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1 Introduction

One of the materials with a potential for use as
electrode in lithium-ion batteries is carbon fiber. In
future structural batteries these carbon fibers will
also have a load bearing function. Fiber degradation
may also affect the ion diffusivity and the number of
charge-discharge cycles with high energy efficiency.
To ensure the mechanical durability of this type of
batteries mechanical degradation mechanisms in
fibers during service life have to be analyzed to
develop guidelines for material selection.

Lithium ion intercalation/deintercalation in carbon
fiber is a transient process causing non-uniform
swelling of the carbon fiber electrode. The gradients
of lithium ion distribution lead to formation of
mechanical stresses in the fiber. During
deintercalation these stresses may lead to initiation
and growth of radial cracks in the fiber. In
intercalation arc-shaped cracks deviating from the
tip of the radial cracks may form. Micro-crack
formation decreases the mechanical properties of the
fibers and reduces the charging properties of the
battery due to decreased diffusivity. The crack
propagation and possible damage evolution
scenarios were analyzed using linear elastic fracture
mechanics.  Finite element method (FEM)
calculations were performed for stress and fracture
mechanics calculations.

2 Theoretical Background
2.1 lon Concentration in Carbon Fiber

We consider an infinite electrolyte with uniformly
distributed carbon fibers. This system can be
represented by a cylindrical unit cell with a long
fiber surrounded by an electrolyte. During the
intercalation lithium ions diffuse into the fiber and
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their distribution along the radial coordinate can be
described by concentration distribution, which
follows diffusion equation.

oC/ot =DAC (1)

where C is relative ion concentration in the fiber
with respect to available sites, 4 is the Laplace
operator and D is diffusion coefficient. In the
particular case of a long fiber the diffusion is in-
plane and the concentration is a function of fiber
radial and angular coordinates r and & respectively.
Therefore

Azli(r£j+
ror\ or

Boundary condition at the fiber surface (r=r¢) [1]
is:
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where k;, ke are anodic and cathodic rate constants,
Parameter Cr has a meaning of saturation
concentration of ions in the fiber.

In the present study the focus is on mechanical
stresses therefore all unknown electrochemical
parameters are reduced to one unknown parameter B
(the Biot constant). Thus, varying this parameter
from zero to infinity we cover all possible
combinations of parameters such as diffusion
coefficient, cathodic and anodic rate constants, etc.
We use definition and notation of electrochemical
parameters as in [1,2] .

2.2 Stress Distribution in Carbon Fiber
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In the considered loading case all shear stress
components are zero. We obtain generalized plane

strain &, = const solution (z is axial coordinate).
Stress—strain relationships for transversally isotropic

fiber (indices 1,2 and 3 correspond to r, € and z
directions) are obtained:
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) (6)
In (4)-(6) g, i=r,0,zare the swelling coefficients
in the main fiber directions, ¢, is the maximum

concentration of the ions, when all possible sites are
occupied. The diffusion problem and the elastic
problem are decoupled. We can first find the

concentration distribution using boundary conditions.

The concentration distribution does not depend on
the elastic stress state. The concentration distribution
C(r,6,7)is used as an input in the elastic problem,
which can be solved at any arbitrary instant of z,
where 7 is normalized time defined as

)
7 (7)

The mathematical description of the concentration
distribution is the same as for heat conduction
problem with convection boundary conditions:
parameter B has the meaning of the heat—transfer
coefficient, C is analogous to the temperature
distribution and Cg is the value of temperature in
the surrounding medium. This analogy can be used
to employ commercial finite element (FE) code
ANSYS [3] in the presented paper) to find
concentration and stress distribution.

3 FEM Model

3.1 Model and the Calculation Procedure
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FEM models for stress distribution (no micro-
cracks) analysis and for radial and arc-shaped crack
growth analysis were generated. In all cases
transient ion concentration and corresponding
mechanical stress distributions were calculated.
FEM software code ANSYS version 13.0 [3] was
used to perform all calculations. Two phase (carbon
fiber and matrix electrolyte) models were generated.
First a FEM model for case without damage was
generated. Taking the advantage of the symmetry of
the problem, only ¥ of the total transverse FEM
model is needed to perform calculations. Two cases
were analyzed: Case 1 with the Biot constant
B =500 and Case 2 with B =5. The relation between
diffusion coefficients for Cases 1 and 2 is then the
following: D; =0.01D, .

To analyze the radial crack growth FEM model
shown in Fig.1 was generated. According to the
discussion in the Introduction, the first damage in
the fiber may be in a form of radial cracks forming
at the surface of the fiber. In Fig. 1 I, is the radial
crack length. The crack face position corresponds to
the angular coordinate of &=7/4 . Due to the

symmetry conditions on the horizontal and on the
vertical axis the fiber in this model has four cracks.
Interaction between them was not investigated in
this study. Mesh refinement was used in vicinity of
the crack tip as shown in the detail in Fig.1. The
representation of the crack geometry in Fig.1b is
schematic and it illustrates the deformed state. Since
the ion diffusion is in the radial direction, the
diffusion is not affected by the presence of the radial
crack. When solving the elastic problem contact
elements were generated on the crack surfaces to
prevent mechanical interpenetration. The energy
release rate was calculated using the J-integral based
routine implemented in ANSY'S version 13.0 [3].
Following the scenario previously described in the
Introduction, arc cracks may deflect from the radial
cracks. The FEM model for arc crack growth
analysis is shown in Fig.2.

As shown in the detail in Fig.2b the length of the
previously formed radial crack is I, , its angular
coordinate is @=7/4, while 1, is the arc length of
the arc crack, which is assumed to grow in
circumferential manner along the arc with radius

(r¢ —1:), symmetrically with respect to the radial
crack. Due to applied symmetry conditions the
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model corresponds to four radial cracks with arc
branches. As in Fig. 1b, also in Fig. 2b the
representation of the crack geometry is schematic
and illustrates the deformed state. Contact elements
were generated on all crack surfaces including the
initial  radial crack surface to  prevent
interpenetration.

As in the case of radial cracks the calculation of the
energy release rate for arc cracks was performed
using the J-integral based routine implemented in
ANSYS.

The elastic properties of the carbon fiber used in this
study are given in Table 1. The elastic modulus of
the isotropic matrix was E =1 MPa, the Poisson’s

ratio of matrix was v, =0.3.

In [4] the swelling strain /3; coCr of approximately

0.3% was experimentally determined and it
corresponded to measured capacity of 135 mAh/g at
1 hour charge. In [5] it was shown that for PAN
based IMS65 carbon fiber electrodes the capacity
can be increased by up to 3 times, when charging
slower, meaning that more lithium ions can be
intercalated leading to higher swelling. Thus, based
on these values, the longitudinal swelling strain was

assumed 4 coCr = 0.9% to account for 3 times
higher axial swelling. Swelling strain in transversal
direction was assumed ,Blf coCr =1.0%. Although

atomic scale experimental data for expansion of
interlayer distance in carbon fibers due to lithium
ion intercalation are available (see for example [6]
using X-Ray diffraction), the macroscopic transverse
swelling coefficient for carbon fibers has not yet
been presented in the literature.

Nevertheless, it has to be realized that in the
considered linear problem the actual value of the
swelling coefficient is not affecting conclusions:
increasing the value n times will lead to n times
increase of stresses and strains and to n® increase of
strain energy release rate.

4 Results and Discussion
4.1 Stress Distribution Results

Results are presented for different time instances t
as will be explained below. x is the radial coordinate
(x=0) is in the fiber center.
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In Figures 3ab and 4ab distributions of ion
concentration C , radial stress o, , tangential stress
oy and axial stress o, are presented for Cases 1
and 2 respectively. The results in Figures 3a,b and
4a,b are presented in the same time scale units and
are directly comparable: the various instants of the
normalized time are calculated as t* =7;; =0.01z,;,

where i denotes intercalation.

At fixed time instants the concentration distribution
for the Case 1 (Fig.3a,b) has higher gradients than
for the Case 2 (Fig.4a,b) because the diffusion
coefficient for the Case 2 is 100 times higher than
for the Case 1 and the diffusion is much faster. The
higher gradients in concentration result in higher
values of the stress components in Case 1 (Fig.3a,b)
compared to Case 2 (Fig.4a,b). For undamaged fiber
the concentration profiles and stress distributions
coincide with the analytical series expansion
solution presented in [1]. During intercalation the
radial stress is positive with the maximum at the
fiber axis. It seems from Fig. 3a,b and 4a,b that the
maximum values of are slightly higher for Case 1
(with B =500). This result should, however, be
treated with a caution because the shown time
instants were not selected to present the stress
maximum. In the central region the hoop stress
values are similar to the radial stress values. In the
interface region they are almost two times higher but
they are compressive. Hence, the only damage mode
that could be expected to initiate in the intercalation
phase is cracks in the central region because of
combined action of radial and hoop stresses. The
values of these stresses are relatively low and the
probability of this damage mode as compared with
other possibilities described below is low.

The extremely high compressive axial stresses in
Figures 3b and 4b are due to the applied constraint
of the plane strain condition that was used in
calculations. Fig.5 proves that the conditions at the
fiber ends (plane strain or generalized plane strain
condition) do not influence the radial and tangential
stress distributions.

Results presented in Fig. 3 and 4 correspond to
intercalation. During deintercalation
(assuming Cg =0 ) the initial concentration
distribution is uniform with C =1, lithium ions start
to leave the interface region and the final value of
the concentration is zero. The concentration
distribution dependence on time for this process can
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be obtained from data in Fig.3 and Fig.4 by creating
a mirror picture with respect to the axis C =1 and
shifting the result by one unit down in the vertical
direction. The stresses distributions in Fig.3 and
Fig.4 are just changing sign.

Hence, the high hoop stresses oy become positive
and since they are roughly two times higher than the
tensile radial stress during intercalation, we can
expect that the first damage event will take place
during the deintercalation. The damage mode will be
radial crack under Mode | conditions (due to
assumed symmetry).

The possible effect of the electrolyte elastic
properties on the stress distributions and on the
presented conclusions was investigated by changing
the elastic modulus of the surrounding electrolyte
from 1 MPa to 100 MPa. The only noticeable
relative stress change was for the radial component
at the interface: from being negligible it became
small. Since it does not influence the stress
distribution and the sequence of events in any
noticeable way, in following calculations the value
E., =1 MPa was used.

4.2 Radial Crack Growth

The concentration distributions obtained from the
FEM model with radial cracks (Fig.1) are identical
to distributions from a FEM model with the
undamaged fiber. It is due to the geometry of the
model and the used boundary conditions which
govern that the flux has only the radial component;
therefore radial cracks do not interrupt the ion flow.
The conditions for the radial crack growth were
analyzed using the model described in Section 3.
Results are presented for Case 1 only ( B =500).
Fig.6 shows Mode | energy release rate G in J/m?
for radial crack growth during deintercalation. The
presented results were obtained taking the fiber
radius ry =lum. The curves in Fig.6 each

correspond to normalized time t*=7;4 , where
d denotes deintercalation. According to results
plotted in Fig.6a in the beginning of deintercalation
the G curves are monotonously decreasing with the
radial crack length I, . One can visualize the
presented curves as evolution of one curve which is
changing its values and shape with the time.

In the beginning (t* <2.5 ) this curve has growing
values in increasing time instants, after that the
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values at the same |, are decreasing. If the radial
crack would grow in a quasi-static manner based on
criterion G =G, with a constant G, the description
of events is as follows. Assuming a certain initial
crack length 1P, see Fig.6a, this crack will start to
grow at the time instant when the G curve
corresponding to the reached concentration
distribution crosses the horizontal G, curve in the
point I, =12 Since in this part of the deintercalation
the G curve is growing with time the cross-point
with G, curve is moving with the time to the right,
which means that the radial crack is growing. As
described above, after reaching t*~25 the G
curve starts to decrease, which means that the cross-
point is moving to the left. This means that the
value for the reached crack length is lower than G,
and the crack growth stops. It will not grow further
in the following intercalation-deintercalation cycles.
This behavior is schematically shown in Fig.7a.

If the G, value is very high, the G curve will never
cross the G, curve and the radial defect will never
grow in a quasi-static manner. However, in this case
the radial crack can grow during the many applied
cycles of charging and discharging as the result of
fatigue, which may be governed by power law.
Since this process is related to the change of the
strain energy release rate AG , it can be better
described using Fig.6b. The AG during one cycle is
different for each crack length. It is calculated as the
difference between the maximum and the minimum
(which is zero) in the G curve in Fig.6b. According
to power law the AG value determines the rate of
the crack growth. For short radial crack, AG is large
and the crack growth rate with the number of
deintercalation cycles will be high. With increasing
radial crack length AG reduces and the growth rate,
I+, will slow down and eventually stop (the values
at I, =0.7 in Fig.6ab are close to zero). This
behavior is illustrated in Fig.7b.

Results in Fig.6a,b correspond to deintercalation.
During intercalation if the radial crack is short the
tangential stresses, o, at the crack tip are
compressive (see Fig.3b). For longer crack lengths it
is expected that the tangential stresses o, at the
crack tip will be tensile and the crack may propagate
further in radial direction in Mode I. However,
considering that in the outer region a large part of
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the radial crack would be closed (based on the
tangential stress distribution in Fig.3b) and only the
region close to the crack tip would be open, we can
presume that the energy release rate values will be
much smaller than those shown in Fig.6. Trial
numerical calculations confirmed this result.
Therefore, in the first approximation the contribution
of the intercalation cycle on the radial crack growth
in quasi-static and also in fatigue case can be
neglected.

4.3 Arc Crack Growth

Numerical results presented in this section are for
Case 1 only (B =500). The results described in the
previous section showed that the driving force for
radial crack growth decays with the crack length I, .
When G for radial crack growth becomes too small,
crack deflection in the tangential direction can take
place due to tensile radial stresses during the
intercalation. Certainly, the strain energy release rate
for the radial crack growth and for growth of the arc
crack developing from the tip of the radial crack can
be very different. In addition, the radial crack
growth is expected during deintercalation whereas
the arc crack may grow during the intercalation.
Furthermore, in an anisotropic fiber with certain
morphology of graphitic sheets the G, for crack
propagation in the tangential direction and in the
radial direction may be very different. This material
property for transverse directions in the fiber has not
been measured. The same is the situation regarding
the fatigue parameters. Therefore the presented
results can be useful in discussions regarding the
possible damage modes but at present they cannot be
used to predict the real damage behavior of
particular type of fibers.

While in the presence of radial cracks the
concentration distribution is identical to that of
undamaged fiber, this no longer applies for the case
of arc cracks deflecting from radial cracks.
According to the model geometry the arc cracks are
perpendicular to the direction of flow.

They “shield” the inner regions (the flux over the
crack surfaces is zero) and the concentration
distribution is no longer axisymmetric. Thus the
concentration distribution depends strictly on the
length |, and the radial coordinate (1—1,) of the

arc crack. Fig.8 shows a comparison between the
axisymmetric concentration distribution along the
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radial coordinate obtained for undamaged fiber (or
fiber with radial cracks only) and the concentration
distribution in the case when the arc crack is present.
Comparison in Fig.8 is performed at the normalized
time t*=25, the length of the arc crack is
l, =0.7(z/2)(L—1,), where the length of the radial

crack is I, =0.3 (see Fig.2 for reference).

Two curves in Fig.8 show the concentration
distribution along x at two values of the angular
coordinate @ =0° and @ =45°. It can be concluded
that due to the shielding effect of the arc crack, at
6 =45° the ion concentration on the outer side of the
arc crack is approaching the saturation level whereas
on the inner side the concentration is much lower
(the concentration increases due to diffusion in the
hoop direction only). On the line # =0° the radial
distribution is lower than in the axi-symmetric case
because part of the ions have to leave the radial path
to move into the shielded region.

Due to dependency of the concentration distribution
on the geometry of the radial and arc cracks, the
energy release rate calculations were performed for a
range of different combinations of |, and I, .
G calculation results given in Figures 9, 10 and 11
correspond to three cases of the radial crack length:
I, =01, 1, =0.3 and I, =0.7 respectively, ri =1.
The results are plotted with respect to the
normalized  length of the arc  crack
I =10 /((12)@—1,)), where (z/2)@-1,) is the
maximal possible arc length at this distance from the
fiber center. It can be seen that for a case, when the
initial radial crack length is I, =0.1, distinct
maximum can be observed (Fig.9a), when plotting
G as a function of the arc crack length l4 . This
means that the arc crack propagation in quasi-static
mode would be rather stable. On the other hand, for
cases when I, =0.3 (Fig.10) and I, =0.7 (Fig.11)
monotonously increases with the arc crack length
indicating an unstable propagation.

More detailed description of the crack propagation
process can be performed similarly as it was done
for radial crack growth: selecting certain value of
G. and the initial arc crack length 193, . These values
are shown in Fig. 9a, since this will be the case
discussed.

When the intercalation starts the G curve in Fig. 9a
“grows” in the vertical direction until it eventually
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crosses the G line at 19, . If it happens the arc crack

starts to grow, the G to the right of the cross-point
is higher than in the cross-point and the crack
growth is unstable. Since the time scale of the crack
growth is much smaller than the time scale for
diffusion, we can consider that the arc crack grows
instantaneously at fixed concentration (t*). The
crack stops, when its size corresponds to the second
cross-point of the G line and the G curve. After
that the arc crack can still grow if the G curve is
still rising above G. as a result of concentration
redistribution ~ with  time. For arc cracks
corresponding to longer radial cracks, Fig. 10 and
Fig.11, there is no maximum in the G curve and
therefore there is no second cross-point. If the arc
crack starts to grow, the growth would be unstable
until it connects with the other arc cracks
symmetrically approaching from the neighboring
parts of the fiber. However, if the arc crack is not
long, the values of the G for these cases are slightly
lower than in Fig. 9 and it may be more difficult to
start the arc crack propagation.

Behavior in fatigue during many intercalation cycles
may be analyzed using Fig.9b. For an arc crack
generated by short radial crack in the beginning the
AG is small and the arc crack growth rate, 123 , is

low. It increases with the increase of the arc crack
length, reaches maximum and slows down
approaching to zero. For cases when the arc crack
originates from longer radial cracks, the AG and
also the crack growth rate increases with time
(accelerated unstable growth). These trends are
schematically shown in Fig.12a and 12 b.
Comparing the values obtained for deintercalation
with the values for intercalation shown in Fig.9-11 it
was concluded that G in deintercalation is negligible
and cannot significantly contribute to the arc crack
growth.

Since the axial symmetry in ion concentration and
stress distributions is lost, if the arc cracks are
present, Mode Il propagation should also be
considered. However, trial calculations using virtual
crack closure technique [7] showed that even though
Mode Il is present, the magnitude of G, compared

to magnitude of G, is negligible.

ICCM19

5 Conclusions

Lithium ion diffusion in a carbon fiber was analyzed
numerically with the aim to understand and to
evaluate possible damage mechanisms (crack
formation and growth) in the fiber as the result of
nonuniform swelling. Thermal analogy with ion
diffusion in combination with FEM based elastic
stress analysis was used.

Simple analysis of transient ion concentration
distributions and corresponding stress distributions
showed that radial cracks may appear in the fiber
during the deintercalation. During the following
intercalation arc cracks may deflect from the
previously formed radial cracks. Growth of these
two types of cracks was analyzed using fracture
mechanics approach.

During the first deintercalation high hoop stresses
can initiate radial crack growth in the fiber. The
crack growth with time is stable. It stops when due
to ion concentration gradient change with time the
strain energy release rate starts to decrease.

The radial crack can also grow in fatigue with
increasing number of intercalation-deintercalation
cycles. The fatigue crack growth rate is highest,
when the crack is short and becomes equal to zero
when the radial crack length is about 70% of the
fiber radius.

During intercalation the arc crack may deflect from
the tip of the radial crack. Its growth in a quasi-static
manner becomes unstable as soon as the critical
value of the strain energy release rate is reached.
However, the arc crack growth stops if the arc crack
has originated from a relatively short radial crack. In
fatigue the behavior depends on the length of the
radial crack, from which the arc crack deflected. If
the radial crack was short, the arc crack will first
grow with an increasing rate. The rate will reach
maximum, then it will be reduced and the growth
will eventually stop before the arc crack goes around
the whole fiber. If the radial crack from which the
arc crack starts is large, the arc crack propagates in
fatigue with increasing growth rate until it
eventually links with other arc cracks coming from
other radial cracks.
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Fig. 7a. Schematic showing of radial crack
propagation length in quasi-static manner

Fig. 7b. Schematic showing of radial crack
propagation rate I¢ in cyclic loading
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Fig. 12a. Schematic showing of arc crack
propagation length in quasi-static manner.
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Fig. 12b. Schematic showing of arc crack
propagation rate 13, in cyclic loading.

Table 1. Elastic properties of the carbon fiber

E3f Elf Gafl VSfl V1f2
[GPa] | [GPa] | [GPa] | [-] []
300 30 20 0.2 | 0.45
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