User manual

Thomas Koopman

August 18, 2021

Introduction

This manual documents a distributed memory version of the higher-dimensional discrete Fourier transform
routines the FFTW library [I], using MPI. Familiarity with FFTW and MPI is assumed.

1 Installation/usage

As the code is only a few hundred lines, I did not see the point in compiling it into a library. If the
user wants to use the parallel DFT routine into a program application.c, (s)he simply copies mpi_fft .h and
mpi_fft . c into the same directory application.c is located, and adds the line #include "mpi_fft.h” at the top
of application.c. See for example mpi_test.c. Then compile application.c together with mpi_fft.c. On a
Unix-like system, the compilation command could look like

mpicc —o application application.c mpi_ fft .c —1fftw3 —Im

On my machine, the flag -O3 speeds up mpi_fft .c, the flags -mavx2 or -march=native do not.

2 Warning

Due to the use of a function of the MPI library, the number of local elements is restricted to 232. A complex
number is 10 bytes, and we need at least twice as much space as we have elements because we buffer the
communication, so 232 elements take at least 84GB of memory per core. So this is probably not a problem
for most people, but be aware just in case you have very high memory nodes.

3 Data distribution and initialization

The parallel function

void mpiFft(fftw_complex* localData, int dimension, int n[], int p[], fitw_plan bigPlan, fftw_plan manyPlans

takes its data as variable localData of size n[0] x - -+ x n[dimension — 1]. The distribution is n-dimensional
cyclic over a grid of p[0] x - - - x p[dimension - 1] processors. That means that local position (kg,- -, kq—1) on
processor (Sg, - ,84—1) corresponds to global position (sg 4 kopo, -+ , Sa—1 + ka—1Pa—1) and global position
(Jo, -+ ,Ja—1) corresponds to local position (jo div pg, -, ja—1 divpg—1) on processor (jo mod po, -+, ja—1
mod py—1). The plans can be made with the functions createBigPlan and createManyPlans.

We must have that p[i]? | n[i] for all i. With printAdmissableProcessors you can see what total numbers of
processors you can use. The function fillProcessors you can decompose an admissable number of processors
into a grid.



References

[1] Matteo Frigo and Steven G. Johnson. The fastest fourier transform in the west. In the Proceedings of
the 1998 International Conference on Acoustics, Speech, and Signal Processing, ICASSP ’98, 1997.



	Installation/usage
	Warning
	Data distribution and initialization

