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1 Introduction  

One of the materials with a potential for use as 

electrode in lithium-ion batteries is carbon fiber. In 

future structural batteries these carbon fibers will 

also have a load bearing function.  Fiber degradation 

may also affect the ion diffusivity and the number of 

charge-discharge cycles with high energy efficiency. 

To ensure the mechanical durability of this type of 

batteries mechanical degradation mechanisms in 

fibers during service life have to be analyzed to 

develop guidelines for material selection. 

Lithium ion intercalation/deintercalation in carbon 

fiber is a transient process causing non-uniform 

swelling of the carbon fiber electrode. The gradients 

of lithium ion distribution lead to formation of 

mechanical stresses in the fiber. During 

deintercalation these stresses may lead to initiation 

and growth of radial cracks in the fiber. In 

intercalation arc-shaped cracks deviating from the 

tip of the radial cracks may form. Micro-crack 

formation decreases the mechanical properties of the 

fibers and reduces the charging properties of the 

battery due to decreased diffusivity. The crack 

propagation and possible damage evolution 

scenarios were analyzed using linear elastic fracture 

mechanics. Finite element method (FEM) 

calculations were performed for stress and fracture 

mechanics calculations.  

 

2 Theoretical Background 

2.1 Ion Concentration in Carbon Fiber  

We consider an infinite electrolyte with uniformly 

distributed carbon fibers. This system can be 

represented by a cylindrical unit cell with a long 

fiber surrounded by an electrolyte. During the 

intercalation lithium ions diffuse into the fiber and 

their distribution along the radial coordinate can be 

described by concentration distribution, which 

follows diffusion equation.  

CDtC  /  (1) 

where C is relative ion concentration in the fiber 

with respect to available sites, Δ is the Laplace 

operator and D is diffusion coefficient. In the 

particular case of a long fiber the diffusion is in-

plane and the concentration is a function of fiber 

radial and angular coordinates r and  respectively. 

Therefore 
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Boundary condition at the fiber surface ( frr  ) [1] 

is: 

0))(( ''  Rca CCkkCDc  
(3) 

 

where '
ak , '

ck  are anodic and cathodic rate constants, 

Parameter RC  has a meaning of saturation 

concentration of ions in the fiber. 

In the present study the focus is on mechanical 

stresses therefore all unknown electrochemical 

parameters are reduced to one unknown parameter B  

(the Biot constant). Thus, varying this parameter 

from zero to infinity we cover all possible 

combinations of parameters such as diffusion 

coefficient, cathodic and anodic rate constants, etc. 

We use definition and notation of electrochemical 

parameters as in [1,2] . 

2.2 Stress Distribution in Carbon Fiber 
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In the considered loading case all shear stress 

components are zero. We obtain generalized plane 

strain constz   solution (z is axial coordinate). 

Stress–strain relationships for transversally isotropic 

fiber (indices 1,2 and 3 correspond to r,  and z  

directions) are obtained: 
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In (4)-(6) i , zri ,, are the swelling coefficients 

in the main fiber directions, 0c  is the maximum 

concentration of the ions, when all possible sites are 

occupied. The diffusion problem and the elastic 

problem are decoupled. We can first find the 

concentration distribution using boundary conditions. 

The concentration distribution does not depend on 

the elastic stress state. The concentration distribution 

),,( rC is used as an input in the elastic problem, 

which can be solved at any arbitrary instant of  , 

where    is normalized time defined as 

2
fr

tD
  (7) 

The mathematical description of the concentration 

distribution is the same as for heat conduction 

problem with convection boundary conditions: 

parameter B  has the meaning of the heat–transfer 

coefficient, C is analogous to the temperature 

distribution and RC  is the value of temperature in 

the surrounding medium. This analogy can be used 

to employ commercial finite element (FE) code 

ANSYS [3] in the presented paper) to find 

concentration and stress distribution. 

 

3 FEM Model  

3.1 Model and the Calculation Procedure 

FEM models for stress distribution (no micro-

cracks) analysis and for radial and arc-shaped crack 

growth analysis were generated. In all cases 

transient ion concentration and corresponding 

mechanical stress distributions were calculated.  

FEM software code ANSYS version 13.0 [3] was 

used to perform all calculations.  Two phase (carbon 

fiber and matrix electrolyte) models were generated. 

First a FEM model for case without damage was 

generated. Taking the advantage of the symmetry of 

the problem, only ¼ of the total transverse FEM 

model is needed to perform calculations. Two cases 

were analyzed: Case 1 with the Biot constant  

B =500 and Case 2 with B =5. The relation between 

diffusion coefficients for Cases 1 and 2 is then the 

following: 21 01.0 DD  . 

To analyze the radial crack growth FEM model 

shown in Fig.1 was generated. According to the 

discussion in the Introduction, the first damage in 

the fiber may be in a form of radial cracks forming 

at the surface of the fiber. In Fig. 1 rl  is the radial 

crack length. The crack face position corresponds to 

the angular coordinate of 4  . Due to the 

symmetry conditions on the horizontal and on the 

vertical axis the fiber in this model has four cracks. 

Interaction between them was not investigated in 

this study. Mesh refinement was used in vicinity of 

the crack tip as shown in the detail in Fig.1. The 

representation of the crack geometry in Fig.1b is 

schematic and it illustrates the deformed state. Since 

the ion diffusion is in the radial direction, the 

diffusion is not affected by the presence of the radial 

crack. When solving the elastic problem contact 

elements were generated on the crack surfaces to 

prevent mechanical interpenetration. The energy 

release rate was calculated using the J-integral based 

routine implemented in ANSYS version 13.0 [3]. 

Following the scenario previously described in the 

Introduction, arc cracks may deflect from the radial 

cracks. The FEM model for arc crack growth 

analysis is shown in Fig.2.  

As shown in the detail in Fig.2b the length of the 

previously formed radial crack is rl , its angular 

coordinate is 4  , while l  is the arc length of 

the arc crack, which is assumed to grow in 

circumferential manner along the arc with radius 

( rf lr  ), symmetrically with respect to the radial 

crack. Due to applied symmetry conditions the 
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model corresponds to four radial cracks with arc 

branches. As in Fig. 1b, also in Fig. 2b the 

representation of the crack geometry is schematic 

and illustrates the deformed state. Contact elements 

were generated on all crack surfaces including the 

initial radial crack surface to prevent 

interpenetration. 

As in the case of radial cracks the calculation of the 

energy release rate for arc cracks was performed 

using the J-integral based routine implemented in 

ANSYS. 

The elastic properties of the carbon fiber used in this 

study are given in Table 1. The elastic modulus of 

the isotropic matrix was 1mE  MPa, the Poisson’s 

ratio of matrix was 3.0m .  

In [4] the swelling strain R
f

Cc03  of approximately 

0.3% was experimentally determined and it 

corresponded to measured capacity of 135 mAh/g at 

1 hour charge. In [5] it was shown that for PAN 

based IMS65 carbon fiber electrodes the capacity 

can be increased by up to 3 times, when charging 

slower, meaning that more lithium ions can be 

intercalated leading to higher swelling. Thus, based 

on these values, the longitudinal swelling strain was 

assumed  R
f

Cc03  = 0.9% to account for 3 times 

higher axial swelling. Swelling strain in transversal 

direction was assumed R
f

Cc01  =1.0%. Although 

atomic scale experimental data for expansion of 

interlayer distance in carbon fibers due to lithium 

ion intercalation are available (see for example [6] 

using X-Ray diffraction), the macroscopic transverse 

swelling coefficient for carbon fibers has not yet 

been presented in the literature. 

Nevertheless, it has to be realized that in the 

considered linear problem the actual value of the 

swelling coefficient is not affecting conclusions:  

increasing the value n times will lead to n times 

increase of stresses and strains and to n
2
 increase of 

strain energy release rate. 

 

4 Results and Discussion 

4.1 Stress Distribution Results   

Results are presented for different time instances 
*t  

as will be explained below. x is the radial coordinate 

(x=0) is in the fiber center. 

In Figures 3a,b and 4a,b distributions of ion 

concentration C , radial stress r  , tangential stress 

   and axial stress z are presented for Cases 1 

and 2 respectively. The results in Figures 3a,b and 

4a,b are presented in the same time scale units and 

are directly comparable: the various instants of the 

normalized time are calculated as iit ,2,1
* 01.0   , 

where i  denotes intercalation. 

At fixed time instants the concentration distribution 

for the Case 1 (Fig.3a,b) has higher gradients than 

for the Case 2 (Fig.4a,b) because the diffusion 

coefficient for the Case 2 is 100 times higher than 

for the Case 1 and the diffusion is much faster. The 

higher gradients in concentration result in higher 

values of the stress components in Case 1 (Fig.3a,b) 

compared to Case 2 (Fig.4a,b). For undamaged fiber 

the concentration profiles and stress distributions 

coincide with the analytical series expansion 

solution presented in [1]. During intercalation the 

radial stress is positive with the maximum at the 

fiber axis. It seems from Fig. 3a,b and 4a,b that the 

maximum values of   are slightly higher for Case 1 

(with B =500). This result should, however, be 

treated with a caution because the shown time 

instants were not selected to present the stress 

maximum. In the central region the hoop stress    

values are similar to the radial stress values. In the 

interface region they are almost two times higher but 

they are compressive. Hence, the only damage mode 

that could be expected to initiate in the intercalation 

phase is cracks in the central region because of 

combined action of radial and hoop stresses. The 

values of these stresses are relatively low and the 

probability of this damage mode as compared with 

other possibilities described below is low. 

The extremely high compressive axial stresses in 

Figures 3b and 4b are due to the applied constraint 

of the plane strain condition that was used in 

calculations. Fig.5 proves that the conditions at the 

fiber ends (plane strain or generalized plane strain 

condition) do not influence the radial and tangential 

stress distributions.   

Results presented in Fig. 3 and 4 correspond to 

intercalation. During deintercalation 

(assuming 0RC ) the initial concentration 

distribution is uniform with 1C  , lithium ions start 

to leave the interface region and the final value of 

the concentration is zero. The concentration 

distribution dependence on time for this process can 
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be obtained from data in Fig.3 and Fig.4 by creating 

a mirror picture with respect to the axis 1C  and 

shifting the result by one unit down in the vertical 

direction. The stresses distributions in Fig.3 and 

Fig.4 are just changing sign. 

Hence, the high hoop stresses    become positive 

and since they are roughly two times higher than the 

tensile radial stress during intercalation, we can 

expect that the first damage event will take place 

during the deintercalation. The damage mode will be 

radial crack under Mode I conditions (due to 

assumed symmetry). 

The possible effect of the electrolyte elastic 

properties on the stress distributions and on the 

presented conclusions was investigated by changing 

the elastic modulus of the surrounding electrolyte 

from 1 MPa to 100 MPa. The only noticeable 

relative stress change was for the radial component 

at the interface: from being negligible it became 

small. Since it does not influence the stress 

distribution and the sequence of events in any 

noticeable way, in following calculations the value  

mE =1 MPa was used. 

4.2 Radial Crack Growth 

The concentration distributions obtained from the 

FEM model with radial cracks (Fig.1) are identical 

to distributions from a FEM model with the 

undamaged fiber. It is due to the geometry of the 

model and the used boundary conditions which 

govern that the flux has only the radial component; 

therefore radial cracks do not interrupt the ion flow.  

The conditions for the radial crack growth were 

analyzed using the model described in Section 3. 

Results are presented for Case 1 only ( B =500). 

Fig.6 shows Mode I energy release rate G  in J/m
2
 

for radial crack growth during deintercalation. The 

presented results were obtained taking the fiber 

radius fr =1m. The curves in Fig.6 each 

correspond to normalized time dt ,1
*  , where  

d denotes deintercalation. According to results 

plotted in Fig.6a in the beginning of deintercalation 

the G  curves are monotonously decreasing with the 

radial crack length rl . One can visualize the 

presented curves as evolution of one curve which is 

changing its values and shape with the time. 

In the beginning ( 5.2* t  ) this curve has growing 

values in increasing time instants, after that the 

values at the same rl  are decreasing. If the radial 

crack would grow in a quasi-static manner based on 

criterion cGG   with a constant cG , the description 

of events is as follows. Assuming a certain initial 

crack length 0
rl , see Fig.6a, this crack will start to 

grow at the time instant when the G  curve 

corresponding to the reached concentration 

distribution crosses the horizontal cG  curve in the 

point 0
rr ll  . Since in this part of the deintercalation 

the G  curve is growing with time the cross-point 

with cG  curve is moving with the time to the right, 

which means that the radial crack is growing. As 

described above, after reaching 5.2* t  the G   

curve starts to decrease, which means that the cross-

point is moving to the left. This means that the   

value for the reached crack length is lower than cG   

and the crack growth stops. It will not grow further 

in the following intercalation-deintercalation cycles. 

This behavior is schematically shown in Fig.7a. 

If the cG  value is very high, the G  curve will never 

cross the cG  curve and the radial defect will never 

grow in a quasi-static manner.  However, in this case 

the radial crack can grow during the many applied 

cycles of charging and discharging as the result of 

fatigue, which may be governed by power law.  

Since this process is related to the change of the 

strain energy release rate G , it can be better 

described using Fig.6b. The G  during one cycle is 

different for each crack length. It is calculated as the 

difference between the maximum and the minimum 

(which is zero) in the G  curve in Fig.6b. According 

to power law the G  value determines the rate of 

the crack growth. For short radial crack, G is large 

and the crack growth rate with the number of 

deintercalation cycles will be high. With increasing 

radial crack length G  reduces and the growth rate, 

rl , will slow down and eventually stop (the values 

at 7.0rl  in Fig.6a,b are close to zero). This 

behavior is illustrated in Fig.7b.  

Results in Fig.6a,b correspond to deintercalation. 

During intercalation if the radial crack is short the 

tangential stresses,  at the crack tip are 

compressive (see Fig.3b). For longer crack lengths it 

is expected that the tangential stresses   at the 

crack tip will be tensile and the crack may propagate 

further in radial direction in Mode I. However, 

considering that in the outer region a large part of 
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the radial crack would be closed (based on the 

tangential stress distribution in Fig.3b) and only the 

region close to the crack tip would be open, we can 

presume that the energy release rate values will be 

much smaller than those shown in Fig.6. Trial 

numerical calculations confirmed this result. 

Therefore, in the first approximation the contribution 

of the intercalation cycle on the radial crack growth 

in quasi-static and also in fatigue case can be 

neglected. 

4.3 Arc Crack Growth 

Numerical results presented in this section are for 

Case 1 only ( B =500). The results described in the 

previous section showed that the driving force for 

radial crack growth decays with the crack length rl . 

When G  for radial crack growth becomes too small, 

crack deflection in the tangential direction can take 

place due to tensile radial stresses during the 

intercalation. Certainly, the strain energy release rate 

for the radial crack growth and for growth of the arc 

crack developing from the tip of the radial crack can 

be very different. In addition, the radial crack 

growth is expected during deintercalation whereas 

the arc crack may grow during the intercalation. 

Furthermore, in an anisotropic fiber with certain 

morphology of graphitic sheets the cG  for crack 

propagation in the tangential direction and in the 

radial direction may be very different. This material 

property for transverse directions in the fiber has not 

been measured. The same is the situation regarding 

the fatigue parameters. Therefore the presented 

results can be useful in discussions regarding the 

possible damage modes but at present they cannot be 

used to predict the real damage behavior of 

particular type of fibers. 

While in the presence of radial cracks the 

concentration distribution is identical to that of 

undamaged fiber, this no longer applies for the case 

of arc cracks deflecting from radial cracks. 

According to the model geometry the arc cracks are 

perpendicular to the direction of flow.  

They “shield” the inner regions (the flux over the 

crack surfaces is zero) and the concentration 

distribution is no longer axisymmetric. Thus the 

concentration distribution depends strictly on the 

length l  and the radial coordinate )1( rl  of the 

arc crack. Fig.8 shows a comparison between the 

axisymmetric concentration distribution along the 

radial coordinate obtained for undamaged fiber (or 

fiber with radial cracks only) and the concentration 

distribution in the case when the arc crack is present. 

Comparison in Fig.8 is performed at the normalized 

time 25* t , the length of the arc crack is 

)1)(2(7.0 rll   , where the length of the radial 

crack is  rl =0.3 (see Fig.2 for reference). 

Two curves in Fig.8 show the concentration 

distribution along x at two values of the angular 

coordinate  =0° and  =45°. It can be concluded 

that due to the shielding effect of the arc crack, at 

 =45° the ion concentration on the outer side of the 

arc crack is approaching the saturation level whereas 

on the inner side the concentration is much lower 

(the concentration increases due to diffusion in the 

hoop direction only). On the line  =0° the radial 

distribution is lower than in the axi-symmetric case 

because part of the ions have to leave the radial path 

to move into the shielded region.  

Due to dependency of the concentration distribution 

on the geometry of the radial and arc cracks, the 

energy release rate calculations were performed for a 

range of different combinations of rl  and l .   

G calculation results given in Figures 9, 10 and 11 

correspond to three cases of the radial crack length: 

1.0rl , 3.0rl  and 7.0rl  respectively, 1fr . 

The results are plotted with respect to the 

normalized length of the arc crack 

 )1)(2/( rn lll   , where  )1)(2/( rl  is the 

maximal possible arc length at this distance from the 

fiber center. It can be seen that for a case, when the 

initial radial crack length is  1.0rl , distinct 

maximum can be observed (Fig.9a), when plotting 

G  as a function of the arc crack length nl . This 

means that the arc crack propagation in quasi-static 

mode would be rather stable. On the other hand, for 

cases when 3.0rl  (Fig.10) and 7.0rl  (Fig.11) 

monotonously increases with the arc crack length 

indicating an unstable propagation. 

More detailed description of the crack propagation 

process can be performed similarly as it was done 

for radial crack growth: selecting certain value of 

cG  and the initial arc crack length 0
nl  . These values 

are shown in Fig. 9a, since this will be the case 

discussed. 

When the intercalation starts the G  curve in Fig. 9a 

“grows” in the vertical direction until it eventually 
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crosses the cG  line at 0
nl . If it happens the arc crack 

starts to grow, the G  to the right of the cross-point 

is higher than in the cross-point and the crack 

growth is unstable. Since the time scale of the crack 

growth is much smaller than the time scale for 

diffusion, we can consider that the arc crack grows 

instantaneously at fixed concentration ( *t ). The 

crack stops, when its size corresponds to the second 

cross-point of the  cG  line and the G  curve. After 

that the arc crack can still grow if the G  curve is 

still rising above cG as a result of concentration 

redistribution with time. For arc cracks 

corresponding to longer radial cracks, Fig. 10 and 

Fig.11, there is no maximum in the G  curve and 

therefore there is no second cross-point. If the arc 

crack starts to grow, the growth would be unstable 

until it connects with the other arc cracks 

symmetrically approaching from the neighboring 

parts of the fiber. However, if the arc crack is not 

long, the values of the G  for these cases are slightly 

lower than in Fig. 9 and it may be more difficult to 

start the arc crack propagation. 

Behavior in fatigue during many intercalation cycles 

may be analyzed using Fig.9b. For an arc crack 

generated by short radial crack in the beginning the 

G  is small and the arc crack growth rate, 
nl  , is 

low. It increases with the increase of the arc crack 

length, reaches maximum and slows down 

approaching to zero. For cases when the arc crack 

originates from longer radial cracks, the G and 

also the crack growth rate increases with time 

(accelerated unstable growth). These trends are 

schematically shown in Fig.12a and 12 b. 

Comparing the values obtained for deintercalation 

with the values for intercalation shown in Fig.9-11 it 

was concluded that G in deintercalation is negligible 

and cannot significantly contribute to the arc crack 

growth. 

Since the axial symmetry in ion concentration and 

stress distributions is lost, if the arc cracks are 

present, Mode II propagation should also be 

considered. However, trial calculations using virtual 

crack closure technique [7] showed that even though 

Mode II is present, the magnitude of IIG  compared 

to magnitude of IG  is negligible. 

 

 

5 Conclusions 

Lithium ion diffusion in a carbon fiber was analyzed 

numerically with the aim to understand and to 

evaluate possible damage mechanisms (crack 

formation and growth) in the fiber as the result of 

nonuniform swelling. Thermal analogy with ion 

diffusion in combination with FEM based elastic 

stress analysis was used.  

Simple analysis of transient ion concentration 

distributions and corresponding stress distributions 

showed that radial cracks may appear in the fiber 

during the deintercalation. During the following 

intercalation arc cracks may deflect from the 

previously formed radial cracks. Growth of these 

two types of cracks was analyzed using fracture 

mechanics approach. 

During the first deintercalation high hoop stresses 

can initiate radial crack growth in the fiber. The 

crack growth with time is stable. It stops when due 

to ion concentration gradient change with time the 

strain energy release rate starts to decrease. 

The radial crack can also grow in fatigue with 

increasing number of intercalation-deintercalation 

cycles. The fatigue crack growth rate is highest, 

when the crack is short and becomes equal to zero 

when the radial crack length is about 70% of the 

fiber radius. 

During intercalation the arc crack may deflect from 

the tip of the radial crack. Its growth in a quasi-static 

manner becomes unstable as soon as the critical 

value of the strain energy release rate is reached. 

However, the arc crack growth stops if the arc crack 

has originated from a relatively short radial crack. In 

fatigue the behavior depends on the length of the 

radial crack, from which the arc crack deflected. If 

the radial crack was short, the arc crack will first 

grow with an increasing rate. The rate will reach 

maximum, then it will be reduced and the growth 

will eventually stop before the arc crack goes around 

the whole fiber. If the radial crack from which the 

arc crack starts is large, the arc crack propagates in 

fatigue with increasing growth rate until it 

eventually links with other arc cracks coming from 

other radial cracks. 
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Fig. 1. FEM model for radial crack growth analysis 

 

 
Fig. 2. FEM model for arc-shape crack growth 

analysis 

 

 

 

Fig. 3a. Distribution of ion concentration and radial 

stresses. 500B  

 

 
Fig. 3b. Distribution of corresponding tangential and 

axial stresses. 500B  

 

 

 
Fig. 4a. Distribution of ion concentration and radial 

stresses. 5B  

 

 
Fig. 4b. Distribution of corresponding tangential and 

axial stresses. 5B  
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Fig. 5. a) Radial stress distribution and b) tangential 

stress distributions at plane strain and generalized 

plane strain conditions. 

 

 
Fig. 6a. Energy release rate for radial crack growth 

during deintercalation for Case 1. 

 

 

 

 
Fig. 6b. Energy release rate for radial crack growth 

during deintercalation for Case 1. 

 

 
Fig. 7a. Schematic showing of radial crack 

propagation length in quasi-static manner 

 

 
Fig. 7b. Schematic showing of radial crack 

propagation rate 
rl    in cyclic loading 
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Fig. 8. Concentration distribution at intercalation 

time  *t =25 in carbon fiber with radial and arc 

cracks, rl  =0.3,    rll  127.0   

 

 
 

Fig. 9a. Energy release rate for arc crack growth 

during intercalation. rl  =0.1. 

 

 
Fig. 9b. Energy release rate for arc crack growth 

during intercalation. rl  =0.1. 

 

 
Fig. 10. Energy release rate for arc crack growth 

during intercalation. rl =0.3. 

 

 
Fig. 11. Energy release rate for arc crack growth 

during intercalation. rl =0.7. 
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Fig. 12a. Schematic showing of arc crack 

propagation length in quasi-static manner. 

 

 
Fig. 12b. Schematic showing of arc crack 

propagation rate 
nl   in cyclic loading. 

 

 

Table 1. Elastic properties of the carbon fiber 
fE3  fE1  

fG31  f

31  f

12  

[GPa] [GPa] [GPa] [-] [-] 

300 30 20 0.2 0.45 
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