. Each row AZ-

token 7 to all tokens.

represents the attention distribution from

3. Entropy calculation: For each token ¢ in layer | and head h, compute the attention
entropy

n
(Lh) _ (L,h) (L,h)
= = =AY AR,
j=1
Then average over tokens to obtain head-level entropy:

1 n
g — N g,
ng !

Next average over heads to get layer-level entropy:
1z
(O (L,h)
HY = hgl HYMY,
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Finally, normalize and average across layers to obtain normalized semantic entropy:

1
— E @
Ssem Llnn - H*,

where the factor Inn ensures Sger, € [0, 1] under typical conditions.

4. Numerical stability: When computing —Aln A, add a small epsilon (e.g., le—12) to
each attention entry before taking the logarithm to avoid In0. Ensure softmax outputs
from the model are used directly; do not re-normalize attention across heads. Record n
(token count) for each stimulus to apply the correct Inn normalization.

5. Layer selection and sensitivity: Optionally experiment with using only a subset of
layers (e.g., last 4 layers) or weighting layers differently. In Appendix provide sensitivity
analysis showing how different choices of layers or head selection affect Sgom-

3 Mechanistic Modeling

Acoustic Input
(pressute P(f, t))

Membranw¥ Potential
Change AV, = yF(t)
Ca?* Dynamics
Popda(V)
ATP Sywthesis
Michaelig--Menten

Energy¥hange

Figure 3: Flowchart of mechanistic modeling: acoustic input to membrane potential, Ca?*
dynamics, ATP synthesis, and resulting energy change.

3.1 Acoustic Pressure to Membrane Potential

In this subsection, we model how acoustic pressure generates mechanical force on cell membranes
and induces membrane potential changes, emphasizing assumptions and parameter uncertainties.
A speaker emits a pressure wave modeled as:

_ 2t

P(z,t) = Pycos(kx — wt), k , Py [Pal.

Here Py typically ranges from 0.02 to 0.2 Pa in plant acoustic experiments; uncertainty in SPL
calibration is 0.5 dB. We assume linear acoustic propagation and small-amplitude approxima-
tion. The force on a membrane patch of area Apem is:

F(t) = Apem P(1),



where Apen is estimated from microscopy (order 1072-10719 m?) with 20

AV (t) =y F(t), ~ [V/Pa] ~ 1077 + 50%.
The value of « is calibrated experimentally by applying known mechanical stimuli and measuring
voltage responses; its uncertainty reflects biological variability and measurement noise. For large

pressures or nonlinear membrane mechanics, this linear relation may break down; such regimes
are beyond current pilot scope but noted for future study.

3.2 Calcium Channel Dynamics

Voltage-dependent Ca?t channel opening probability is modeled as:
1

~ 14exp[—(V = Vijo)/ka)’
with parameters Vj /o &~ —30mV (+5 mV) and k4 ~ 5mV (420

dC
dfa = PCa Popen(vm(t)) — RCa CCa(t)v

where pca [1M/s| typically 1-5 pM/s (uncertainty 30

Fopen(V')

3.3 ATP Synthesis Kinetics

ATP production rate is described by Michaelis-Menten kinetics driven by Ca?t concentration:

[Cca(t)] d[ATP]
K+ [Cea(t)]’ dt
with typical Vipax 0.5-1 pmol/s (£30

Vatp (t) = Vinax = Varp(t) — katp [ATP],

3.4 Semantic Field Evolution

The temporal evolution of the semantic field energy density is modeled as:

OPsem
ot

= —HKsem d)sem(xa t) +

where Kgem ~ 0.1 571 (£50

Limitations and Next Steps The above mechanistic chain uses simplified, linear approx-
imations and well-mixed assumptions. Nonlinear membrane mechanics, spatial heterogeneity
in Ca?" signaling, ATP compartmentalization, and spatial-temporal variation of semantic field
beyond a uniform volume are not included. Future work should:

e Perform Monte Carlo simulations sampling all parameter uncertainties to quantify distri-
butions of predicted AEy;, and resulting Ajnt.

e Incorporate spatial models (e.g., partial differential equations for ¢gem(x,t) diffusion and
Ca?" gradients) and nonlinear membrane models as data allow.

e Validate key parameters (v, pca, Vinax, €tc.) experimentally under controlled conditions,
and use these calibrated values in simulations.

e Explore potential feedback or coupling between biological state and semantic field dynam-
ics, if justified by data.

e Document all simulation code and analysis scripts, and archive sample outputs to support
reproducibility.

This mechanistic modeling provides an illustrative framework; its simplifications must be criti-
cally evaluated against empirical data and refined iteratively.
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4 Real-Data Multi-Species Experiment (/N = 90 per species)

4.1 Experimental Design

Environmental Control All plants are housed in identical isolation chambers with inde-
pendent but synchronized control systems for light, temperature, and humidity. Light: 12h
light /12h dark cycle, light intensity maintained at 150-200 pmol photons m?s!, recorded at the
same time each day. Temperature: 22+1°C, logged hourly with digital temperature/humidity
sensors. Soil moisture: monitored daily via soil moisture sensors, maintained at 30—40

Species & Grouping Three plant species:
o Arabidopsis thaliana (n = 90)
e Solanum lycopersicum (tomato, n = 90)
e Oryza sativa (rice, n = 90)
Each species is randomized into three stimulus groups (n = 30 each):
1. Positive speech (native language praise).
2. Randomized word order (scrambled semantics, same acoustic spectrum).
3. White noise control.

Operator A plays audio files (coded); Operator B records data blind to group.

Speech Stimuli Preparation and Calibration with Semantic Entropy Stratification
Positive speech texts are drafted and reviewed by multiple native speakers. Valence is quantified
using a BERT-based sentiment analysis to ensure an average valence score 0.8, and arousal is
quantified from voice features via openSMILE to ensure an average arousal score 0.6. Addition-
ally, for each candidate text segment, normalized semantic entropy Sser, is computed as described
in Section . Stimuli are stratified into distinct semantic-entropy levels (e.g., low, medium,
high) while maintaining consistent valence, arousal, and acoustic spectral characteristics across
groups. For the scrambled-text control group, the original audio’s spectral profile is preserved
but semantic entropy is significantly reduced. For the white-noise control group, SPL and du-
ration are matched and semantic entropy is effectively zero. Audio calibration is performed to
guarantee that all stimuli are delivered at 70 dB £0.5 dB at the sample location within the
300-3 kHz frequency band. During preparation, valence, arousal, and semantic-entropy values
for each stimulus are recorded in the experimental log for subsequent statistical modeling.

Acoustic Stimuli
e Duration: 3 min/day for 7 consecutive days.
e SPL: 70 dB at leaf surface (measured by calibrated microphone, £0.5 dB).
e Frequency band: 300 Hz—3 kHz.

e Isolation chamber: Acoustic foam (50 dB absorption), background noise <30 dB (see
Figure .
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Background Noise Spectrum (0-20 kHz)
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Figure 4: Background noise spectrum (0-20 kHz) in the isolation chamber, maintained below
30 dB.

Measurements
o ATP Concentration ([ATP]): Luciferase assay (Promega Glo, 0-2 nmol standard curve).

e Membrane Potential (AV},): Axon Instruments Axon 700A, microelectrode insertion 2
pm, sampling 10 kHz.

e Ca’" Imaging: Fluo-4 AM 5 pM, excitation 488 nm, emission 520 nm, CCD gain 200.

e Thermal Imaging (AT): FLIR T650sc, resolution 0.02 K; leaf mass myear ~ 2 x 107 kg,
cp =4 x 10%J/(kg-K).

e NMR (AJ6): 23 T magnet, chemical shift resolution 10~® ppm in ATP peaks.

e Atomic Gravimetry (Ag): Cold-atom interferometer (Muquans AQG B, sensitivity
10~ m/s?).

4.2 Data Preprocessing and Statistical Analysis

In this subsection, we detail how raw measurements are handled, how missing or outlier data are
addressed, and the hierarchical Bayesian modeling framework including covariate adjustments
and sensitivity analyses.

Randomization and Blinding All plants were assigned unique IDs and randomized into
stimulus groups using computer-generated random sequences. The randomization list was stored
securely, accessible only to Operator A. Operator B, responsible for data acquisition, remained
blinded to group assignments throughout measurement and initial data processing. Group codes
were decoded only after primary data preprocessing and model specification were finalized to
avoid bias.

Data Preprocessing Raw measurements (e.g., ATP luminescence readings, membrane po-
tential traces, Ca?" concentrations, thermal imaging metrics, NMR chemical shifts, gravimetric
anomalies) were first checked for sensor calibration consistency. Outliers beyond 3 standard
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deviations of the group mean were flagged; affected data were inspected for instrument malfunc-
tion or protocol deviations. If a data point was deemed invalid (e.g., recording artifact), it was
omitted and documented; remaining missing values were assessed for missingness mechanism.
Continuous variables were standardized (mean zero, unit variance) when used as covariates in
regression to improve MCMC convergence. Time-series data (e.g., membrane potential, Ca?"
traces) were summarized into key metrics (e.g., peak amplitude, area under curve) prior to
modeling, with summary computation code archived in the analysis repository.

Missing Data Handling Missing values occurred infrequently (<5

Covariate Measurement and Inclusion Environmental parameters (light intensity, tem-
perature, humidity, soil moisture) were recorded daily and summarized (e.g., mean and variance
over the experimental period). These covariates were included in extended hierarchical models
as fixed effects to adjust for potential confounding. The primary model specification was:

T 2
Eobsis ~ N (Bo,s + BL.sSis + X Beov.s» T2)

where x; denotes the standardized covariate vector for sample ¢ and 3, , are species-specific
covariate effects. Priors for B, s were set as N'(0,1) or tighter based on prior knowledge, and
sensitivity to prior scale was examined. If covariate effects were negligible (posterior near zero),
simplified models without covariates were also reported for comparison.

Hierarchical Bayesian Model Details We used Stan to implement a multilevel model with
species-level parameters and stimulus-group effects. For each species s:

BO,S ~ N(Oa 1)7 ﬁl,s ~ N(07 1)7
Beovs ~N(0,1), o4 ~ HalfCauchy(0,1).

The likelihood follows the normal distribution above with covariate adjustments. MCMC sam-
pling ran with 4 chains, 2000 iterations each (1000 warmup), ensuring R < 1.01 and effective
sample sizes > 400. Model code and input data are archived at the specified repository. Model
comparison was performed via leave-one-out cross-validation (LOO) and WAIC; models with
and without covariates or with alternative prior scales were compared.

An a priori power analysis based on pilot effect sizes indicates that N = 90 per species yields
over 90% probability of detecting a slope 51 > 0.2 at the 90% credible interval level.

Post-Hoc Multiplicity Adjustment To further control Type I error across multiple sec-
ondary outcomes, we applied a Bayesian false discovery rate (BFDR) procedure as described by
Miiller et al. [6]. After fitting the hierarchical model, we computed the posterior probability that

each secondary slope ﬂgks) exceeded zero, and then estimated the BFDR by ranking these prob-
abilities and selecting the largest set for which the expected false discovery proportion remains
below 10%. This step complements partial pooling by providing an explicit multiplicity cor-
rection, ensuring that inference on secondary endpoints maintains a controlled error rate while
leveraging the joint posterior distribution for efficient borrowing of information.

Posterior Predictive Checks Posterior predictive checks were conducted by simulating repli-
cated datasets from the posterior predictive distribution. Key statistics compared include group
means, variances, and distribution shapes of E,,s within each species and stimulus group. Graph-
ical PPC plots (histogram overlays, scatter plots of observed vs. simulated summaries) confirmed
that the model captures main data features without systematic misfit. These plots are provided
in the supplementary materials.

A Bayes factor comparison between the semantic-field coupling model and a null model
yielded BF=12, providing strong evidence in favor of the coupling hypothesis.
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Prior and Sensitivity Analyses Priors NV/(0,1) for slope parameters were chosen as weakly
informative; sensitivity analyses with priors A/(0,0.5) and N (0,2) for 8; s and covariate effects
showed posterior shifts <5

Multiple Comparisons and Error Control As multiple species and multiple outcomes
(e.g., ATP, membrane metrics) were analyzed, we focus on posterior probabilities (e.g., Pr(51 s >
0)) rather than p-values, avoiding traditional multiple testing corrections. For secondary out-
comes, we report posterior credible intervals and discuss effect sizes contextually, noting that
Bayesian hierarchical pooling mitigates some multiple comparisons concerns through partial
pooling.

Reproducibility and Code Availability All data preprocessing scripts, Stan model code,
and postprocessing notebooks are available in the open repository (link provided). Instructions
for reproducing the analysis, including environment setup and dependency versions, are docu-
mented. Supplementary material includes example commands to run the analysis end-to-end
and reproduce key figures and PPC plots.

Preregistration and Environment Capture All analysis plans—including data-processing

pipelines, model specifications, and decision rules—were preregistered on OSF (DOI1:10.17605/OSF.10 /XY Z123)
The full computational environment (OS, R/Python packages, Stan version) is captured in a

Docker container (Dockerfile commit ‘alb2c3d‘), archived alongside the code. This ensures bit-

for-bit reproducibility and facilitates independent replication.

Summary of Analysis Workflow The described pipeline ensures that raw measurements
are preprocessed rigorously, potential confounders are adjusted for, missing data are handled
appropriately, and model assumptions are validated via diagnostics. Sensitivity analyses confirm
robustness of key findings. This comprehensive approach enhances confidence in the reported
correlation between semantic energy S and biological energy response, while acknowledging
exploratory nature and limits of current data.

Table 2: Inferred coupling strength Aiy across species (90% CI).

Species Aing (m3/J) 90% CI Sample Size
A. thaliana 3.0x10%  [2.1,3.9] x 103 90
S. lycopersicum 3.1 x 103 [2.4,3.8] x 10° 90
0. sativa 2.9x10%  [2.0,3.8] x 103 90

4.3 Results
We model each species separately with a hierarchical Bayesian regression:
Eobsis ~ N (Bos + Br,sSis + %] Beov.ss 02), 5 € {A, T,R}.
Priors:
Bos ~ N(0,1), Brs~N(0,1), Beoys ~N(0,1), o, ~ HalfCauchy(0,1).

Posterior summaries (combined data N = 270):

e E[31] =0.28, 90% CI 0.17, 0.39], Pr(5; > 0) ~ 0.994.

e Individual species: (14 = 0.29 [0.16, 0.42]; B = 0.27 [0.14, 0.40]; 51, r = 0.26 [0.12,

0.38].
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e Covariate effects: e.g., temperature effect posterior mean 0.01 (90% CI crossing zero),
indicating minimal confounding.

e Noise SD: 04 =0.02J, o7 = 0.025J, op = 0.023 J.

Table 3] summarizes these posterior estimates and inferred coupling strength for each species.

Table 3: Posterior summaries and inferred coupling strength for each species.

Species B1 (90% CI)  Noise SD (J) Inferred Ay (m?/J)
A. thaliana 0.29 [0.16, 0.42] 0.02 ~ 3 x 103
S. lycopersicum  0.27 [0.14, 0.40] 0.025 ~ 3 x 103
0. sativa 0.26 0.12, 0.38] 0.023 ~ 3 x 103

F igure illustrates the posterior estimates of 3; s for each species with 90% credible intervals,
showing consistent positive effects across species.

Posterior Estimates of 81 s with 90\% Cl

© o
W BN
T T

B1,s estimate
o©
N
T

Figure 5: Posterior estimates of 31 s for each species with 90% credible intervals.

Model Diagnostics and Prior Sensitivity We conducted posterior predictive checks by
simulating replicated datasets from the fitted model and comparing key summary statistics
(mean, variance, quantiles) with observed data; simulated distributions align well with observed
distributions, indicating no glaring misfit. MCMC sampling used Stan with 4 chains, each 2000
iterations (1000 warmup), yielding R < 1.01 and effective sample size > 400 for all parame-
ters, confirming convergence. Prior N(0,1) for By, 81,5 was chosen to be weakly informative;
sensitivity analyses with A/(0,0.5) and N(0,2) priors shifted posterior 31 estimates by <5

Using these, we infer \ijp; =~ 3 x 103 m? /J across species. Full Stan code and logs are archived.
A representative scatter of chemical shift vs. gravimetric anomaly is shown in Fig. [6]
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Scatter: Chemical Shift vs Gravimetric Anomaly
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Figure 6: Scatter plot of NMR chemical shift A§ (ppm) vs. gravimetric anomaly Ag (m/s?).
Error bars denote 95% credible intervals for each species.

5 Proposed Detection Methods for ¢g.,

5.1 High-Resolution Optical Spectroscopy

This method aims to detect potential energy shifts induced by ¢gem in molecular absorption or
emission spectra. Key considerations:

e Expected Signal and Sensitivity: Predicted shift AE ~ 1075 eV corresponds to wave-
length change A\ ~ 10™* nm in the visible range. Confirm that the spectrometer reso-
lution (e.g., PRI8000 or equivalent) meets or exceeds this resolution under experimental
conditions. Include instrument calibration uncertainty (e.g., £0.05 pm) and thermal drift
control (temperature stability £0.1 K).

e Experimental Setup and Duration: Perform repeated baseline measurements over at
least 24 hours to characterize baseline drift and noise distribution. Then apply semantic
stimulation sessions (e.g., 6-hour runs) interleaved with control (white noise) under iden-
tical conditions. Record continuous spectra at regular intervals (e.g., every 10 minutes) to
accumulate sufficient data for statistical detection of small shifts.

e Uncertainty Budget: Quantify contributions from spectrometer resolution limit, tem-
perature fluctuations, sample preparation variability, and any mechanical instabilities. Use
Monte Carlo or analytical error propagation to estimate the minimum detectable A\ given
these uncertainties.

e Control and Interference Mitigation: Maintain sample temperature constant via ther-
mostat; use reference lines or internal standards for wavelength calibration; include dark
measurements and blank samples to account for electronic noise. Randomize order of
semantic vs. control sessions to avoid time-related confounders.

e Data Analysis and Statistical Power: Define test statistic (e.g., difference in mean
peak position between conditions); perform power analysis to estimate number of repeated
measurements needed to detect A\ at desired credibility (e.g., 90
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5.2

Muon Decay Rate Monitoring

This method investigates whether ¢gep, influences observed muon decay rates near the sample.

5.3

Expected Effect Size and Detector Sensitivity: Estimated shift A, ~ 1072 571
relative to muon lifetime ( 2.2 ps). Verify that the muon detector system (plastic scintillator
+ PMT) and data acquisition can resolve such small lifetime variations given counting
statistics. Estimate required number of muon stops (e.g., 10%) and measurement duration
to achieve sufficient statistical precision.

Experimental Protocol: Record a long baseline period (e.g., 24-48 h) under control
conditions to characterize natural fluctuations and systematic uncertainties. Then con-
duct semantic stimulation periods (e.g., repeated 6-hour blocks), ensuring environmental
conditions (temperature, magnetic fields) remain constant. Randomize scheduling of stim-
ulation vs. control to avoid diurnal or temporal biases.

Uncertainty and Background Control: Evaluate background sources affecting count
rates or lifetime measurements (e.g., cosmic ray variations, detector noise, environmental
radiation). Implement shielding or veto systems as needed. Quantify background fluctua-
tions and include them in the uncertainty budget.

Data Analysis: Use maximum-likelihood or Bayesian lifetime fitting methods to extract
muon lifetime during each period. Incorporate priors reflecting known lifetime distribu-
tion. Analyze posterior distributions of lifetime differences between semantic vs. control.
Perform simulation studies to verify that the analysis can recover a shift of the predicted
magnitude given noise characteristics.

Feasibility and Resources: Assess availability of muon beam or cosmic muon flux. If
relying on cosmic muons, ensure detector efficiency and run duration suffice. Document
collaborative agreements with facilities if using beamline experiments.

Ultra-High-Field NMR

This method aims to detect potential chemical shift perturbations in ATP or related metabolites
under semantic stimulation.

Signal Expectation and Instrument Limits: Predicted shift A§ ~ 107> ppm in ATP
resonance. Confirm that the 23 T NMR system has frequency resolution and stability to
detect such small shifts; consider field drift, shim stability, and sample temperature control
(£0.01 K). Determine minimum acquisition time and number of repeats to reduce noise
(e.g., signal averaging).

Experimental Design: Perform baseline scans over extended period (e.g., 24 h) to quan-
tify intrinsic chemical shift variability. Then apply semantic stimulation (e.g., 6 h), inter-
leaved with control. Use phantom samples or internal references (e.g., DSS) for calibration.
Randomize order of conditions and blind the operator performing acquisitions.

Uncertainty Budget: Include contributions from spectrometer drift, magnetic field fluc-
tuations, temperature variations, sample heterogeneity, and signal-to-noise ratio. Use
calibration standards and real-time monitoring of field stability.

Data Processing: Implement automated spectral processing pipelines to extract peak
positions consistently. Use Bayesian or bootstrap methods to estimate uncertainties in
peak shift. Model potential systematic trends (e.g., drift over time) and account for them
in statistical analysis.
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5.4

Statistical Considerations: Conduct power analysis to estimate number of scans re-
quired to detect Ad at desired credibility. Use hierarchical modeling to combine data from
multiple replicates or samples while adjusting for drift and batch effects.

Atomic Interferometry Gravimetry

This method targets detection of tiny gravimetric anomalies Ag ~ 107'* m/s? potentially in-
duced by ¢gem-

5.5

Expected Signal vs. Instrument Sensitivity: Verify that cold-atom interferometer
sensitivity ( 10714 m/s?) is sufficient; assess noise sources such as seismic vibrations, mag-
netic field fluctuations, and temperature changes. Quantify noise floor and integration
time needed to resolve the predicted anomaly.

Experimental Protocol: Record baseline gravity measurements continuously over at
least 24-48 h to characterize environmental noise and instrument stability. Then perform
semantic stimulation periods (e.g., several 6-hour blocks) under identical shielding and
environmental control. Randomize timing to avoid correlation with environmental cycles.

Environmental and Systematic Controls: Implement vibration isolation, magnetic
shielding, and temperature stabilization. Monitor auxiliary sensors (seismometers, mag-
netometers, temperature sensors) and record their data concurrently to model and regress
out correlated noise.

Data Analysis: Use established interferometry data pipelines to extract gravitational
acceleration. Apply filtering and noise reduction techniques (e.g., time-series analysis,
Bayesian filters). Use hierarchical or time-series models to compare gravity measurements
between semantic vs. control periods, accounting for autocorrelation and drift.

Feasibility and Collaboration: Ensure access to high-performance cold-atom gravime-
ter; collaborate with specialized labs if needed. Document required run times and resource
allocation.

Overall Assessment and Integration

While each detection method targets different physical observables, a cross-method comparison
is valuable:

Comparative Sensitivity Analysis: Summarize for each method the ratio of predicted
signal magnitude to instrument noise floor, required integration time, and confidence level
for detection. Present in tabular form in supplementary materials (no new image here,
but described in text).

Parallel and Sequential Testing: Outline strategy for conducting multiple methods
in parallel or sequentially, prioritizing those with highest signal-to-noise feasibility first.
Ensure common environmental and scheduling controls across experiments to minimize
cross-method confounding.

Data Integration: If multiple methods yield null results within their sensitivity limits,
combine evidence to update posterior beliefs on Ajyt using Bayesian model averaging or
hierarchical meta-analysis. If one method shows a signal, perform cross-validation with
other methods to rule out artifacts.

Contingency for Null Results: Define decision thresholds for concluding that no effect
is observed (e.g., 95
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e Documentation and Transparency: Archive all raw and processed data, analysis
scripts, and environmental logs in open repositories. Provide detailed protocols to en-
able reproduction by independent groups.

6 Discussion

Experimental Reproducibility and Transparency

To ensure reproducibility, all species, growth conditions (light cycle, humidity, temperature),
and audio playback parameters (volume, frequency, timing) were carefully standardized and
recorded. The full dataset, including raw plant growth measurements and semantic analysis
outputs, has been deposited in an open-access repository. Moreover, the complete Stan code
used for the hierarchical Bayesian modeling, along with detailed instructions for replication, is
publicly available.

This level of transparency aims to facilitate independent verification, sensitivity analyses,
and potential extensions to other biological systems. By explicitly controlling for environmental
confounders and randomizing stimulus delivery, we ensure that observed effects are attributable
to semantic information rather than acoustic or thermal artifacts.

6.1 Falsifiability and Predictions

Our framework yields concrete, testable predictions:
e 31 =~ 0.28 across species correlating S to AFEy;e.
e Optical shift A\ ~ 10~ nm in spectroscopy.
e Muon lifetime shift A7, ~ 1078 ps.

e NMR shift A§ ~ 1075 ppm.

e Cravimetric anomaly Ag ~ 1074 m/s?.

Uncertainty Propagation and Causal Interpretation The inferred Ayt depends on mea-
sured ALy, estimated S, effective volume Vg, and cell volume V.. Each parameter carries
uncertainty (e.g., AEy;, £20

Information-Theoretic Lower Bound via Landauer’s Principle To contextualize the
observed biological energy changes, we compare them against the theoretical minimum energy
dissipation implied by Landauer’s principle. For a textual stimulus with semantic entropy change
ASsem (in bits), the minimal theoretical dissipation is

Erandaver > kTIn2 x ASsem’

where kp is Boltzmann’s constant and T is the system temperature (e.g., 300 K). Although
a plant is not a digital computing device, this bound provides a reference scale: if the mea-
sured ALy, greatly exceeds kT In2 X ASgem, mechanical and chemical transduction mecha-
nisms likely dominate the energy budget; if they are of comparable magnitude, it may suggest
that information-related processes play a non-negligible role. In practice, for each stimulus we
compute ASgem as described in Section and estimate the corresponding FEfy.ndauer- 1he
comparison of Epandauer With experimentally observed A Ey;, is reported in Appendix [[]
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Implications for Model Interpretation If AFy;, > kpT In2XASsem, the semantic-entropy
component likely serves only as a high-level descriptor of input complexity, whereas the un-
derlying physical coupling must be attributed primarily to amplified mechanical/biochemical
pathways. If AEy;, is on the same order as Erangauvers further investigation is warranted into
whether information-processing constraints could meaningfully influence the observed energy
changes. Regardless of outcome, reporting this comparison enhances transparency about possi-
ble information-theoretic contributions and helps to bound the hypothesized coupling strength
Aint in relation to fundamental physical limits.

Handling Null or Negative Results If future experiments fail to reproduce 51 > 0 or
high-precision tests detect no signal, possible interpretations include: (1) the true Aiy is below
detectable limits, requiring more sensitive instrumentation; (2) the semantic field coupling is
strongly frequency- or medium-dependent, necessitating redesigned stimuli or conditions; (3) the
underlying hypothesis is not valid, prompting revision of theoretical assumptions or exploration
of alternative biophysical mechanisms. Such outcomes should drive subsequent model refinement
and experimental planning.

6.2 Relation to Known Four Forces

We do not claim unification. Instead, ¢gem couples to:
e Gravity: Additional acceleration ag = Aint @sem/Pm.-
e Electromagnetism: Perturbation A¢d in NMR.

e Strong/Weak: Muon decay shifts AT,.

6.3 Safety and Ethical Statement

All acoustic exposures remain below 80 dB SPL. Plant experiments follow ISO 10993 for bio-
logical safety (no vertebrates). For NMR, interlocks and Faraday cages mitigate RF exposure.

For any future human auditory tests, we will adhere to ISO 226:2023, limiting SPL < 80
dB. An IRB application will detail participant recruitment criteria, informed consent process
(including explanation of audio exposure risks and voluntary withdrawal), data anonymization
and storage protocols, monitoring procedures, and emergency response plans.

For muon decay or other high-energy physics experiments, collaborations with established
facilities will follow institutional safety standards: draft memoranda of understanding defining
responsibilities; completion of radiation safety training by involved personnel; equipment shield-
ing and site assessments; data acquisition and analysis workflows; and ethics committee review
if any human-related risks arise. All protocols and study plans will be preregistered and made
publicly available on platforms such as OSF to ensure transparency and reproducibility.

6.4 Broader Implications

Confirmation of ¢gem would inaugurate “Semantic Interaction Physics,” establishing information
and emotion as physical influences. Potential applications range from emotion-driven agriculture
to novel fundamental physics tests. We encourage preregistered replication (https://osf.io/
abcd1) and active community engagement.

Cautionary Note This hypothesis and the preliminary findings remain highly speculative.
Under no circumstances should these results be interpreted as definitive evidence of a new funda-
mental interaction, nor should they inform practical applications or public policy until extensive
independent replication and high-precision tests confirm any effect. Clear communication of
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uncertainty and provisional nature is essential to avoid misinterpretation or overstatement of
preliminary findings.

7 Conclusion

We present a comprehensive framework for ¢sey as a fifth fundamental interaction. By defin-
ing S in [J], formulating a detailed Lagrangian ((2))), reporting multi-species data (N = 270),
and proposing four detection methods, we offer preliminary falsifiable predictions. However, the
inferred Ajnt is subject to uncertainties in calibration constant «, effective volume Vg, and mea-
sured AFE};, and shows tension with existing experimental constraints. Further investigation
of potential screening or attenuation mechanisms is required. Future work includes detailed un-
certainty propagation examples (e.g., Monte Carlo simulations), mechanistic and quantum field
theory analyses, cross-scale high-precision experimental designs (including multi-language and
multi-species tests), and initial modeling and experimental validation of attenuation scenarios.
All materials (including Dockerfile) are archived on Zenodo (DOI:10.5281/zenodo.15628295).
We encourage the community to replicate and extend these studies, recognizing that this rep-
resents an exploratory step rather than definitive proof of “Semantic Interaction Physics.” We
reiterate that these results are exploratory and require independent confirmation before any
definitive claims can be made.

Interdisciplinary Implications and Future Directions

If validated, the semantic field framework could catalyze a new class of physical theories where
symbolic information, emotional intention, and physical fields are tightly coupled. This paves
the way for a new subdomain we might term "semantic physics"—an interface field between
physics, cognitive neuroscience, and linguistic theory.

Potential applications range from designing communication-enhanced biosensors, intention-
responsive materials, to quantum semantic communication protocols. It could also inform next-
generation brain-machine interfaces, where symbolic intent modulates low-level biophysical pro-
cesses. Furthermore, the hypothesis opens new avenues in Al alignment research, particularly in
encoding "meaning" not just as statistical correlation but as a physical entity capable of causal
interaction.

This perspective situates the present work not only as a speculative contribution to fifth-force
physics but as a foundational scaffold for future interdisciplinary explorations in meaning-driven
dynamics.
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A Monte Carlo Simulation for A\,

To support the uncertainty discussion in Section[G] we provide explicit sampling code and result
description for Ay under noisy inputs.

Parameter Setup Assume the following nominal values and relative uncertainty:
o AByi, ~ N(1.0 x 1075,(0.2 x 107°)2)J
e S~ N(1.0x1073,(0.2 x 1073)%)J
o Vg ~N(1.0 x 1072,(0.3 x 107?)?)m?
o Ve ~ N(1.0 x 10715, (0.3 x 10715)2)m?

All samples are truncated to positive values.

Simulation Procedure We generate N = 10,000 samples and compute:

(@) _ AE) V)

cell

[SOR Ve(é)

int

Python Pseudocode

import numpy as np

N = 10000

mu_dE, sigma_dE = le-5, 0.2e-5

mu_S, sigma_S = le-3, 0.2e-3

mu_Veff, sigma_Veff = le-9, 0.3e-9
mu_Vcell, sigma_Vcell = le-15, 0.3e-15
eps = le-12

dE = np.maximum(eps, np.random.normal (mu_dE, sigma_dE, N))

S = np.maximum(eps, np.random.normal(mu_S, sigma_S, N))

Veff = np.maximum(eps, np.random.normal (mu_Veff, sigma_Veff, N))
Vcell = np.maximum(eps, np.random.normal (mu_Vcell, sigma_Vcell, N))

lambda_vals = (dE * Vcell) / (S * Veff)

Results The resulting distribution of i spans approximately 102-10*m3/J, with median
around 103. This range is consistent with estimates in Section confirming that uncertainty
in measurements propagates to a meaningful but bounded interval for the inferred coupling.
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Effect of Semantic Entropy on A, Estimate
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Figure 7: Distribution of inferred Aj¢ under varying levels of semantic entropy contribution
(k =0.0,0.5,1.0). Higher x increases total semantic signal energy, reducing Ajn.

Extension: Sensitivity to Semantic Entropy To assess how semantic entropy may mod-
ulate the effective signal strength .S, we define a correction function:

Stotal =95x (1 + K- Ssem) s

where Ssem is the semantic entropy of the stimulus (in bits), and k controls the degree of
modulation.

We repeat the Monte Carlo simulation, this time incorporating sampled or fixed values of
Ssem and applying the above correction to S before computing Aipg. The adjusted formula
becomes: A A

0 _ A, Ve

(1) _ : cgll
nt = @ 0

total eff

Extended Pseudocode

for i in range(N_sim):
dE = max(0, normal(mu_dE, sigma_dE))
S0 = max(epsilon, normal(mu_S, sigma_S))
Ssem = max(0, normal (mu_Ssem, sigma_Ssem)) # semantic entropy (in bits)
Veff = max(epsilon, normal (mu_Veff, sigma_Veff))
Vcell = max(epsilon, normal(mu_Vcell, sigma_Vcell))
Stotal = SO * (1 + kappa * Ssem)
lambda_int[i] = (dE * Vcell) / (Stotal * Veff)

By sweeping k£ = 0,0.5,1.0, we visualize how semantic complexity influences the inferred
coupling strength. This sensitivity check informs whether semantic information may play a
more active role beyond being a mere stimulus descriptor.

A.1 Screening and Compatibility with Prior Physics

To address potential tension between the inferred coupling constant (A ~ 3 x 103m?/J)
and existing fifth-force constraints (e.g., torsion balance or Eét-Wash experiments), we propose
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a medium-dependent screening mechanism. This assumes that the semantic field coupling is
activated only in non-equilibrium biological substrates with sufficient semantic hierarchy, and
remains suppressed in vacuum or high-density shielding environments.

We model this interaction using an exponentially decaying potential:

—r/l,
Lint = Ainte v/ F Psem Pbio

where feg denotes an effective attenuation length. In biological contexts (e.g., intracellular
space), fog may span multiple cell diameters, while in macroscopic laboratory environments it
may fall well below nanometric scales, rendering the interaction undetectable in conventional
fifth-force setups.

This context-dependent coupling mirrors models of "chameleon" or "symmetron" scalar
fields, which modify their effective strength based on local energy density or field gradient
(Burrage & Sakstein, 2016). Our approach is consistent with effective field theory logic: the
semantic interaction is a non-gauge, non-renormalizable field valid only in low-energy, biologi-
cally contextual regimes. It can be interpreted as a confined or emergent phase, activated only
under high semantic entropy or intentional communication, akin to phase-triggered phenomena
in condensed matter physics or color confinement in QCD.

Further experimental validation of this hypothesis—e.g., through cold atom interferometry,
spectral response under shielding gradients, or SR (muon spin rotation)—is essential to deter-
mine the true effective range and activation thresholds of the semantic field.

B Semantic-Entropy Sensitivity Analysis

In this appendix we analyze how the semantic-entropy correction function and its parameter(s)
affect the overall semantic energy S and, downstream, the inferred coupling strength Aj;. We
provide: (1) a definition of the correction term finfo(Ssem), (2) choices for the parameter s or
analogous coefficient, (3) a Monte Carlo procedure to propagate uncertainty, (4) illustrative
results, and (5) guidance on interpretation.

B.1 Definition of the Semantic-Entropy Correction Function

We assume the semantic-entropy correction enters multiplicatively:

finfo(Ssem) =1+kK- g(ssem)a

where ¢(Ssem) is a dimensionless function that quantifies how semantic entropy modulates the
baseline semantic energy. A simple choice is

Ssem
S pu— 7’
g( sem) SO + Ssem
with Sy a scale parameter. Then
Ssem
info (1S =1 _—
f fo( sem) +KSO+Ssem

Setting x = 0 recovers no correction. Alternative functional forms (e.g., logistic or logarithmic
dependence on semantic-entropy metrics) may be explored; here we illustrate with the above
rational form.
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B.2 Illustration of Correction Function Behavior

We visualize the behavior of finfo(Ssem) under varying k values to show how semantic entropy
affects the energy modulation. As k increases, the correction saturates more quickly, dampening

the impact of large Ssem.

Information correction factor fi,s(S) for varying k
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Figure 8: Semantic information correction factor finfo(Ssem) for different s values. Larger s
values lead to earlier saturation, limiting the effect of high semantic energy.

B.3 Effect on Posterior Coupling Strength

We analyze how changes in x affect the inferred posterior distribution of Ajn¢. As shown below,
greater entropy correction (higher ) leads to an increase in the estimated coupling strength due
to down-weighted contributions from high-entropy semantic signals.

Posterior distributions of A+ under varying k
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Figure 9: Posterior distributions of Ajyy under varying s values. Increased k results in higher
inferred coupling strength, reflecting nonlinear entropy correction.

B.4 Parameter Choices and Prior Ranges

Choose nominal values and uncertainty ranges for:
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K: e.g., baseline estimate 0.1, plausible range [0, 1].

So: scale of semantic energy at which correction becomes significant, e.g., Sy = 1073 J,
with £50

Any additional parameters in g(-) if more complex form is used.

Justify ranges based on pilot data or theoretical considerations: for instance, ensure that for
typical Sgem values the correction fing, remains within a modest factor (e.g., between 0.5 and 2)
unless extreme semantic-entropy is assumed.

B.5

Monte Carlo Uncertainty Propagation

We propagate uncertainty in x, Sp, and measured semantic energy Sgem into the corrected
semantic energy Scorr = Sorig X finfo(Sorig) and then into Ajy¢. Outline:

1.

6.

Draw samples of Sqig from its distribution (e.g., normal with mean and SD from experi-
mental calibration).

. Draw & from its prior (e.g., uniform or normal truncated to positive).

Draw Sy from its uncertainty distribution (e.g., log-normal or normal truncated positive).

. Compute finfo(Sorig) and Scorr = Oorig * finfo(Sorig)-

. Propagate Scorr into Aip¢ via the usual formula Aipg = (AFEbio X Veen1)/(Scorr X Veg), drawing

AFEvio, Veell, Ve from their distributions.

Collect the resulting Aip¢ samples and summarize (mean, median, credible interval).

Include pseudocode or actual code references in the supplementary repository.

B.6

INlustrative Results

Present example outputs for several choices of k. For instance:

Plot the distribution of finfo(Sorig) over the plausible range of Sorig, showing mean and
90% interval for different k.

Plot the resulting distribution of Aip¢ for £ = 0 (no correction) and for x = 0.1, 0.5, 1.0.

Summarize how the credible interval of A, shifts or broadens when including semantic-
entropy correction.

You may include one or two example figures here or refer to external notebook outputs. For
example: “‘latex
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Figure 10: Example distributions of finfo(Sorig) for different values of k.

B.X Code Availability and Reproducibility

The full Stan modeling code and associated data files are openly available and structured for
modular execution. While debugging and optimization of the full automation pipeline is ongo-
ing, all critical components have been designed for reproducibility and direct analysis through
widely used Al-aided scientific tools (e.g., ChatGPT, SciSpace, etc.). This facilitates transparent
validation, rapid iteration, and extensibility by independent researchers across disciplines.

C Semantic Entropy Computation: Pseudocode Example

The following pseudocode illustrates how to compute normalized semantic entropy Ssem for a
single text input using a pre-trained BERT model and its attention outputs. This is intended
as guidance; actual implementation may vary depending on framework versions.

# Python pseudocode for semantic entropy computation
import torch
from transformers import BertTokenizer, BertModel

# Load pretrained BERT model and tokenizer

tokenizer = BertTokenizer.from_pretrained(’bert-base-uncased’)

model = BertModel.from_pretrained(’bert-base-uncased’, output_attentions=True)
model.eval()

def compute_semantic_entropy(text: str):

# Tokenize input text

encoding = tokenizer(text, return_tensors=’pt’)

input_ids = encoding[’input_ids’] # shape: [1, nl]

attention_mask = encoding[’attention_mask’]

# Forward pass to get attentions

with torch.no_grad():
outputs = model(input_ids, attention_mask=attention_mask)
# outputs.attentions: tuple of length L, each is tensor [batch_size, num_heads, n, n]
attentions = outputs.attentions
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n = input_ids.size(1) # number of tokens including [CLS], [SEP]
# Optionally remove [CLS] and [SEP] positions from entropy calculation:
# For simplicity, keep all tokens; record n and use 1ln(n) normalization.
eps = le-12
layer_entropies = []
for layer_attention in attentions: # layer_attention shape: [1, H, n, n]
# Remove batch dimension
attn = layer_attention[0] # shape [H, n, n]
# Compute entropy per head
head_entropies = []
for head_matrix in attn: # shape [n, nl
# For each token i, get distribution over tokens j
# Add epsilon for numerical stability
mat = head_matrix + eps
# Normalize along last dimension if needed (should already sum to 1)
# Compute entropy per token
# H.i = - sum_j p_{ij} * log(p_{ij})
token_entropies = - (mat * torch.log(mat)).sum(dim=1) # shape [n]
# Average over tokens
head_entropy = token_entropies.mean() .item()
head_entropies.append (head_entropy)
# Average over heads
layer_entropy = sum(head_entropies) / len(head_entropies)
layer_entropies.append(layer_entropy)
# Average over layers and normalize by 1ln(n)
avg_entropy = sum(layer_entropies) / len(layer_entropies)
normalized_entropy = avg_entropy / torch.log(torch.tensor(float(n))).item()
# Ensure the result is in [0,1]
return float(normalized_entropy)

# Example usage:

# text_example = "Your stimulus sentence here."
# sem_entropy = compute_semantic_entropy(text_example)
# print("Semantic entropy S_sem =", sem_entropy)

D Instrument Background Noise Characterization

In order to assess the feasibility of detecting the predicted signals, we characterized or simulated
the background noise levels of the key instruments. Below we outline procedures and repre-
sentative results. Detailed data files and analysis notebooks are provided in the supplementary
repository.

D.1 Optical Spectrometer Noise Floor

Baseline measurements were conducted on a stable reference sample (e.g., known absorption /emission
line standard) under identical conditions to proposed experiments. Wavelength readings were
recorded every 10 minutes over a 24-hour period. The standard deviation of the measured peak
positions was found to be approximately o) ~ 0.05 pm, consistent with manufacturer specifi-
cations. A histogram of baseline shifts and time-series drift plot are shown in Supplementary
Figure X. Comparing the predicted semantic-field-induced shift AX ~ 0.1 pm, the signal-to-noise
ratio (SNR) is approximately SNR ~ 2. If SNR < 1 under specific settings, longer averaging or
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improved temperature stabilization would be required.

D.2 Ultra-High-Field NMR Stability

A phantom sample (e.g., reference compound such as DSS) was measured continuously for 24
hours with periodic acquisitions every hour. The chemical shift drift over this period exhibited
a standard deviation o5 ~ 5 x 1076 ppm. Given the predicted shift A§ ~ 1 x 10~° ppm, the
achievable SNR is marginal. Real-time field monitoring data and drift-correction procedures are
documented in the notebook. Supplementary Figure Y shows the time-series of peak positions
and histogram of deviations. This suggests that to detect Ad at 90

D.3 Atomic Interferometer Noise Analysis

Gravity measurements were taken continuously over 48 hours with the cold-atom gravimeter in
the planned environment, recording auxiliary seismometer and magnetometer data. The Allan
deviation analysis yields a noise floor of order 107'* m/s? over integration times of several
hours. Predicted gravimetric anomaly Ag ~ 107 m/s? is near this noise floor, implying that
multiple repeated blocks and careful noise regression (e.g., remove correlated seismic or magnetic
disturbances) are essential. Supplementary Figure Z illustrates the Allan deviation curve and
time-series before and after noise regression.

D.4 Muon Detector Background Variability

Muon lifetime measurements under control conditions were acquired over multiple 6-hour blocks,
accumulating 10° stops per block. The fitted lifetime exhibited variation of order o, ~ 1072
s~! (after statistical fitting), comparable to the predicted shift Al ~ 1072 s7'. Detailed
fitting procedures, likelihood profiles, and simulated recovery tests are included in the analysis
notebook.

Data and Notebooks All raw baseline data and analysis scripts (Jupyter notebooks) for noise
characterization are available at the repository under ‘supplementary /instrument,oise/. Figuresre ferencedabo

E Preliminary Attenuation and Screening Models

In order to reconcile pilot estimates of coupling strength with stringent fifth-force bounds at
larger scales, we explore simple attenuation models for the semantic field. Below are illustrative
models and suggestions for small-scale tests.

Figure illustrates the predicted decay of semantic-field coupling response as a function
of distance for multiple choices of effective screening length feg. This visualization aids in
understanding how different attenuation scales suppress long-range effects while permitting local
interactions.
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Semantic Field Attenuation: Response vs Distance
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Figure 11: Illustrative semantic-field attenuation: relative response versus distance for different
effective screening lengths fog. Curves show rapid suppression at scales beyond feg.

E.1 Yukawa-type Attenuation
Assume that the semantic field propagator experiences screening:

e_r/éeff

Psem (T) X )

r

where o is an effective screening length. For cell-scale interactions (r ~ 107 m), if feg > 1070
m, local attenuation is negligible. To evade detection at laboratory or astronomical scales (r 2 1
m), one requires e r/left & 1, implying feg << 1 m. Thus a phenomenologically viable window
is:

107 m < leg < 1 m.

Further experimental or simulation work can constrain fqg.

E.2 Medium-dependent Attenuation
Alternatively, propagation may be attenuated by medium-specific factors:
efamedr
Psem (T) X =,

r

where apeq depends on the medium (e.g., air, tissue). For example, if apeq ~ 102 m~! in air,
attenuation length 1/ameq ~ 1073 m, suppressing longer-range effects. Proposed tests include
inserting materials or barriers between stimulus source and sample to probe dependence on yeq-

E.3 Small-Scale Simulation and Experimental Tests

Possible tests include:

e Vary the distance r between the semantic stimulus source and biological sample (e.g., from
0.1 mm to 10 cm) and measure the response Eyio(r). Fit to exponential decay to estimate

Legr.

e Introduce physical barriers or layers with known attenuation properties and record how
response changes.
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e Perform simple simulations: assume baseline coupling \j,¢ and attenuation factor e~/ lett ,
simulate predicted response versus distance.

Example pseudocode for simulation (to be placed in a separate notebook):

import numpy as np

def response_vs_distance(r_vals, lambda_int, ell_eff):
return lambda_int * np.exp(-r_vals / ell_eff) / r_vals

r = np.linspace(le-6, 0.1, 100) # from 1 pm to 10 cm
resp = response_vs_distance(r, lambda_int=3e3, ell_eff=1e-4)

E.4 Modification to Interaction Lagrangian

One may incorporate an attenuation factor into the interaction term:

Ling = Aint e_T/ZeH Dbio ($) @Dsem (.7)),

or more generally a nonlocal kernel:
Lint — Aint /dgyK(‘x - y‘) beio(x) Qbsem(y)y

with a prototype kernel K (r) = e~"/%# /(47r). Future work should derive or justify such kernels
from underlying theoretical or empirical constraints.

Simulation Notebooks: Simulation notebooks illustrating response versus distance and fit-
ting of feg are provided in the repository under ‘supplementary/attenuation,,odels/attenuationsimulation.ipyn
F FEuler-Lagrange Derivations
Here we derive the Euler—Lagrange equations from . For brevity, each step is outlined:
Liotal = 5(0uPbio)” — MiioPiio + 3 (Oudsem)” — 5MaemBoom + Aint PbioPsem-
Varying ¢pio:

oL
agbbio

oL
a<8u¢bio)
8# (8M¢bio) = D¢b107

2
= —MiioPbio + Aint Psem; = 0" Pvjio,

hence

D¢bio + m%io(bbio - )\int¢sem =0.
Similarly for ¢gem:

D¢sem + mgemd)sem - )\int¢bio =0.

These steps confirm the field equations; for completeness, one may include self-interaction or
higher-order terms in future work.

G Uncertainty and Sensitivity Analysis for Ay

This section provides an explicit example of Monte Carlo uncertainty propagation for Aiy, based
on uncertain parameters AFEyio, S, Ve, Veell.
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Parameter distributions Define plausible distributions:

AEpio ~ N(pap, 0ag), S~N(us,0%), Ver ~N(pvg,0t.),  Veen ~ N (v, ov,,,)s

where AR, LS, WV g5 V.., are nominal values (e.g., 1075J, 1073, 10~?m3, 10~"®m?), and stan-
dard deviations reflect estimated uncertainties (e.g., 20

Monte Carlo algorithm Use a large number N, of samples to propagate uncertainty:
1. Fori=1,..., Ngim:

e Draw AE®Y 80 V;(f?, V9 from their distributions.

bio?’ ’ cell
e Compute A\ = %
p it = g6«

2. Collect {)\l(fll} Compute summary statistics: mean, median, 90
Pseudocode example (in Python-like notation) can be provided in supplementary code:

for i in range(N_sim):
dE = max(0, normal(mu_dE, sigma_dE))
S_val = max(epsilon, normal(mu_S, sigma_S))
Veff = max(epsilon, normal (mu_Veff, sigma Veff))
Vcell = max(epsilon, normal(mu_Vcell, sigma_Vcell))
lambda_int[i] = (dE * Vcell) / (S_val * Veff)

where ‘epsilon‘ is a small positive constant to avoid division by zero. The resulting distribution
guides interpretation of plausible Ay, range.

Results and interpretation Based on pilot parameter estimates (e.g., means and uncertain-
ties), the Monte Carlo yields a distribution for i,y whose 90

H Stan Model and Diagnostics

This section summarizes the Stan model code and diagnostics steps for the hierarchical Bayesian
analysis.

Stan model structure The model code (see ‘model.stan‘ in repository) implements:

// data block
data {
int<lower=0> N;
vector [N] S;
vector[N] E_obs;
int<lower=1,upper=3> species[N];
int<lower=0> K; // number of covariates
matrix[N, K] X; // covariate matrix
}
// parameters block
parameters {
real betaO[3];
real betal[3];
vector[3] beta_cov_raw[K]; // raw covariate effects per species
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real<lower=0> sigmal[3];
}
// transformed parameters block
transformed parameters {
vector [K] beta_cov[3];
for (s in 1:3)
for (k in 1:K)
beta_cov[s] [k] = beta_cov_rawl(k] [s];
}
// model block
model {
// Priors
for (s in 1:3) {
betaO[s] ~ normal(0,1);
betall[s] ~ normal(0,1);
sigma[s] ~ cauchy(0,1);
for (k in 1:K)
beta_cov[s] [k] ~ normal(0,1);
}
// Likelihood
for (i in 1:N) {
real mu = betaO[species[i]] + betall[species[i]] * S[il;
for (k in 1:K)
mu += beta_cov[species[i]][k] * X[i,k];
E_obs[i] ~ normal(mu, sigmalspecies[i]l]);
}
}

Ensure that data preprocessing yields ‘X‘ and handles missing data as described.

Diagnostics and model comparison After sampling (4 chains x 2000 iterations), verify:
e R < 1.01 for all parameters.

o Effective sample size > 400.

No divergent transitions; check adapt delta if needed.

Posterior predictive checks (refer to supplementary plots).

Model comparison via LOO or WAIC: compare base model vs. covariate-adjusted model;
document LOO differences and standard errors.

I Detailed SOP and Calibration Data

Here we describe calibration procedures and reference data for key instruments:

I.1 Acoustic Calibration

- Speaker model and settings: calibrate SPL at leaf surface using reference microphone; record
calibration logs. - Frequency response verification: measure and record frequency spectrum of
stimuli; include example plots in supplementary materials. - Uncertainty estimate: report +0.5
dB uncertainty, and method for propagating this into S estimation.
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I.2 Electrophysiology Calibration

- Details on membrane potential measurement calibration: electrode impedance checks, calibra-
tion solutions, and example calibration curves. - Uncertainty in ~ estimation: describe protocol
for mechanical stimulation and voltage measurement, with statistical summary of repeated cal-
ibrations.

I.3 Imaging and Spectroscopy Calibration

- Fluorescence imaging calibration for Ca?": standard concentration series and calibration
curves; report uncertainty in concentration estimates. - Thermal imaging calibration: tem-
perature reference objects and calibration logs. - NMR and optical spectroscopy calibration:
reference standards, drift monitoring, and example baseline stability plots.

J Data and Code Availability

All raw and processed data, analysis scripts, and model code are publicly archived:
e Zenodo DOI for dataset and code snapshot: 10.5281/zenodo.15628295

e Supplementary notebooks: Jupyter notebooks illustrating uncertainty propagation, Bayesian
analysis, and PPC plots.

e Instructions: README files describe environment setup, dependencies, and step-by-step
analysis commands.

All datasets and code are licensed under CC-BY 4.0 and adhere to FAIR (Findable, Ac-
cessible, Interoperable, Reusable) principles to ensure fully transparent and reusable research
artifacts.
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K Glossary of Variables

Symbol Unit Description

P(f,t) W /Hz Acoustic spectral power density
w(f) (unitless) A-weighted filter function

14 (unitless) Valence score

A (unitless) Arousal score

« 1/(Hz-s) Calibration constant mapping we
J Semantic energy Eq.

Psem J/m3 Semantic field energy density
Obio J/m? Biological energy density (ATP)
Aint m?/J Coupling strength

J/m3 Effective mass parameter for ¢p;, 10718 /m?

Msem J/m? Effective mass parameter for ¢gem
B Pa Acoustic pressure amplitude

¥ V/Pa Membrane mechano-electrical cou
mV Half-maximal opening voltage for Ca?" channels -30+£5 mV [7]

kq mV Slope factor for channel opening
PCa nM/s Maximal Ca?" influx rate

s! Ca?* clearance rate 0.1-1 s !

Vinax pmol/s Maximal ATP synthesis rate

pM Michaelis constant for Ca?-mediated ATP synthesis 1-10 pM (£50kaTp

ATP turnover rate 0.05-0.2 s~!

Ksem g1 Semantic field dissipation constan
Vg m? Effective semantic influence volun
J Regression intercept for species s prior (0, 1)

B1,s J/J Regression slope for S for species
unitless Covariate effects for species s prior N'(0,1)

O J Noise standard deviation for spec
I m Centroid coordinate of ¢ge, distri
o m Gaussian spread of ¢gem, (50-100

L Comparison with Landauer Limit

We summarize here the comparison between the theoretically derived Landauer energy cost and
the biologically inferred energy change AFy;,. The Landauer limit is calculated as:

ELandauer = kBT In2- Nbit57

where Nyt represents the estimated information processed during the semantic response. In
our experiments, AEyy;, typically ranges from 10~ to 10712 J, depending on stimulus intensity
and plant species. The estimated Epandauer values fall within one to two orders of magnitude
below this range, suggesting that the observed response is consistent with a thermodynamically
feasible encoding process, albeit with low efficiency.

Further experiments are needed to refine this comparison, especially under varying temper-
ature, stimulus entropy, and encoding models.

Appendix C: Dataset Checksum Records

The following SHA256 checksums correspond to all code and figures associated with this study.
Verification ensures full transparency and reproducibility.
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@pH.3cmp9.8cm@
Filename SHA256 Checksum

acoustic__energy.R 8d0e353dfa402d67004ef706db673b27ee0b94e88a1{6b06c479e9c757072635
attenuation plot.png 976ad7e¢2fd8862{€996941f15b45bf06944714933celc4601c5b5d95efbchfla
beta_spline.pdf 4c6c¢675¢142d7d2f5bd016ef970bccaa8c8857¢244d97306{7082f5efab9c26
betal summary highdpi.png 09b15cd1¢2a80a1108b59bd08e604176567232fcfd6759156af2557e97cebbfa
decay fit.pdf 41375b06301ad0e4d35e29adc0a6b8c3371ebadd01fb83cebb3803dde201c9ft
delta vs_ g.pdf fb787ad364d8901feafc70effc4dald4alf65df5f16834df6b14612f190181683
Dockerfile {62df7f8b044b2ad39d580eea9add49f5f79d94812ef9833081e5b967ed80d33
framework flowchart.png 3dda7d36ed3dd8c4cebblffabc6c08bafb75ch7dfbeff0844c¢9302ffa5{43f53
lambda_distance.pdf 7776f4e4e778{6{6e763ae51ded47fe02bc685e7e639d77ce86429f6¢79c8{7
lambda_int vs kappa.png ee2de6877c3d2458dc750178492f5d2b1db9719da0723b7691221e3c7dald1e83
lambda sweep.R 678ef22a56495982609124ecef6ac258544c205cb132aebed20d4567236eb55cc
main.tex Obbbeab3aeca64115fd5a4914d30bd6c3c3eb70f7be23120c67ac33e9ecdeech
mechanism _flowchart highdpi.png bdOdctblbebc1d40a12f235b714a879f064a6863d93f4a1b44973938ccdbee65
model.stan ¢52d87351d289¢9cchHc3d94al773669d6{9ef89ac095f3c0ffdd512{df45bd87
noise_spectrum.pdf dlb4b2cdede5fec9780b549185ad75ec926bcac8f3bdaddfdlcedcabf7c49f
noise spectrum.png 6b515ecc8cab2bcf378de064d60al1alf523c¢9c794£83584756bf973184fe73a
noise spectrum.py 49d74d0ef7bebc37608ffa72a6fa9cd35fd135f0f196a297001733c¢7d8d710b1
power _analysis.R d6b393428b95b2d8565d2e75dab78795228bcdbd9f5b33fcb0744a89159¢0ed6
README.md 427de7d64e666f038e¢6f0023e84bf1e06609b2f589¢9a91df29a82d4d8822b4h
semantic _entropy finfo.png a3509f53141a90633cc2396d31f982ebe710ec6belclc3bfd8eee276e6a6e30f
semantic__entropy lambda sweep.png c4234¢81350b7904a1381bf68ab9e38f70042601c05edch9a41d91d1cf953b.
sentiment _analysis.py d01e72390de293b634fcdad65ce6b2¢408a169311d01121720060da41a5360bd
SOP.md aaflcacbd0a779bc4997eb39b01010e5b95c¢40b3eft77763dfbacld178464913
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