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ABSTRACT Large Language Models (LLMs) have recently attracted considerable attention from the
scientific community, due to their advanced capabilities and potential to serve as vital tools across various
industries and academic fields. An important implementation domain for LLMs is Data Science, in which
they could enhance the efficiency of Data Analysis and Profiling tasks. With the utilization of LLMs in Data
Analytics tools, end-users could directly issue data analysis queries in natural language, bypassing the need
for specialized user interfaces. However, due to the sensitive nature of certain data in some organizations,
it is unwise to consider using established, cloud-based LLMs. This article explores the feasibility and
effectiveness of a standalone, offline LLM in generating code for performing data analytics, given a set
of natural language queries. A methodology tailored to a code-specific LLM is presented, evaluating its
performance in generating Python Spark code and successfully producing the desired result. The model is
assessed on its efficiency and ability to handle natural language queries of varying complexity, exploring the
potential for wider adoption of offline LLMs in future data analysis frameworks and software solutions.

INDEX TERMS Code generation, data analysis, data profiling, data science, large language models.

I. INTRODUCTION example, LLMs are used to speed up discoveries in medicine,
A. APPLICATIONS AND IMPACT OF LLMS biology, materials science, and forensics. For instance, their
application in drug discovery could help enable speed up
the development of new therapeutic agents, by predicting
molecular properties and simulating molecular interactions.
In addition, the use of LLMs in computational chemistry
is aimed at achieving better chemical processes description,
whilst in materials science LLMs are being utilized in order to
design new materials with tailored properties [5]]. Moreover,
the integration of LLMs in forensic science could enhance
modern investigations and assist law enforcement agencies
in suspect identification [[6]. These are only few examples
that demonstrate the reaching potential of LLMs in scientific
research and industrial innovation, which represents a po-
tential quantum leap toward much more intelligent, efficient
problem-solving across all fields [[7].

The meteoric rise of Large Language Models (LLMs) has
opened up new possibilities for research and development
of practical applications across various fields. The capabil-
ities of such models have generated increased interest in the
global research community, leading to investments for further
innovations in the field of LLM-based applications. Famous
LLMs, including OpenAI’s GPT-4 [1] and Google’s Gemini
[2], have achieved the ability to understand, produce, and
manipulate human language to such a degree that they — or
other LLMs — are now applied across several domains, from
health care to engineering. These capabilities have paved
the way to new standards in both research and industrial
applications, with one of the main goals being the improved
accuracy of the models’ outputs [3[] [4].

Of course, the applications of LLMs go far beyond tradi- Furthermore, Large Language Models have proven to have
tional natural language processing. In scientific research, for great potential in providing enhancements for several aspects
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of Data Science. For example, OpenAI’s GPT-4 can perform
tasks like cleaning data, extracting features, and even training
a model with limited human intervention [8|] [9]. In data
analysis, LLMs also provide advantages in automating the
process of generating insights from datasets. The models can
carry out classic data profiling operations, provide analyses of
anomalies and even generate predictive analytics for future
use by data engineers, or other industry professionals. So,
these models could be used in processing customer feedback,
financial reports, and social media data, in order to provide
actionable insights. Their ability to understand and interpret
several kinds of datasets could make them valuable tools for
data scientists [[10] [[11]].

Despite their impressive capabilities and great potential in
Data Science (among several other aforementioned domains),
Large Language Models face significant challenges when it
comes to providing quality analytics on large datasets. One
primary limitation is their inability to process entire datasets
at once, due to memory and computational constraints. Most
LLMs can handle only a limited context window, which can
lead to loss of context, incomplete insights, and therefore
false results [[12]]. Additionally, LLMs may struggle with
understanding complex data relationships that exist within
a dataset, as their training has mainly focused on compre-
hending natural language, rather than complex data structures
[13]] [[14]. These limitations can compromise the quality and
accuracy of the analytics generated by an LLM. Thus, while
models like GPT-4 have advanced capabilities in natural lan-
guage processing, their application to data analytics needs im-
provement, mainly due to the high complexity of operations
related to the field, like in-depth data profiling, analysis, or
quality insights extraction [[15].

Moreover, the sensitive nature of many datasets further
complicates the use of online LLMs — like OpenAI’s GPT
— for data analysis and profiling. For example, many datasets
contain personal information, proprietary business data, or
sensitive research findings, making them subject to restrictive
regulations — such as the General Data Protection Regu-
lation (GDPR) — and various data privacy laws [[16]. The
security risks associated with processing such data online
pose considerable concerns, including unauthorized access,
data breaches, and misuse of information [17]]. Furthermore,
ethical considerations surrounding the use of sensitive data
call for strict compliance with consent and usage guidelines,
which can be difficult to enforce when utilizing online LLMs.
For that reason, the use of online LLMs for sensitive data
profiling and analysis should be avoided.

B. EXPLORING OFFLINE LLMS IN DATA ANALYSIS

The outlined concerns emphasize the need for secure, on-
premise solutions to ensure data integrity and privacy. Orga-
nizations handling sensitive data should still be able to benefit
from the capabilities of large language models. End-users
could benefit greatly from this, by simply querying data in
natural language and receiving responses as visualized out-
puts or direct data samples. For instance, rather than selecting
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specific columns and applying predetermined rules through
a specialized interface, end-users and data scientists could
simply write their queries in natural language, and then view
the results on their screens as they would normally do. In
summary, offline LLMs can truly assist data scientists in data
analysis and quality insights extraction, reducing effort and
simplifying the querying process.

This leads to the conclusion that enterprises, organizations,
and businesses should consider implementing offline LLM
solutions. The scope of this article is to explore how offline
LLMs can enhance data analysis, by generating code for
data analytics operations based on natural language queries.
By keeping data on-premise, concerns about data integrity
and security are eliminated, since data is not transmitted to
online LLM models. Additionally, this approach addresses
the limitation of LLMs’ inability to properly process entire
datasets due to architectural and computational constraints.
In the proposed procedure, the LLM does not load entire
datasets. Instead, it receives a comprehensive summary. For
each data analysis query, the LLM generates specialized code,
which is then executed by a software job on the full dataset to
return the final results. Consequently, both data integrity and
processing limitations are effectively managed.

The proposed on-premises solution includes an offline
LLM, along with a data processing platform. Data processed
remain within the organization. For each dataset, concise
metadata is provided to the LLM, enabling it to gain con-
textual knowledge of the data. In practice, every time the
organization’s data scientist makes a query in natural lan-
guage, the LLM will generate specialized code for data pro-
filing and analysis. The proposed solution will then apply
the generated code to the data through a pipeline, ultimately
returning the results back to the user. As previously stated, this
approach not only maintains data security, but also optimizes
the efficiency of data analysis, thus addressing two current
limitations of LLMs. Moreover, it helps end-users submit
their data analytics preferences effortlessly, since they will be
able to do so using natural language.

This paper is structured as follows. In the Related Work
(M) section, existing literature and approaches relevant to
LLM code generation are reviewed, along with other similar
applications and market tools. The Study Methodology and
Design section outlines the framework and methodology
employed in this study, aiming to evaluate the efficiency of
offline LLMs in generating data analysis code. In addition,
there is an analysis of the proposed system’s architecture,
along with an introduction to the datasets selected for evalu-
ation. Technical Components ([V)) section discusses the tech-
nological infrastructure chosen for this study, analyzing the
components that make up the proposed architecture. In the
Testing and Results (V) section, the outcomes of the complete
testing phase are presented, analyzing the performance of an
offline LLM in generating accurate and efficient code for var-
ious natural language queries. The Critical Assessment
Conclusion sections summarize the findings, discusse
the potential effects of the results, and suggest directions for
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future research in this emerging area.

Il. RELATED WORK

Proposals for evaluating the code generation capabilities of
LLMs have been made over the past months, as presented
in this section. However, the task of generating code specifi-
cally for data analysis and profiling using offline models is
yet to be extensively covered by the research community.
Consequently, direct benchmarking against existing studies
is challenging, as no prior work has specifically addressed
this approach. In addition to reviewing proposed systems and
studies on LLMs and code generation, fully available market
solutions are also presented. Moreover, related works where
LLM:s are applied to data analysis operations are mentioned.
Since research around the capabilities of language models is
both ongoing and extensive, it is anticipated that additional
studies will follow in the future.

A. CODE GENERATION TECHNIQUES

This subsection inspects existing works aligned with the
scope of the current study, primarily in the domain of code
generation using LLMs. These studies highlight proposals
and approaches in generating functional code, emphasizing
the integration of LLMs with additional software techniques,
and reflecting the growing potential of these models in diverse
coding scenarios.

A research work about the code generation capabilities
of ChatGPT was published by Feng (2023) [18]]. With an
emphasis on OpenAI’s LLM, the study presents a scalable
framework for crowdsourcing social data that assesses the
code generation capabilities of large language models. The
framework utilizes data from various social media sites. It is
used for tasks including academic assignment solving, inter-
view preparation, and pure code debugging. The publication
relates to the current work in terms of code generation by lan-
guage models, but it is not focused on data analytics tasks, or
the use of offline LLMs. A study by Gu (2023) [19] introduces
a code generation approach for compiler testing with the use
of a language model, and the goal to increase both the quality
and the quantity of the code generated. The technique follows
a filter strategy by cleaning the source code, providing a high-
quality dataset for model training. This approach targeted the
capabilities of encoder-decoder models to produce testing-
oriented code, which relates to the current work in terms of
utilizing Al tools to explore their code generation capabilities.

An interesting article was authored by Ross (2023) [20],
introducing a prototype system designed to investigate the
effectiveness of conversational interactions between profes-
sionals and LLMs, and to assess how software engineers
respond to engaging in dialogue with a code-fluent LLM.
The results demonstrate that future frameworks with LLM-
powered features could become highly assistive tools for
software engineers, similar to what this current article aims
to assess. At a publication written by Soliman (2024) [21]],
the research team presents hybrid models for code genera-
tion through the integrated use of other pre-trained language
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models. The hybrid models’ performance is evaluated using
two commonly used datasets [22] [23]. Then, the researchers
benchmark them against existing state-of-the-art models. The
study aims to explore how is it feasible to enhance the pre-
cision and efficiency of LLM code generation, especially
in complicated coding scenarios. Although not specifically
centered on offline LLMs, this publication is relevant to the
current article as it addresses code generation. The present
study expands on this by exploring a use case scenario fo-
cused on data analytics operations.

A paper published by Pinna (2024) [24] explores the use
of large language models for automatic code generation, us-
ing problem descriptions as input queries. The researchers
aimed to address the issue of LLMs generating incorrect code.
The results demonstrate an improvement in code quality,
highlighting the potential of combining LLMs with other
techniques for improving the code generated by the mod-
els. Building on this premise, the current study adopts the
proposed approach of combining LLMs with other software
methodologies. Other notable publications include the pro-
posals of benchmarks for evaluating the code generation
process of LLMs: An article by Yu (2024) [25] presents a
benchmark designed to evaluate code generation models on
non-standalone functions that are usually overlooked in the
existing benchmarks but make up the majority of the func-
tions found in open-source projects. Another similar research
on LLMs for code generation tasks comes from Omari (2024)
[26], who investigates the capability of a large language
model (mainly ChatGPT) in detecting and repairing bugs in
simple Python programs.

B. LITERATURE SURVEYS
This subsection presents key literature surveys that, although
not directly aligned with the specific scope of the current
study, offer valuable context. These studies explore the role
of language models in transforming tasks such as broad-
spectrum code generation, debugging, and design, while also
highlighting their strengths, limitations, and future potential.

A survey about the potential of large language models in
software engineering was published by Fan (2023) [27]. It
identifies a number of research challenges about the use of
LLMs to help software engineers with a range of technical
issues, like coding, design, bug fixing, and refactoring, where
LLMs bring creative qualities to the table. The report also
emphasizes the importance of hybrid approaches in the future,
which combine LLMs with traditional software engineering
methodologies. A review conducted by Wong (2023) [28]]
goes through the use of Natural Language Processing (NLP)
techniques — mainly LLMs trained on big code — in Al-
assisted programming operations. It highlights the significant
role of LLMs in various applications, such as code generation,
completion, translation, refinement, summarization, defect
detection, and clone detection. It also mentions examples of
Al-enhanced tools, like GitHub Copilot [29] and DeepMind
AlphaCode [30].

Another review on large language models and their ability
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to generate code was authored by Wang (2023) [31f]. This
study reviews recent research (up until late 2023) on code
generation using large language models, with an emphasis on
the evaluation of generated code as well as its use in soft-
ware engineering activities. According to the study, additional
investigation is required to fill in the gaps in the evaluation
of LLM-generated code. A similar study was performed by
Liu (2024) [32], aiming to create a comprehensive literature
review on the current developments in deep learning-based
code generation. Systematic evaluation was conducted on
recent scientific publications. Then, a structured methodol-
ogy was applied to the review of these papers, in order to
provide insights about code generation using large language
models, to address existing knowledge gaps, and to guide
future research in the field.

C. OTHER APPLICATIONS AND MARKET TOOLS

This subsection explores LLM fine-tune proposals, as well
as applications and market tools that leverage such language
models for innovative solutions. These advancements demon-
strate the versatility of LLMs in domains such as hardware
design, database optimization, personalized content genera-
tion, and Al-powered data analytics—aligning most closely
with the focus of the current study.

Early attempts to fine-tune existing large language models
specifically for code generation have been published. An
article by Thakur (2024) [33]] explores the potential of large
language models in automating hardware design through
completion of partial Verilog code, a language widely used
in digital system design. Another study by Mu (2024) [34]
presents a framework for improving code generation, by
enabling an LLM to identify ambiguous requirements and
to request clarifying questions prior to generating the code.
Evaluation demonstrates that the model improves the perfor-
mance of online LLMs (such as GPT-4) in code generation on
multiple benchmarks.

Another research study, this time by Rau (2024) [35],
focuses on revisiting and validating the Unsupervised Pas-
sage Retrieval (UPR) approach by Sachan (2022) [36]. This
method relies on the generative capability of large language
models to produce zero-shot questions for passage retrieval,
emphasizing question generation to re-rank passages for in-
creasing retrieval accuracy. The research not only replicates
the effectiveness of UPR on the BEIR benchmark [37]], but
also extends its evaluation to other benchmarks, the 2019 and
2020 TREC Deep Learning tracks [38]].

Another study that examines the potential of language
models in generation of useful insights (in this case, re-
views) was made by Qu (2024) [39], which presents a graph-
enhanced prompt learning approach for personalized review
generation in e-commerce, utilizing a pre-trained language
model (PLM) for higher-quality generation. The approach
aims to address the semantic diversity of reviews and enhance
the overall quality of generated content. An additional note-
worthy publication was made by Zhou (2024) [40]], proposing
a framework that takes advantage of large language mod-
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els in order to optimize database systems. The framework
overcomes challenges related to LLM-based database opti-
mization, such as generating appropriate prompts, capturing
both logical and physical characteristics of a database, and
ensuring a database’s privacy.

Apart from published proposals and studies on the subject,
Al-enhanced data profiling and analysis tools have been grad-
ually becoming common in modern data workflows, and they
can already become parts of deployment options in leading
platforms. OpenAI’s Codex [41], a fine-tuned descendant
of GPT-3 which is utilized in GitHub Copilot [29], shows
that LLMs can assist in writing code for data profiling and
analysis tasks, especially in the cloud. Codex works by pro-
cessing user data on remote servers using powerful cloud
computing resources to generate code suggestions, which can
boost productivity. Its dependence on the cloud might raise
concerns from a privacy point of view: Sensitive data, which
might be transmitted to and computed on third-party servers,
could lead to data confidentiality issues. Apart from Codex,
other GPT-powered tools, mostly functioning in the cloud,
provide natural language processing capabilities that aid data
analysis tasks. While such features are useful, they require
data to be sent to OpenAlI’s servers for processing, which may
pose risks related to data privacy and security.

In contrast, a number of existing data analytics platforms
— that provide Al-powered operations — could offer better
deployment flexibility for addressing data privacy concerns:
DataRobot [42], ThoughtSpot [43]], Tableau [44], and Mi-
crosoft’s Power BI [45], among others, are platforms that
provide both cloud and on-premises solutions. For exam-
ple, DataRobot allows organizations with sensitive data to
take advantage of its Al capabilities through an on-premises
deployment, so that they can maintain control by keeping
the data locally. ThoughtSpot and Tableau also support on-
premises deployments, which aims to give more control to
users on their data, by enabling processing within their own
infrastructure. Similarly, Microsoft Power BI enables a hybrid
approach where users can choose either a cloud or an on-
premise environment, depending on user privacy and security
requirements.

D. PROMPT ENGINEERING

Particular emphasis should also be placed on Prompt En-
gineering, as it plays a pivotal role in the current study’s
proposed system. Prompt engineering is the practice of opti-
mizing the inputs to a generative Al model, so that it responds
meaningfully and effectively across a wide range of queries
[46] [47]. Through the careful crafting and refinement of
prompts, engineers help the models understand not only the
language but also the intent and context behind a query. This
process is considered a practical way to improve the quality
and relevance of responses in applications, ranging from
software engineering tasks to consumer chatbots. Effective
prompt engineering helps reduce extensive post-processing
that might be required in the later phases of the flow, saving
time and making Al workflows more effective [48] [49].
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Thus, carefully crafted prompts can enable Al systems to
provide accurate insights, generate code snippets, or even
simulate potential cyberattacks.

Prompting techniques such as zero-shot (giving the model a
task without any prior examples, relying solely on the model’s
pre-trained knowledge), few-shot (providing the model with
a few examples or demonstrations to guide its response, im-
proving accuracy when the model encounters similar tasks),
and chain-of-thought (breaking down complex tasks into
smaller, logical steps that the model can follow, which helps
in tasks requiring reasoning or multistep problem-solving)
allow for more sophisticated Al interactions, like enabling
models to handle tasks they weren’t explicitly trained for, or
to follow complex reasoning paths. Other techniques and pro-
posals for improving prompt engineering have already been
presented, showing that the research community is putting
effort on expanding this topic [50] [S1] [52]. As generative
Al 'models grow in scope and complexity, prompt engineering
will become increasingly vital for taking advantage of their
full potential.

Illl. STUDY METHODOLOGY AND DESIGN

A. METHODOLOGY

This study has drawn inspiration from a position paper pub-
lished in 2024 [53]. As previously stated, the ultimate goal
would be to develop a scalable data profiling and analysis
framework, capable of managing and handling all volumes
of data. The end-users would be able to perform analytics
queries in natural language, which would then be translated
into executable code by an offline large language model.
Then, the code would be forwarded to a data management
and processing platform for execution. This way, users would
have the freedom to seamlessly perform any analytics opera-
tion they wish, by simply expressing it with words to an LLM
prompt. While the data management and processing platform
itself can be safety deployed, the LLM-based approach needs
validation. while this study does not incorporate traditional
statistical methods, its rigor is maintained through a carefully
structured experimental design.

In summary, this study’s methodology starts by defining its
objective: exploring an offline LLM’s ability to generate code
for data analysis. Then comes the dataset selection for testing
and evaluation, followed by the query design phase, where
five distinct queries for each dataset are being authored. Next,
the execution plan is established, defining the number of iter-
ations/tests for each query and establishing a communication
pipeline between the LLM and the data processing platform.
Evaluation metrics are being defined, with explanations pro-
vided for their selection. Then comes the results collection
and analysis, where the research team assesses the LLM’s
performance. Last but not least, conclusions are being drawn,
and ideas for future improvements are proposed.

In detail, the methodology carried out in this study is as
follows:

1) Objective Definition: The objective of this study is to
assess the performance and efficiency of an offline LLM
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2)

3)

4)

5)

in code generation for data analysis operations. The
LLMs selected for this study are Mistral AI’s Codestral
and Alibaba’s Qwen 2.5 Coder, and they will be tested
in providing Python Spark (PySpark) code applying data
profiling and analytics filters in datasets. The Codestral,
Qwen 2.5 and PySpark selections are analyzed in sub-
section [V-Al

Datasets Selection: Five public datasets have been se-
lected for testing and evaluating the proposed approach.
These datasets span from social media insights, to
weather information and records of supermarket sales.
All five datasets are being presented in subsection [[IlI-C|
The decision to use multiple datasets, rather than relying
on a single set, was made to assess the LLM’s ability to
understand and operate across various contexts, check-
ing that its capabilities are not limited to a single type of
data.

Query Design: For each of the five datasets, a set of five
queries have been authored, making a total of 25 queries
for testing the offline LLM. The queries are categorized
as “Basic”, “Intermediate”, or “Advanced”, according
to the complexity of the tasks they require the LLM to
produce code for. Their definition is the following:

« Basic: These queries will involve straightforward fil-
tering, counting, or retrieving unique values. They
shall require simple operations that are fundamental
for understanding the structure and content of the
dataset.

« Intermediate: These queries will involve grouping, ag-
gregating, or performing basic arithmetic operations.
They shall require more complex operations, but will
still rely on standard data manipulation techniques.

o Advanced: These queries will involve more complex
operations such as multi-level grouping, merging or
exploding columns, and statistical analysis. They shall
test the LLM’s ability to generate code for handling
intricate data manipulation tasks, or generate insights
from the data.

The 25 authored queries are provided in subsection|[IV-C
Execution Plan: Each of the 25 queries authored will
be provided ten times to the offline LLM. The com-
plete process will be executed, and the results will be
recorded. This means that, for each query, ten tests
will be conducted. This approach assesses the model’s
consistency by analyzing code variability, stability, and
reproducibility across multiple iterations. Notably, this
methodology aligns with practices in experimental re-
search, where repeated tests help better evaluate findings
[54]. To sum up, a total of 250 tests will be conducted,
ten for each of the 25 queries authored, based on the
datasets selected in the context of this study.

Evaluation Metrics: Each test will be evaluated based
on a series of metrics. With the completion of all 250
tests, the results will be collected, and the metrics will
be merged into one main evaluation dataset. Since this
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study is conducted separately on two offline LLMs, a
complete total of 500 tests will be gathered. Each LLM’s
test is assessed based on the following parameters:

« Functional Correctness: This is to determine whether
the code’s produced result is correct or not. In other
words, this metric evaluates if the code has properly
produced the correct result that the end-user intended
to see, based on their natural language query.

o Readability: This metric provides an overview on the
generated code’s readability by a human. The score is
being calculated by a custom function running in the
data processing platform, which can be viewed in the
appendix section[A] This function evaluates the code
by assessing three factors: Line length, method call
chains, and nested structures. It penalizes code with
lines longer than 80 characters, method call chains
longer than 3 calls, and nesting depths greater than
2 levels. The function assigns a score between 1 and
3, with 3 indicating highly readable code.

« Efficiency: This metric refers to the computational
resource efficiency of each query / test to the LLM
server. The response time, GPU usage, CPU us-
age, and memory utilization for both GPU and CPU
are monitored using a resource monitoring agent (a
Python code snippet). This will help assess the ef-
ficiency of the code generation process, in terms of
computational costs.

o Contextual Performance: This is to examine the
LLM’s performance in different levels of the queries’
contextual complexity. As previously outlined, all
queries are categorized into Basic, Intermediate, and
Advanced levels. The results will reveal how the LLM
performs across these three categories, which will
also allow for an effectiveness comparison across the
levels.

o Automation: This metric assesses whether the code
generated by the LLM could be run automatically,
without human intervention, or semi-automatically,
with minimal human intervention. In some cases, the
LLM might produce code that is accompanied by
natural language explanations, despite the prompt’s
explicit instruction not to include additional text.
Any explanatory text should be provided only within
Python comments. Moreover, the LLM might define
a variable to store the results of the commands, other
than the one it was instructed by the prompt to define.
In the cases where explanations outside comments
were produced, or a clarification as to which variable
the final analysis results would be stored, human in-
tervention was needed, in order to isolate/refine the
code generated and continue the process.

o Error Handling: This metric examines if the code
provided resulted in errors during its execution. These
errors could range from minor issues to more severe
problems, that could cause the system to terminate its

process.

6) Data Collection and Analysis: The final step in this
study’s methodology is to gather the results from all 250
tests, merge them into a single dataset, and perform an
exploratory analysis. Thus, each LLM will have a dataset
of 250 rows. This analysis will provide insights into the
LLM’s performance across the outlined evaluation areas.
The main goal of this study will finally be evaluated:
Whether offline LLMs can assist data science, by gener-
ating code for data analysis operations.

B. SYSTEM ARCHITECTURE

Fig. [T] presents an overview of this study’s architecture. The
process begins with the end-user submitting a natural lan-
guage query. The relevant dataset is specified in advance, in
order to determine the proper dataset summary for loading,
as well as the main dataset file for code application in the
Data Processing Platform. The user’s query is being merged,
along with the dataset’s summary, under one main message to
the LLM, through the prompt engineering step. The prompt,
defined in subsection [[V-B] combines the query and the sum-
mary, also providing essential instructions to the Codestral
and Qwen models. Once an LLM receives this message,
the response generation process begins. During this time, a
simple python script is monitoring the LLM server’s com-
putational resources. Upon completion, the model’s response
is sent back to the Communication Pipeline, along with the
monitoring results. The end-user proceeds to examine it and
evaluates whether the code can be forwarded directly to the
next phase (so to confirm automation), or it should undergo
minimal modifications (such as removal of additional text
that had not been commented by the LLM), thus defining
this test as semi-automated and reject automation. After this
step, the generated code and monitoring results are being
combined into a single JSON object (see Listing[T)). The LLM
Communication Pipeline ceases its operation by sending the
newly created object to the Data Processing Platform, which
triggers the initiation of a new Python Spark job.

Listing 1: Code from the LLM communication pipeline, preparing to
forward the generated code and performance metrics to the Data Processing
Platform.

submit_spark_job_kpi(

spark_master_ip="<spark—ip—here>",

code_repetition_id=crid,

dataset="netflix",

user_query=user_message,

generated_code= llm_response,

Ilm_response_cpu=absolute_cpu,

IIm_response_memory=absolute_memory,

Ilm_response_gpu=avg_gpu,

Ilm_response_response_time=response_time,

Ilm_response_gpu_mem=avg_gpu_mem,

#llm_version="Codestral VO 1 22B Q6_K",

#llm_version="Qwen 2.5 Coder 14B Q6_K",

output_format="csv",

output_directory="<provided—output—directory"+str(
repetition_number),

automated="true"
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)

Once the Data Processing Platform begins operating, the
pre-defined dataset is retrieved and pre-processed accord-
ingly. At the same time, the object received by the LLM
Communication Pipeline is parsed, extracting the generated
code and the monitoring performance results. Then comes
the generated data analysis code application step, executing
the provided commands to the loaded dataset, in order to
get the desired analysis results. Upon completion of this
step, the analysis results are extracted. A final JSON object
is being prepared, as each test’s result template, containing
the LLM server’s monitoring metrics, the generated code,
and additional attributes of the process. The object is stored
locally, along with the analysis results generated by the code
application step. Both files are being assessed by the end-
user, who examines the analysis results and decides whether
they are correct and match the desired outcome based on
the original query’s context. In both cases, a clarification for
functional correctness is being added to the test result object
(marked as True for a correct result and False for an incorrect
one). This step completes the flow of a test, as depicted in
Figure’s [I] architecture. As previously outlined, for each of
the five datasets, five queries will be tested, with ten iterations
per query. This whole process will take place twice, once for
each offline LLM. Thus, a total of 500 tests will be performed
in this study, 250 for each model.
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C. DATASET SELECTION

For this study, five distinct datasets were selected for the eval-
uation process. A summary for each dataset will be provided
to the LLM, as part of the aforementioned prompt message
(analyzed in subsection [[V-B). The code generated will then
be executed using a PySpark job, which will load the dataset
and run the LLM’s code. Although Spark — the proposed
platform’s underlying framework — can handle large vol-
umes of data, dataset size was not a criterion for selection.
This is because the study focuses on the code generation capa-
bilities of offline LLMs, tailored to data analytics operations,
and the approach does not involve loading entire datasets into
the model, thus making their size irrelevant. The datasets were
chosen from Kaggle and Maven Analytics’ Data Playground,
both of which offer free and public datasets.

The first dataset selected is the “Netflix: Movies and TV
Shows” one, found in Kaggle [55]. It provides extensive
information about Netflix’s library of movies and TV shows,
containing almost 9000 unique entries. Each entry in the
dataset is identified by an ID, and the content is categorized
by type into either ‘Movie’ or ‘TV Show’. The dataset also
includes the title of each entry, along with the director and
cast members, thus providing information about each work’s
the creative teams. Another column indicates where each TV
show or movie was produced, categorized by country. More
than one country can be listed at one entry. Additionally,
the dataset includes the dates that all entries were added
to Netflix, along with their year of release, to show when
the content was originally made available. A rating column
classifies the content according to audience suitability. The
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duration of each entry is also listed, measured in seasons for
TV Shows and minutes for movies. Another column catego-
rizes the content into genres. Lastly, the dataset provides a
brief description of each show or movie, offering a snapshot
of the plot or premise. This dataset is a resource for analyzing
the diversity and trends within Netflix’s content library.

The second dataset for selection is the “COVID-19 Twitter”
dataset from Kaggle [56]. It includes live tweets related to
COVID-19, during three periods: April-June 2020, August-
October 2020, and April-June 2021. This dataset includes
a collection of almost 1 million tweets, each identified by
an ID and their creation dates. A ‘source’ column indicates
the platform (Android or iPhone) used to post the tweet.
Both original and cleaned versions of each tweet’s text are
provided, along with the language used. Metrics, such as the
number of favorites and retweets, are also included. In addi-
tion, the dataset provides the original author of each tweet, as
well as hashtags and user mentions. The location associated
with each tweet is recorded in the ‘place’ column. Last but
not least, a set of sentiment analysis scores are included,
like compound, negative, neutral, and positive, which lead
to an overall sentiment classification column. This dataset
can serve as a resource for experimenting with data analysis
queries, mainly related to social media platforms.

The third dataset chosen is the “Shared Cars Locations”
from Kaggle [57]. It includes over 20 million entries, pro-
viding information about the locations of shared cars partic-
ipating in the AutoTel project, launched in Tel Aviv [58].
The dataset has details such as the latitude and longitude
coordinates of each car’s location, helping to identify where
the cars are stationed throughout the city. It also records the
total number of cars available at each location, and provides
a list of car identifiers present there. Additionally, the dataset
captures the timestamp of each data record (entry), indicating
when the information was logged. This dataset can be useful
for conducting location-oriented analytics, offering insights
into the usage and density of given locations.

The fourth dataset selected is named “Madrid Daily
Weather”, retrieved from Maven Analytics’ Data Playground
[59]. It provides almost 7 thousand entries of detailed daily
weather information for Madrid, spanning from 1997 to 2015.
The dataset includes various weather attributes for each day.
It has each entry’s date in Central European Time (CET), and
key metrics such as maximum, mean, and minimum temper-
atures recorded in Celsius. It also captures the dew point and
its variations, along with humidity levels (maximum, mean,
and minimum). In addition, the dataset includes sea level
pressure measurements, visibility levels, and wind speed data,
including maximum gust speeds. It also lists precipitation
levels, cloud cover, and any specific weather events like rain,
snow, or fog. The wind direction (recorded in degrees) is also
included. This dataset can be useful in analyzing weather-
related trends and patterns for a pre-defined geographical
area.

Lastly, the fifth dataset chosen is the “Supermarket Sales”,
once again from Kaggle [60]. Through one thousand entries,
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it provides information about sales transactions in a super-
market chain, recorded across three different branches over a
period of three months. Each transaction is uniquely identi-
fied by an invoice ID, and includes details about the branch
and city where the sale occurred. The dataset also records
the type of customer (Member or Normal) and the gender of
the customer. Each product sold is categorized by a product
line, and the dataset captures the unit price, quantity sold, and
the tax applied. The total amount for each transaction is also
provided. Additionally, the dataset includes the date and time
of the transaction, the payment method used, and financial
metrics such as the cost of goods sold (COGS), gross margin
percentage, and gross income. Last but not least, customer
ratings of their transactions are also recorded. This dataset
can be useful for analyzing sales patterns, customer behavior,
and financial performance.

To further ensure the diversity and validity of the proposed
evaluation, the five datasets were chosen based on two key
criteria: First, they should be open source and publicly avail-
able, which promotes reproducibility. Second, they should
encompass a variety of domains, which enhances diversity.
As previously outlined, all five datasets selected are pub-
licly available. Also, their domains span across entertainment
(Netflix: Movies and TV Shows), social media (COVID-19
Twitter), transportation (Shared Cars Locations), meteorol-
ogy (Madrid Daily Weather), and retail (Supermarket Sales).
This heterogeneous selection not only captures the complex-
ity of real-world data analysis tasks, but also aims to eliminate
potential biases arising from a limited scope of data [61]]. Such
a strategy is important for reliably assessing the performance
of offline LLMs across different contexts, ensuring that the
current approach remains reproducible and unbiased.

The datasets will be used as a basis for the evaluation of
the proposed system. Five queries will be selected from each
dataset and, expressed in natural language, they will be used
to test the selected offline LLM’s capabilities on producing
code for data profiling and analysis operations. The queries
are presented in subsection[[V-C]

IV. TECHNICAL COMPONENTS

As briefly outlined in section[ITI this article’s study consists
of an offline LLM, chosen specifically for its code genera-
tion capabilities. In addition, a data processing platform has
been implemented, in order to efficiently manage the data
and apply the code provided by the language model. The
communication pipeline between the model and the process-
ing platform consists of a well-designed prompt, part of the
prompt engineering efforts conducted during this study. The
dataset queries used for testing and evaluation are presented,
categorized by dataset and analyzed according to their com-
plexity level.

A. LLMS AND DATA PROCESSING PLATFORM

The offline LLMs selected during this study are Mistral AI’s
Codestral [62] and Alibaba’s Qwen 2.5 Coder [[63]]. Codestral
is an advanced 22B parameter LLM, designed specifically for
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code generation. It has been fine-tuned on over 80 program-
ming languages, including widely-used ones like Python,
Java, and C++, as well as more specific ones like Fortran
and Swift. This diverse training makes Codestral capable of
handling a wide variety of coding tasks in different languages
and environments. Its performance is benchmarked across
various coding tasks, including HumanEval [64], RepoBench
[65], and CruxEval [[66], where it has proven to excel in
both code completion and error minimization, making it a
highly suitable choice for both developers and researchers. It
currently outperforms other top contenders, CodeLlama 70B
[[67]], DeepSek Coder 33B [68]], and Llama 3 70B [69], on
almost all benchmark tasks [70]]. Also, it supports a large con-
text window of 32k tokens, which is also considerably larger
than the current competition. This makes it able to operate
on longer and more complex codebases, a very important
feature for repository-level code generation and long-range
evaluations.

As for Qwen, the Qwen2.5-Coder is a language model
family designed specifically for code generation tasks. The
14B variant of Qwen2.5-Coder stands out for its robust per-
formance across a wide array of coding benchmarks, surpass-
ing even larger models like this study’s CodeStral-22B and
DeepSeek-Coder-33B [68] in several tasks [71]]. Built upon
the Qwen2.5 architecture, this model has been fine-tuned on a
dataset of over 5.5 trillion tokens, sourced from diverse public
code repositories and web-crawled data. It supports multiple
programming languages, and demonstrates strong general
and mathematical reasoning capabilities. Qwen2.5-Coder-
14B has excelled in benchmarks like HumanEval, MBPP, and
BigCodeBench, showing superior results in code generation,
completion, and repair. Its extensive training and instruction-
tuning have made it effective for both code assistants and
real-world applications, offering a balance of power and ef-
ficiency. It should also be noted that, in certain benchmarks,
the 32B variant of Qwen 2.5 Coder has outperformed even
GPT-40 [72]. The selection of the 14B variant over the 32B
was based on the hardware specifications of the machine used
in this study.

Codestral and Qwen’s characteristics lead to a robust per-
formance, setting high standards in code generation with
lower latency, a key requirement for developers who are look-
ing for quick feedback during coding. The aforementioned
benchmarks demonstrate that both models have performed
very well in key areas like Python / SQL code generation,
and fill-in-the-middle (FIM) tasks, which are important for
completing partial code snippets efficiently. Both have an
open weight nature, and can be easily deployed offline un-
der the Mistral AI Non-Production and Apache 2.0 License,
hence making them available to research and non-commercial
uses without constantly requiring access to the web. This is
particularly beneficial for institutions and developers who are
concerned about data privacy, among other reasons. The mod-
els’ combination of speed, accuracy, broad language support,
and offline deployment make them a suitable choice for this
study’s research on an offline code-specific LLM.
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Building on the preceding discussion, despite their rel-
atively smaller parameter counts, both models consistently
demonstrate superior performance relative to other offline
LLMs. Notably, the 7B variant of Qwen2.5-Coder frequently
outperforms CodeLlama 70B and, in certain tasks, exceeds
the performance of Codestral 22B. Given these observa-
tions, comparisons with smaller variants of — already out-
performed — models (such as lower-parameter variants of
CodeLllama) are deemed to be of limited scientific relevance
and may introduce methodological biases. This, combined
with the computational resources available for this study,
which impose hardware constraints that preclude a compre-
hensive evaluation of models with more than 30B parameters,
enhance the choice of selecting Codestral 22B and Qwen2.5-
Coder 14B. Their sizes and performance allow for a rigorous
and balanced assessment within the practical limitations of
the current experimental setup.

Of course, it should be noted that, given the fast pace
of LLM research, future models may surpass Codestral and
Qwen, requiring continued evaluation of emerging architec-
tures. This study explores the potential of offline LLMs in
data science in general, with Codestral and Qwen being two
valuable models for initial research. Since it is not tailored to
any specific model, this study can be generalized and applied
to future models. As for the reasons behind the selection
of an offline LLM — in comparison to online solutions —
these reasons vary. First, with offline models, data processing
is done locally, increasing data privacy (and security) and
ensuring compliance with potential privacy regulations. In
addition, this approach helps eliminate the risks associated
with sensitive data being sent to external servers. Second, of-
fline LLMs provide customization and control, since models
can be fine-tuned to specific tasks and integrated into custom
systems, something that is often not possible with commercial
cloud-based solutions.

Furthermore, offline LLMs can be cost-efficient in the
long run, since no subscriptions are necessary and extended
use does not increase their cost, which could be the case
with subscription or usage-based pricing LLMs. They also
offer reliability and low latency for real-time applications
since they are not dependent on internet connectivity. This
also ensures that users do not experience interruptions due
to potential changes in services by external providers. Also,
offline LLMs allow for ethical and regulatory compliance,
since they can be tailored to be compliant with local laws
and ethical standards. Finally, they promote research and
innovation, since they provide a platform for exploring new
Al methodologies and applications, without the limitations
associated with commercial services.

While online LLMs are often noted for their superior ac-
curacy and faster response times — attributable to their dy-
namic, cloud-based infrastructures — such advantages were
not the primary focus of this study. As already outlined,
part of the study’s central motivation is to ensure that both
data and metadata remain on premises, thereby preserving
privacy, upholding regulatory compliance, and maintaining
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complete control over the processing environment. Although
online models might deliver performance gains under specific
conditions, their inherent reliance on external servers and
network connectivity introduces variables that fall outside the
controlled scope of the research.

As mentioned before, the offline LLM will provide its
response — generated code — to a data processing platform.
There, the code received will be executed and applied to
the loaded dataset. For this study, Apache Spark [73]] has
been selected as the optimal choice for data management
and processing operations. Apache Spark is a platform for
efficient data processing. It is designed for high speed and
efficiency in processing all kinds of data volumes. It supports
in-memory computation, which greatly boosts performance,
especially for iterative algorithms. This makes Spark easily
scalable across clusters and thus ideal for big data processing.
Another strength is its versatility, which supports a wide
range of different tasks related to data processing, like batch
processing, real-time streaming, machine learning, and graph
processing.

When combined with Python via PySpark, Apache Spark
becomes more accessible. PySpark provides users with the
simplicity and flexibility found in Python, so that they can
make use of Spark’s distributed computing capabilities while
coding in a language they are familiar with. This integration
makes it easier to perform several operations, like complex
data transformations, apply machine learning algorithms, and
handle large datasets, all while benefiting from Python’s ex-
tensive libraries and community support. In this study, code
that is received by the LLM is being handled by PySpark jobs,
hence executed in the Spark environment. Spark has been
the preference of several dig data management proposals and
solutions, providing scalable resource management and easy
deployment, and thus assisting to optimal data management
and analysis across various fields [[74]] [75].

B. PROMPT FORMULATION

In this study’s offline environment, the primary optimization
is achieved through a thoughtfully engineered prompt that
communicates detailed instructions to the language model.
As the models utilized in this study are Instruct versions,
they are consequently designed to depend on well-formulated
prompts, aiming towards improved performance and more
accurate command generation. Apart from defining the ob-
jective and providing essential context to the model, this
approach ensures that the output is efficient and tailored to the
specific dataset. Hence, the focus on prompt formulation is a
deliberate strategy for optimizing the study’s offline setting,
where traditional optimizations are less applicable.

In addition to optimizing performance, the detailed prompt
formulation strategy serves to address the risk of biased
outputs, based on the aforementioned provision of explicit
instructions and comprehensive context. Combined with the
diverse dataset selection — spanning multiple domains —
this strategy aims to minimize ambiguity, and limits the risk
of unintended consequences. Moreover, the repetitive testing
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protocol of the study allows for continuous monitoring of the
outputs, ensuring that any deviations or potential biases would
be promptly identified and addressed.

In light of the above, to enhance the code generation results
of Codestral and Qwen LLMs, a carefully crafted prompt
message has been developed to initiate communication with
the model (Listing[2). Each time an end-user submits a natural
language query, it will be processed alongside this prompt
message, designed to guide the model’s responses for optimal
code generation. This approach utilizes the ‘few-shot’ prompt
engineering technique, by providing the model with essential
information about the dataset in use, ensuring that the gener-
ated code is tailored specifically to that dataset. The prompt
includes a summary of the dataset’s structure, format, and
columns, along with detailed information about each column.
This allows the data analysis code generated to be precisely
customized for each dataset. The exact prompt message used
is provided below:

Listing 2: A prompt message crafted for this study’s communication with
the LLM.

system_message = (

"<s>[INST]Youareavirtualassistantspecializedin
generatingPythonSparkcommandsbasedonthe
contextprovidedbelow. Yourtaskistooutputonly
PythonSparkcommands.Donotaddadditionaltextor
explanation.Strictlyuseonlycommandsthatcanbe
appliedtoaSparkDataframe.RefertotheSpark
DataFrameas’df’ ,andstoretheresultsintheSpark
Dataframenamed’processeddf”.Context:[/INST]" \

+ str(dataset_summary) \

+ "[INST]Exampleinput:’filterthedatawheretemperatureis
inthebottom20%ofthetotaltemperaturevalues’.
Exampleoutput:’processeddf=df filter(df["
Temperature" |<=df.approxQuantile(" Temperature",
[0.2],0.0)[0])’ .Ensurethatnobackslashesorescape
charactersareincludedinthegeneratedcommands.
Generateefficientcommands,usingasfewstepsas
possible.Separatecommandswithasemicolonor
newline.Ifyouprovidetextorexplanation,doitusing
pythoncommenting,with’#.Iftheinputiscompletely
incomprehensible,respondwith’ LLMERROR:’.This
shouldberare.Otherwise,generateonlytherequired
PythonSparkcommands.[/INST]</s>"

)

The outlined prompt message contains a set of instructions
towards the language model, but it also provides information
(specified as ‘context’) regarding the dataset to which the
generated code will be applied. A breakdown of the key
components of the message’s structure are as follows:

e Objective Definition: The prompt engineer should
clearly state the goal they want the language model to
achieve. In this case, the goal is to generate Python Spark
commands without any additional text. This step ensures
that the model understands the scope and purpose of its
task. It should be noted that the PySpark code generation
request adds additional complexity to the LLM, since
PySpark DataFrame commands have subtle differences
when compared to widely-used Pandas DataFrame com-
mands. The model’s ability to differentiate between the
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two and provide purely PySpark DataFrame commands
is also evaluated.

o Context Provision: The prompt engineer should pro-
vide the language model with the necessary context
to understand the task. This includes summarizing the
structure and content of the dataset it will be working
with. Through this process, the prompt gives the model
necessary background information to generate appropri-
ate outputs, specifically related to a Spark DataFrame
referred to as ‘df’.

« Instruction Clarity: The prompt engineer should ensure
the instructions are clear and precise, by specifying what
the model may and may not do. For example, it should
only generate Python Spark commands and not any ex-
planatory text. Moreover, it should separate commands
with a semicolon or newline. In addition, the prompt
explicitly instructs the model to avoid generating addi-
tional text, ensuring the output is focused and relevant.
It also specifies how to handle errors, and encourages
efficiency in command generation.

« Examples Inclusion: The prompt engineer should pro-
vide examples to illustrate the desired input and out-
put. This helps the model to understand the format and
structure of the expected commands. So, examples are
provided to guide the model in understanding the format
and nature of the expected output, and thus helping to
align its responses with the desired results.

o Error Handling: The prompt engineer should include in-
structions on what to do if the input is incomprehensible.
This ensures the model has a fallback plan, in case it
encounters unexpected input. The inclusion of an error
handling explanation ensures that the model can respond
appropriately if it encounters input it cannot process,
enhancing the robustness of the interaction.

o Message Formatting: The prompt engineer should fol-
low any specific formatting requirements for the sys-
tem they are using, in order to ensure the message is
interpreted correctly. The prompt adheres to specific
formatting requirements, like the inclusion of ‘[INST]’
commands, to ensure that the language model processes
and interprets the instructions correctly, increasing the
chances of precise and reliable outputs.

As shown in the middle of Listing 2} the prompt message
also incorporates a variable declared as ‘dataset_summary’.
This variable contains a summary of the dataset that is under
evaluation every time. Thus, five dataset summaries have
been carefully crafted by a member of the current research
team, ensuring that they accurately reflect all aspects of each
dataset. Each summary follows a consistent structure that
includes an introductory statement about the dataset, a de-
tailed description of each column, including its name, type,
description, and sample values, and a note specifying that the
sample data is synthetic and intended for illustrative purposes.
This well-organized format intends to help LLMs understand
the data’s structure, easing the process of analyzing it. An
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example column found in the “Shared Cars Locations” dataset
can be seen in Listing 3| below:

Listing 3: The "timestamp’ column of "Shared Cars Locations" dataset, as
described in the corresponding dataset’s summary.

{

non

"name": "timestamp",

"type": "object",

"simplified_type": "datetime",

"description": "TimestampofthedatarecordinUTC.",

"sample_values": [
"2019—12—0621:51:02UTC",
"2019—11-2914:00:02UTC",
"2019—09—2013:21:03UTC"

1,
"datetime_format": "%Y —%m—%d%H:%M:%S %Z"

In the outlined example, the ‘timestamp’ column includes
records of the exact date and time when each data entry was
logged. It is represented as an object type, with a simplified
type of ‘datetime’ to indicate that it contains timestamp val-
ues. The description specifies that the timestamps are in Co-
ordinated Universal Time (UTC), whilst their format follows
the pattern “%Y-%m-%d %H:%M:%S %Z” (year-month-day
hour:minute:second timezone). The complete dataset sum-
mary of the “Shared Cars Locations” dataset can be found in
the appendix section [B} This detailed level of information is
essential for an offline LLM, as it allows the model to load
the dataset summary and obtain a complete understanding
of the data’s structure. Based on these summaries, as part of
the complete prompt message, the LLM can better tailor its
code generation to handle specific attributes and formats of
the datasets.

In short, with this prompt, the model is guided to focus
only on generating Python Spark commands, so that it gives
output that runs accurately within Spark to perform oper-
ations on data. Emphasis is given to clarity and precision,
avoiding unnecessary text, and some instructions are included
for handling errors or unclear input. This approach aims to
improve the interaction with the language model, therefore
increasing efficiency and effectiveness in the generation of
data analysis code. The outlined prompt message is part of the
Communication Pipeline between the LLM and the Spark-
based Data Processing Platform.

C. DATASET QUERIES

As outlined in subsection the queries crafted for this
study are categorized as Basic, Intermediate and Advanced.
Five queries have been created for each of the five datasets,
making a total of 25 questions to the offline LLM. Each
dataset consists of one Basic, two Intermediate and two Ad-
vanced queries. The queries were classified into these three
levels based on an assessment of their inherent complex-
ity, in terms of required operations and data manipulation.
Since there is not a universally accepted standard for query
difficulty categorizations, research has been conducted to
establish a three-level classification of query complexity in
a safe manner [76] [77]).
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Although this classification involves a degree of subjec-
tivity, it was iteratively refined to ensure that each category
distinctly represents a specific level of challenge for the lan-
guage model. As previously outlined, to counterbalance any
subjective bias, each query is executed multiple times (ten it-
erations), and performance is evaluated using a series of met-
rics, including functional correctness, readability, efficiency,
contextual performance, automation, and error handling. This
structured approach is consistent with experimental method-
ologies in the field, where tasks are segmented by complexity
to evaluate system performance comprehensively [78] [[79].
The full list of queries, organized per dataset, can be seen
below:

For the “Netflix: Movies and TV Shows” dataset, the fol-
lowing queries have been created:

1) “Count the Number of TV Shows per Country.” (Basic):
This query tests the LLM’s ability to generate code
for performing group-by operations and aggregate func-
tions.

2) “Find the Average Duration of only the Movies, in min-
utes.” (Intermediate): This query tests the LLM’s ability
to perform arithmetic operations and handle different
data types (e.g., extracting numeric values from strings).

3) “Return the Top 5 Most Frequent Genres for Movies
only, Released After 2010.” (Intermediate): This query
involves filtering, counting, sorting, and handling lists
within a column (genres), adding more complexity to the
LLM.

4) “Identify the top five directors who have worked with
the greatest number of different actors.” (Advanced):
This query will test the LLM’s ability to generate code
for data manipulation, transformation, aggregation, and
sorting, in order to identify the top 5 directors.

5) “Provide the top 10 most busy actors in solely American
Movies, from 1995 onwards.” (Advanced): This query
involves filtering data for American movies released
from 1995 onwards, transforming the cast column to list
individual actors, and then aggregating and sorting the
data to identify the top 10 most busy actors.

Regarding the “COVID-19 Twitter” dataset, the following
queries have been crafted:

1) “Determine the Number of Tweets Containing User
Mentions.” (Basic): This query tests the LLM’s ability to
provide code for filtering rows based on non-null values
(the ‘user_mentions’ column), and count them.

2) “Calculate the top 7 authors with the highest retweet
count.” (Intermediate): This query involves generating
code for grouping data by the original author, summing
the retweet counts, and then identifying the top 7 authors
with the highest total retweet counts.

3) “Analyze the Daily Tweet Volume Over Time.” (Inter-
mediate): This query tests the LLM’s capacity to pro-
duce code that will perform temporal analysis, by group-
ing tweets by date and counting the daily volume.

4) “Provide the names of the top 5 users mentioned in
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tweets, every month (also include the corresponding
month and year).” (Advanced): Based on this query,
the LLM should generate code that involves converting
timestamps to extract the month and year, exploding
a column to handle multiple user mentions per tweet,
grouping by month and user mentions to count the oc-
currences, and then identifying the top 5 most mentioned
users for each month.

5) “Provide the top 5 weeks (and their years) with the
most dense tweets posted, in terms of total clean words
included” (Advanced): This query assesses the LLM’s
ability to generate code for converting timestamps to
extract the year and week, calculating the total number
of words in each tweet, grouping the data by year and
week to sum the word counts, and then identifying the
top 5 weeks with the highest total word count in tweets.

For the “Shared Cars Locations” dataset, the queries cre-
ated are as follows:

1) “Filter Locations with More Than 3 Cars.” (Basic): This
query tests the LLM’s ability to perform basic filtering
operations based on numerical data.

2) “Find the Top 5 Locations with the Most Cars
Recorded.” (Intermediate): This query involves sum-
ming the total number of cars for each location and
ranking the results.

3) “List 100 Records at most, from December 2019 to Jan-
uary 2020.” (Intermediate): This query tests the LLM’s
ability to filter data based on date information twice
(providing a date window), along with an option to keep
only the first 100 entries.

4) “Provide the number of the most dense week, and year,
in terms of total cars parked, along with the number of
total cars.” (Advanced): This query will test the LLM’s
capabilities in generating code for converting times-
tamps to datetime, extracting week numbers and years,
aggregating the total number of cars parked by week,
and identifying the week with the highest total number
of cars parked.

5) “Find the total number of (unique) cars that visited
each location.” (Advanced): With this query, the LLM
will be tested in generating code for preprocessing data,
expanding lists of cars, grouping based on each car ID,
and then aggregating data to determine the total number
of unique cars stayed at each location.

When it comes to the “Madrid Daily Weather” dataset, the
queries created for evaluation are:

1) “Filter Days of 2006 with Max Temperature Above
30 °C.” (Basic): This query will test the LLM’s capacity
to produce code for performing basic filtering operations
based on numerical data (temperature).

2) “Count the Number of Foggy Days per Year” (Interme-
diate): Based on this query, the LLM should provide
code for extracting the year from a date column, filtering
the dataset for foggy days based on the presence of “Fog”

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3556973

IEEE Access

Nikolakopoulos et al.: Exploring the Potential of Offline LLMs in Data Science: A Study on Code Generation for Data Analysis

in the events column, and then grouping the data by year
to count the number of foggy days per year.

3) “Calculate the monthly average of mean wind speed
and mean sea level pressure, per year” (Intermediate):
The LLM code generated by this query involves extract-
ing month information (so testing datetime operations),
grouping by month, then by year, and calculating the
average values for wind speed and sea level pressure.

4) “Analyze the Yearly Variation in Average Humidity and
Identify the Top 5 Years with the Highest Increase in
Average Humidity Compared to the Previous Year.” (Ad-
vanced): With this query, the LLM should produce code
that involves extracting the year from a date column,
calculating the yearly average humidity, determining the
increase in average humidity between consecutive years,
and identifying the top 5 years with the highest increase
in average humidity, always compared to the previous
year.

5) “Analyze the Monthly Variation in Temperature Range
and Identify the Top 3 Months with the Highest Average
Range.” (Advanced): Similarly to the previous query,
when provided to the LLM, the model should generate
code that calculates the daily temperature range, and
then groups the data by month to analyze the monthly
variation. This code should identify the top 3 months
with the highest average temperature range, testing the
LLM’s ability to produce code for handling complex
calculations, group-by operations, and sorting.

As for the “Supermarket Sales” dataset, the five queries
authored are provided below:

1) “Count the Number of Sales per Product Line” (Basic):
With this query, the LLM should produce code for per-
forming a group-by operation (for the product line) and
one aggregate function (for the total number of sales).

2) “Find the Average Rating for Each Payment Method”
(Intermediate): With this query, the LLM should gener-
ate code that involves grouping the dataset by payment
method, and calculating the average rating for each pay-
ment method, slightly increasing the difficulty from the
first query.

3) “Find the average quantity of Electronic accessories
purchased by card, for each city” (Intermediate): This
query tests the LLM’s capacity to generate code that
involves filtering the dataset for electronic accessories
purchased using credit cards, grouping the data by city,
and calculating the average quantity of these purchases
for each city.

4) “Analyze the Sales Performance by Branch and Payment
Method” (Advanced): Based on this query, the LLM
should produce code that involves grouping data by
both branch and payment method, calculating aggregate
sales, and then also calculating the average rating. Thus,
the generated code should handle multi-level grouping
and aggregation functions.

5) “Calculate the Correlation Between Unit Price and
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Quantity Sold for Each Product Line” (Advanced): This
query will test the LLM’s ability to generate code for
statistical analysis within grouped data, since the corre-
lation should be calculated between grouped unit price
and quantity values, based on all product lines available.

By examining the outlined queries, one can safely conclude
that as the complexity of the tasks increases, there is a shift
from simple data profiling to more complex data analysis
operations. Queries begin by requesting basic code operations
from the LLM, but they progressively evolve into more de-
manding requests. As a result, Codestral and Qwen will be
evaluated on their ability to generate code for a series of data
analysis operations, all expressed in natural language. Each
LLM will be evaluated separately. This will not only test their
proficiency in handling diverse and complex tasks, but also
their adaptability in meeting the varying levels of analytical
challenges.

V. TESTING AND RESULTS

Testing was conducted on the same physical machine, in order
to ensure consistency and eliminate hardware variability. A
research team member closely monitored each of the 250
tests, assessing the generated results with meticulous atten-
tion to detail. Each query was run precisely 10 times, except
some occasions where minor human errors caused the process
to terminate unexpectedly. For example, a research member
might have forgotten to change the dataset in the test’s initial
settings, and applied a natural language query intended for a
different dataset. In addition, they might have repeated the
test without incrementing the test’s iteration number, thus
overwriting the new results onto the previous test’s files. As
for the generated code, it was applied to the retrieved dataset
using the exec() command, with the Processing Platform’s
code specifically looking for a “processeddf” variable, as this
was where the LLM was instructed to store the final analysis
results. Intervention to the LLM-generated code occurred
only when the model’s response included text that was not
formatted as Python comments, or when the model failed to
store the final analysis results in the instructed “processeddf”
variable, even though the rest of the code was functional and
correct.

A. PHYSICAL MACHINE SPECIFICATIONS

Below are the complete system requirements of the physical
machine used for running the LLM server. Although power-
ful, the computer has limitations in offline LLM testing, as
it cannot fully utilize models like Codestral and Qwen. This
means that the LLMs will not be wholly loaded on the GPU.
Both the GPU and the CPU will be in-use during the code
generation process. Despite the current hardware constraints
for more speed and efficiency, the objective of this study is to
evaluate Codestral and Qwen’s capabilities in code genera-
tion, as offline LLMs. Upgrading to more powerful hardware
would likely speed up the code generation processes, but this
could be a topic for another study.
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Server Hardware Specifications

System Information:

— Motherboard: TUF GAMING X570-PLUS
Processor: AMD Ryzen 7 5800X 8-Core Proces-
sor
Memory: 32 GiB DDR4
— Storage:
* 1TB NVMe SSD (Samsung SSD 970 EVO
Plus)
* 4TB HDD (ST4000DM004-2U91)
— GPU: NVIDIA GeForce RTX 3080 with 10GB of
dedicated memory

Software Information:

— LLM Server: LM Studio 0.2.21
— Large Language Models:

* Codestral vO1 22B Q6_K
* Qwen 2.5 Coder Instruct 14B Q6_K

Partial GPU Offload:

* 17 layers for Codestral
* 25 layers for Qwen

— LLM Response Temperature: 0.7

Codestral vO1 22B Q6_K and Qwen 2.5 Coder 14B Q6_K
were selected from the Hugging Face hub [80]. Both were de-
ployed using the LM Studio Server [81]]. LM Studio supports
the deployment of multiple offline LLMs. This, combined
with the fact that this study’s architecture is not built upon
a specific model, confirms that the proposed methodology
is model-agnostic and generalizable across different offline
LLM platforms, as demonstrated by the evaluations with both
Codestral and Qwen (see [V-C). The decision to make use
of the Q6_K model versions for this study is primarily due
to their efficient performances, thanks to 6-bit quantization.
These quantized models reduce memory usage and compu-
tational demands, without substantially sacrificing accuracy,
making them ideal for offline environments where compu-
tational resources may be a challenge. The Q6_K versions’
ability to maintain high performance, while being efficient
on hardware resources, make them a practical choice for the
development settings of this study.

As for the LLMs’ response temperature setting to 0.7, this
choice was made because the model would balance between
creativity and reliability, which is important when evaluating
a model’s code generation capabilities. Overall, moderate
temperature settings help in generating outputs that are both
varied and contextually appropriate [82]]. A temperature of
0.7 allows the model to generate diverse outputs, avoiding
overly deterministic responses that could limit exploration
of alternative coding solutions, while still maintain enough
coherence to ensure the generated code is functional and
relevant.
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B. TESTING RESULTS COLLECTION

Each test generated a set of information, which was organized
into a single testing result object, as illustrated in Listing
EL For each of the two LLMs, a total of 250 such objects
were combined into a dataset of 250 rows, with each row
corresponding to an individual test object. Each row in the
final dataset contains detailed information about the asso-
ciated test, including attributes related to the correctness,
readability, and execution performance of the generated code,
as well as resource monitoring metrics of the system. The
subsequent bullet list explains each attribute in detail, offering
a comprehensive overview of the data collected during the
testing process.

o “correctness”: This column includes values ‘True’ or
‘False’, assessing if the code has properly produced the
result that the end-user intended to see, based on the
natural language query provided.

« ‘“readability”: This column contains numerical values
that represent the generated code’s readability level by
a human. The values it contains are calculated by a
custom — yet simple — readability calculation function,
producing scores between 1 and 3, with 3 indicating
highly readable code.

e “code_execution_errors’”: This column contains infor-
mation about potential errors that occurred during the
generated code’s execution. If no errors occurred, the
value will be ‘None’. If an error did occur, this column
will contain the error message, explaining the malfunc-
tion.

o “executed_command”: This column contains the full
code executed for each record/test. It might also include
Python comments.

e “code_repetition_id”: This column contains each
record’s/test’s iteration number. Since each query is
tested ten times, this column will contain values between
1 and 10, indicating which repetition each entry repre-
sents.

 “dataset”: This column consists of the names of the five
datasets selected in this study, with each entry containing
the name of a single dataset. The dataset names are ‘su-
permarket’, ‘netflix’, ‘shared-cars-locations’, ‘covid19-
twitter’, and ‘madrid-daily-weather’. The dataset name
in each entry indicates that the corresponding informa-
tion refers to a test conducted on that specific dataset.

e “user_query”: This column contains the exact query
submitted by the user and sent to the offline LLM for
code generation. The corresponding code generated by
the LLM for each query can be found in the “exe-
cuted_command” column.

o “llm_response_cpu”: This column consists of the CPU
usage percentages measured during the LLM’s code
generation process.

o “llm_response_memory”: This column provides the
memory utilization values of the LLM server during
code generation. Once again, the values are percentages.
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¢ “lIlm_response_gpu”: This column contains the GPU
usage percentages measured on the LLM server, during
the code generation process.

o “llm_response_gpu_mem”: This column consists of the
percentage values of the GPU memory’s utilization, dur-
ing the LLM’s code generation process.

o “llm_response_response_time”: This column lists all the
response times of the LLM server, from the moment it
received the query to the moment it returned the gener-
ated response. The values are measured in seconds.

o “automated”: This column contains ‘True’ or ‘False’
values, to determine whether each entry’s/tests code was
executed automatically, without human intervention (so
“True’), or semi-automatically, with minimal human in-
tervention (so ‘False’).

e “query_no”: This column contains values that indicate
which query number each entry represents. Since five
queries were created for each dataset, the possible values
for each entry of this column are ‘ql’, ‘q2’, ‘q3’, ‘q4’,
and ‘q5’.

e “query_level”: This column indicates the contextual
complexity level of each entry’s query. Since the queries
created are categorized as ‘basic’, ‘intermediate’, or
‘advanced’, these are also the possible values of this
column.

Listing 4: A testing result (JSON object) from the ’Netflix’ dataset, and the
basic query *Count the Number of TV Shows per Country’.

{

"correctness": true,

"readability": 3,

"code_execution_errors": "None",

"executed_command": "#Countthenumberof TV Showsper
country\n\nprocesseddf=df.filter(df[ type’]==\"TV
Show\").groupBy(’country’).count()",

"code_repetition_id": "7",

"dataset": "netflix",

"user_query": "CounttheNumberof TV ShowsperCountry",

"llm_response_cpu': 34.45,

"llm_response_memory": 0.01,

"llm_response_gpu": 20.25,

"llm_response_gpu_mem": §9.03,

"llm_response_response_time": 19.41,

"automated": "true"

}

C. EVALUATION

The evaluation was conducted using the collected results and
the dataset derived from them, following the main evaluation
criteria outlined in subsection [[II-A] The analysis led to sev-
eral observations and suggestions. A summary of the findings
and discussion on future steps will be presented in section
[VI] It is important to mention that the Contextual Complexity
metric has been analyzed in combination with all other eval-
uation metrics. This approach allows for a better examination
of query complexity along with other factors, leading to more
informative conclusions. As a result, a separate subsection for
Contextual Complexity has not been included.
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1) Functional Correctness

The goal of this metric is to assess the success rate of the
code generated by the tested LLMs. It evaluates whether the
code produces the intended results, based on user queries.
The first analysis is to calculate the proportion of correct
vs. incorrect outputs, thus examining the overall success rate.
The second task is to analyze the correctness by dataset and
query level. Then, the correctness rates across all levels of
query complexity are presented. The later two tasks comprise
a more detailed correctness analysis, expanding the success
rates on other factors of the study. All three tasks are presented
below.

mmm Codestral
= Qwen-2.5

Count

.

Incorrect Correct
Correctness

FIGURE 2: Functional correctness of the LLM’s generated
code plot.

Based on Fig.[2] the number of correct results from the code
generation and application process significantly surpasses the
number of incorrect ones. More specifically, for Codestral,
228 out of 250 tests produced a correct output — a good
sign of its code generation capabilities — while only 22 tests
failed to yield the correct results. In parallel, the evaluation
of Qwen 2.5 Coder revealed that 223 tests generated correct
outputs, with 27 tests not meeting the expected outcome. This
comparison suggests that both LLMs are able to understand
the context of user queries, and produce viable code, with
Codestral exhibiting a marginally higher success rate. For this
process, human observation and validation deemed necessary,
in order to ensure accuracy. Each time a test was completed,
a member of the research team validated the data analysis’
output, checking whether it indeed aligned within the scope of
the original user query. For each query, Python code has been
developed, using the Pandas library to replicate the results.
The outputs of these validation scripts were then compared
against the outputs generated by the respective LLM.

Fig. 3] compares correctness scores across all five datasets.
The performance across the datasets is consistent, suggesting
that the LLLMs are capable of producing correct code regard-
less of the context of the data to which its code is applied. For
Codestral, the ‘Shared Cars Locations’ dataset has the lowest
correctness rate at 0.86 (43 out of 50 tests producing correct
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FIGURE 3: Plot depicting the functional correctness, by
dataset.

outputs), with the ‘COVID19-Twitter’ dataset following at
0.88 (44 correct outputs out of 50), while the ‘Madrid Daily
Weather’, ‘Netflix’, and ‘Supermarket Sales’ datasets each
attain a correctness rate of 0.94 (47 out of 50 tests). In parallel,
Qwen-2.5 Coder shows a somewhat different performance
profile: Netflix dataset registers the lowest correctness at 0.82
(with 41 out of 50 tests being correct), closely followed by
the ‘COVID19-Twitter’ dataset at 0.84 (42 out of 50 correct
tests). The ‘Madrid Daily Weather’ dataset records a 0.92
rate (46 out of 50 tests producing correct results), whereas
both the ‘Shared Cars Locations’ and ‘Supermarket Sales’
datasets achieve the top score of 0.94 (with 47 out of 50 cor-
rect tests each). Thus, both LLMs demonstrate the capability
to generate correct code across varied contexts, with subtle
performance differences across datasets.
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FIGURE 4: Plot for the functional correctness scores by the
queries’ complexity levels.

Fig. @] illustrates how correctness varies with query com-
plexity. For Codestral, advanced queries yield the lowest
correctness rate at 0.84 (84 out of 100 tests produced correct
outputs), intermediate queries achieve a rate of 0.95 (95 cor-
rect outputs out of 100), and basic queries exhibit the highest
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accuracy at 0.98 (with only 1 incorrect output in 50 tests). In a
similar vein, Qwen 2.5 Coder shows a comparable trend: Ad-
vanced queries slightly drop to a correctness rate of 0.83 (83
out of 100 tests being correct), intermediate queries further
decrease to 0.91 (91 out of 100 correct outputs), while basic
queries maintain the high performance at 0.98 (49 out of 50
correct tests). It is important to note that the number of basic
query tests is half that of the advanced and intermediate tests.
However, the consistent pattern observed across both models,
where increased query complexity leads to a higher frequency
of incorrect outputs. This suggests that each LLM tends to
struggle more with advanced queries, which is expected to
some extent.

2) Readability

The purpose of this evaluation metric is to assess the read-
ability of the code generated by each LLM, which may in-
fluence how easily a human can comprehend the code. The
analysis includes three tasks, beginning with a distribution
of readability scores across all tests. In addition, the average
readability scores filtered by dataset and query complexity
level are presented. The analysis approach is similar to the
Functional Correctness’ one analyzed before. As outlined in
subsection [[TI-A] the readability score was calculated by a
custom readability function, producing scores ranging from
1 to 3, with 3 suggesting easily readable code. The read-
ability function evaluates code based on line length, method
call chains, and nested structures, penalizing code with lines
longer than 80 characters, method call chains longer than 3
calls, and nesting depths greater than 2 levels.

175
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mmm Codestral
mmm Qwen-2.5

3

FIGURE 5: Plot for the distribution of readability scores
across the tests conducted.

Frequency

Based on the results illustrated in Fig. 5] the majority
of tests with Codestral yielded a readability score of 2’.
Specifically, 176 out of 250 tests were assigned a readability
score of ‘2’, while the remaining 74 tests achieved the top
score of ‘3’. No tests received a score of ‘1’. In a comparable
evaluation, Qwen 2.5 Coder exhibited a similar pattern with
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177 tests having a readability score of ‘2°, and 71 tests scoring
‘3’. However, 2 tests of Qwen were assigned with a score
of ‘1’. Although a very small — and potentially trivial —
amount, it could indicate that, on rare occasions, the code
generated by Qwen could have more pronounced readability
issues. For both models, the primary reason for not attaining
the highest score was the presence of long lines of code.
This indicates that their code exceed the recommended 80-
character limit, a factor that the readability function penalizes
because such lines are deemed harder to read and maintain.
While the LLMs often generated code with longer lines,
which can sometimes enhance code efficiency by combining
commands, it tends to compromise human readability. This
is the main reason why most of the generated code did not
achieve the highest readability score of ‘3.
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FIGURE 6: Plot depicting the average readability scores by
dataset.

Fig. [6]illustrates the average readability scores by dataset.
For Codestral, the ‘Madrid Daily Weather’ dataset registers
the lowest average readability score at 2.08, where 46 out
of 50 tests received a score of ‘2°. On the same dataset,
Qwen 2.5 Coder yields a slightly higher average of 2.16,
with 42 out of 50 tests having a score of ‘2’, suggesting
marginally better optimal formatting. Similarly, the ‘Shared
Cars Locations’ dataset shows Codestral’s average at 2.28
(with 36 out of 50 tests rated as ‘2’), while Qwen records an
average of 2.38 (with 31 out of 50 tests having a ‘2’ rated
code). In the case of the ‘Netflix’ dataset, Codestral achieved
an average score of 2.30 (with 35 out of 50 tests scoring 2’),
in contrast to Qwen’s lower average of 2.16, with 38 out of
50 tests’ code rated as ‘2’, but also 2 tests with code rated as
‘1’. The ‘Supermarket Sales’ dataset attains similar averages
between the two models, 2.38 for Codestral and 2.40 for
Qwen. As for the ‘COVID19-Twitter’ dataset, Codestral leads
with an average of 2.44, compared to Qwen’s 2.28. Although
the results do not allow for safe conclusions or suggestions,
they could suggest that operations in some datasets can be
more efficient (in terms of the number of commands used),
potentially due to the nature and context of the data within
these datasets.

Fig. [7] presents the average readability scores by query
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FIGURE 7: Plot displaying the average readability by query
complexity level.

complexity levels. For Codestral, basic queries achieve the
highest average readability of 2.8, since 40 out of 50 tests
included code with a readability score of ‘3’. Intermediate
queries average 2.26, with 74 out of 100 tests scoring ‘2’,
and advanced queries have the lowest average at 2.08, as 92
out of 100 tests were credited with readability of ‘2’, and
thus only 8 tests with readability of ‘3’. In contrast, Qwen
2.5 Coder’s basic queries average a readability score of 2.58,
with 29 out of 50 tests having code with a readability score
of ‘3’. Intermediate queries score 2.29 average readability,
with 69 ouf of 100 tests having code of ‘2’, but also one
test with score of ‘1’. Advanced queries score 2.11, which
corresponds to 87 out of 100 tests with code readability of
2’, 12 with score of ‘3°, and one test with score of ‘1°.
These results collectively suggest that both LLMs tend to
produce less readable code as query complexity increases,
which is expected. It should be noted that, while Codestral
appears to generate particularly concise, single-line code for
basic queries, Qwen 2.5 Coder’s approach for simpler queries
seems to be marginally less efficient. For intermediate and
advanced queries, both models produced code that generally
consisted of longer lines of commands, which contributed to
the higher frequency of readability scores of 2°.

3) Efficiency

This metric aims to evaluate the LLMs’ performance in terms
of computational resource usage, during the code generation
process. As outlined in subsection [V-A] the Codestral and
Qwen models are not fully loaded on the GPU. This means
that both the GPU and the CPU will be in-use during the
code generation process, especially the GPU’s memory. The
first analysis task is to assess the GPU usage, CPU usage,
GPU memory, system memory (RAM), and response time
distributions across the tests conducted for each LLM. The
second task is to inspect the computational resources by
query complexity and readability, in order to see how is the
performance affected across all levels of query complexity,
as well as the two levels of readability, keeping in mind that

17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3556973

Nikolakopoulos et al.: Exploring the Potential of Offline LLMs in Data Science: A Study on Code Generation for Data Analysis

readability scores of ‘2’ mean longer lines of code (and thus
longer periods of code generation).

Codestral
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Response Time (seconds)

FIGURE 8: Distribution of the LLM server’s response time
during code generation.

Fig.[8|depicts the distribution of response time (in seconds)
during the LLM server’s code generation process. Response
time is measured from the moment the natural language query
is sent to the LLM, until the complete response is returned. As
illustrated in the figure, most code generation processes had
response times under 100 seconds, for both LLMs. In the case
of Codestral, the mean response time was 79.64 seconds, with
a median of 67.90 seconds, and some instances exceeding
200 seconds (reaching up to a maximum of 319.53 seconds).
Qwen 2.5 Coder demonstrated improved efficiency, recording
a mean of 27.66 seconds, a median of 22.98 seconds, and a
maximum response time of 81.38 seconds. This noteworthy
difference suggests that, whereas Codestral’s slower perfor-
mance is mostly attributable to the partial offloading of op-
erations to the GPU, Qwen benefits from a larger layer GPU
offload to, since it has fewer parameters (14B compared to
Codestral’s 22B), and thus a smaller total size. This allows
Qwen to achieve response times that are closer to real-time
standards.
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Qwen-2.5

Frequency
=
G

0 10 20 30 40 50 60 70
CPU Usage (%)

FIGURE 9: Distribution of the LLM server’s CPU usage
during code generation.

Figures [9] and [T0] showcase the distribution of CPU and
memory usage (in percentages) for the LLM server, during
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FIGURE 10: Distribution of the LLM server’s memory usage
during code generation.

the code generation process. For Codestral, the majority of
queries resulted in an average CPU usage of approximately
28.5%. Only a few processes exceeded 50% usage levels,
indicating a relatively moderate CPU demand during code
generation. In contrast, Qwen 2.5 Coder exhibited an average
CPU usage of around 37.6%, with its interquartile range sug-
gesting that many processes consumed roughly between 27%
and 47.8% of the available CPU resources. Regarding sys-
tem memory, both models demonstrated minimal RAM uti-
lization. Codestral’s memory usage averaged around 0.44%,
with nearly all queries falling within the 0-2% range, while
Qwen’s average was similarly low at approximately 0.45%,
though its distribution was slightly tighter (median of 0.48%
and a maximum of 4.65%). These observations imply that,
despite the moderate CPU demand, particularly in Qwen’s
case, the system also utilized other resources, which is ex-
pected, since both LLMs were deployed across both GPU and
CPU. Further insights into resource utilization are provided in

Figures[[T]and[12]
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FIGURE 11: Distribution of the LLM server’s GPU usage
during code generation.

Figures [TT] and [T2] illustrate the overall GPU distributions
(in percentages) for all tests conducted during the LLM
server’s code generation processes. For GPU usage, most
processes required roughly 20% of the GPU’s capacity. In
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FIGURE 12: Distribution of the LLM server’s GPU memory
usage during code generation.
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the case of Codestral, the average GPU usage was approx-
imately 21.3%, with the interquartile range spanning from
about 18.7% to 21.8%. As for Qwen 2.5 Coder, it exhibited
a slightly lower mean GPU usage of 18.0%, with most tests
falling between 14.4% and 19.3%. These moderate usage
levels align with the CPU utilization observed, given that both
models operate across CPU and GPU resources. In contrast,
GPU memory usage was consistently high for both models.
Codestral utilized on average about 88.8% of the available
GPU memory, whereas Qwen-2.5 leveraged an average of
approximately 90.1%. This indicates that a substantial portion
of the models’ parameters were loaded in GPU memory.
The combination of moderate CPU and GPU utilization,
alongside high GPU memory utilization, could suggest that
the code generation processes likely required short bursts
of processing power, rather than continuous, high-intensity
computation. The system seemed to maximize GPU memory
usage, while distributing computational tasks between GPU
and CPU. In addition, the moderate GPU usage levels could
indicate that the code generated was not highly complex for
the LLMs’ capabilities, leading to lower computation needs.
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FIGURE 13: The LLM server’s average response time, by
code readability.
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FIGURE 14: The LLM server’s average response time, by
query complexity level.

Figures[I3]and[I4]present the average response times by the
generated code’s readability and by query complexity level,
respectively. Regarding readability, for Codestral, tests with
a readability score of ‘2’ required significantly more time,
averaging about 93.7 seconds per query, whereas those with
a score of ‘3’ were generated in roughly 46.2 seconds. In
parallel, Qwen 2.5 Coder exhibited a similar trend, but with
overall lower response times. Tests with a readability score of
‘2’ averaged about 31.6 seconds, while those rated as ‘3’ were
completed in approximately 18.1 seconds. This behavior is
expected, as a readability score of 2’ indicates the presence of
longer lines of commands that demand additional processing
time, whereas a score of ‘3’ suggests more concise code
leading to faster generation. As for Qwen’s faster response
times, they can be attributed to the outlined characteristics of
its smaller size (14B parameters) and therefore greater layer
offloading to the GPU, compared to Codestral.

In terms of response times based on query complexity,
the results also align with expectations. For Codestral, ba-
sic queries had the lowest average response time at around
26.5 seconds per query, intermediate queries took roughly
67.5 seconds, and advanced queries required nearly 118.3
seconds per query. Similarly, Qwen 2.5 Coder demonstrated
a consistent trend, with basic queries averaging about 10.3
seconds, intermediate queries around 23.6 seconds, and ad-
vanced queries approximately 40.5 seconds. These findings
are reasonable, since basic queries typically result in simpler
code that is generated quickly, while the increasing complex-
ity of intermediate and advanced queries naturally leads to
longer generation times.

Figures [T6and [I7]depict the average CPU and GPU usage
levels by readability and query complexity. An interesting ob-
servation emerges from both plots. The CPU and GPU usage
levels for the two readability scores are mostly comparable.
When examining CPU usage, Codestral’s values for readabil-
ity score ‘2’ range from about 27.5% to 32.3%, while for
readability score ‘3’ they range from approximately 23.3%
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FIGURE 15: Average response times of the LLM server, by
readability and query complexity.
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FIGURE 16: Average CPU usage of the LLM server, by
readability and query complexity.

to 32.6%. A similar trend is observed for Qwen 2.5 Coder.
Under readability score ‘2°, Qwen records around 34.0% to
37.6% . Under readability score ‘3’, the figures range from
roughly 41.6% to 42.6%. The two Qwen tests that produced
readability score of ‘1’ are not taken under consideration,
since the amount could be considered as insignificant. Re-
garding GPU usage, Codestral’s readings for readability score
‘2’ vary from about 20.2% to 21.5%, and for readability score
3’, from 20.3% to 22.4%. In the case of Qwen, GPU usage
under readability score 2° averages 15.9% to 18.4%, while

20
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FIGURE 17: The LLM server’s average GPU usage, by read-
ability and query complexity.

for readability score ‘3’ the values are in the range of 17.4% to
20.98%. Overall, the usage levels between the two readability
groups remain similar.

The results can be attributed to the system’s behavior. As
the code generation process unfolds, the system appears to
reach a steady state in terms of CPU and GPU utilization.
Once this steady state is achieved, resource consumption
remains constant until the process is complete, regardless of
variations in the generated code’s length or complexity. This
explanation could partially be applied to another observation,
regarding query complexity levels. The data indicate that, in
some cases, basic queries have higher average CPU and GPU
usage than intermediate or advanced queries, sometimes even
the highest of the three.

Because the code generation process for basic queries is
— usually — significantly shorter (see Fig. [T3)), their CPU
/ GPU usage is more influenced by the system’s initial per-
formance boost. For intermediate queries, this initial boost
may have a smaller impact, since the longer duration allows
the system to ‘normalize’ those early high values. The same
could be applied to advanced queries. As time progresses, the
system reaches a phase where CPU and GPU usage stabilizes,
with only the GPU memory continuing to experience heavy
usage. This claim could be further justified by the average
GPU memory usage depicted in Fig. [I8] where all readability
scores and query complexity levels have the same, constant,
high demand for GPU memory. However, it’s important to
note that the differences in values across all cases are rela-
tively small, so these assumptions are made with caution.

4) Automation
The purpose of this evaluation metric is to determine the
extent to which the generated code can be executed automati-
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FIGURE 18: Average GPU memory usage of the LLM server,
by readability and query complexity.

cally, without human intervention. After each code generation
process by the LLMs, the response is assessed by the end-
user. If the generated code is ready for direct application to the
data, the automation assessment is marked as True. However,
if minimal human intervention is needed, in order to isolate or
slightly refine the code (but the code’s functionality produces
the desired result), the automation assessment is marked as
False. The first analysis task is to observe the amount of
tests with positive vs. negative automation labels in their
generated code. Next, automation status will be compared
with the functional correctness results and the query complex-
ity levels. These analysis tasks will help draw conclusions
about the LLMs’ ability to provide code directly as it was
instructed to through the prompt message, in order to establish
an automated pipeline for the data analysis workflow.
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FIGURE 19: The amount of automated and semi-automated
tests, based on human intervention to their code.
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Fig. [19] depicts the categorization of all 250 tests based
on their generated code’s automation attribute. Specifically,
for Codestral, 202 out of 250 tests had code which could be
forwarded directly to the Data Processing Platform without
the need for human intervention, thus marked as ‘True’ for
automation, while the remaining 48 tests included code that
required minimal human intervention before execution, thus
marked as ‘False’ for automation. This indicates that the
Codestral offline LLM achieved a positive automation rate
of about 80%, meaning that only 1 out of 5 tests (or 20%)
required human intervention in order to be fully functional.
As for Qwen 2.5 Coder, it demonstrated even more promis-
ing results, with 239 tests marked as “True’ (approximately
95.6%) and only 11 tests (about 4.4%) requiring minimal
intervention. This could indicate that the current version of
Qwen is more capable of being used at a fully automated
environment, whereas Codestral could benefit from potential
future optimizations in its pre-trained configuration.

It should be reminded that, as already stated, there are two
reasons for human intervention in the generated code. First,
the LLM had a tendency to produce additional text that was
not formatted as Python comments, despite prompt instruc-
tions to eliminate such text. In these cases, a research team
member would clean the code from such text, keeping only
Python commented information (if present). Shall the process
had continued with the explanatory text included, the flow
would terminate abruptly during the code application step, as
the ‘exec()’ function would not comprehend how to handle it.
Second, the code application step expects the final analysis
results to be outputted to a variable named “processeddf”. On
occasions where the LLM failed to do this, a research team
member would redirect the final output to a variable named
“processeddf”’, and continue the flow. Shall the system had
not received such a variable in the exec() command, it would
be unable to proceed to the results extraction step. Although
instructed to output the final result of generated commands to
a “processeddf” variable, the LLM sometimes failed to do so.
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FIGURE 20: Comparing Functional Correctness results with
Automation occurences.
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Figures [20] and 2] illustrate the relationship between au-
tomation results and functional correctness, as well as query
complexity levels. Regarding the former, it is evident that
the correctness of the produced results does not impact the
automation of the code they were generated from. Whether or
not human intervention occurred, the percentages of correct
results remained consistent. Specifically, for Codestral, 75%
of tests (meaning 187 out of 250) produced the desired result
when the code was automated, while an additional 16.5%
(41 out of 250) produced the proper result when the code re-
quired minor refinements. In a similar vein, Qwen 2.5 Coder
achieved 213 correct outcomes from its fully automated tests,
which translates to an 85% success rate, with additional 10
tests (only 4%) that yielded the proper result after minor
interventions.
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FIGURE 21: Presenting the automation occurrences by the
query complexity levels.

As for the latter figure, the automation percentage in basic
queries for Codestral was 86% (43 out of 50), accompanied
by intermediate queries with the same percentage (86 out of
100), while advanced queries had an average automation rate
of 73% (73 out of 100 tests being fully automated). In con-
trast, Qwen 2.5 Coder demonstrated higher automation across
all query complexities, with 100% of basic queries (50 out of
50), 91% for intermediate queries (91 out of 100), and 98%
for advanced queries (98 out of 100) being fully automated.
Although the differences in percentages for Codestral are rel-
atively small, they suggest that Codestral may tend to produce
more additional text as the complexity of queries increases,
adding explanations to the commands generated. However,
the percentage differences are not significant enough to draw
definitive conclusions. Overall, regardless of query complex-
ity, automation levels remained high for both models, empha-
sizing their effectiveness in generating code that is ready for
execution with minimal human intervention.

5) Error Handling
The goal of this evaluation metric is to evaluate the generated
code’s robustness, determining whether the error levels were
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high and if they significantly impacted the produced results.
The three plots presented below illustrate the distribution
of errors across all tests conducted during this study. These
plots are categorized by dataset and query complexity level,
as well as the potential impact errors had on the functional
correctness of the results. Overall, based on Fig. only 20
out of 250 tests (for Codestral) included code with errors,
which is a highly positive indicator of the LLM’s capabilities,
resulting in a 92% success rate. Taking functional correctness
into account, 218 out of 250 tests included error-free code that
produced the correct result, leading to an 87% success rate.
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FIGURE 22: Comparing Functional Correctness results with
error counts.

In comparison, Qwen 2.5 Codcer exhibited a somewhat
higher error incidence, with 41 out of 250 tests including
code with errors, which translates to an 85% success rate.
When considering functional correctness, 200 out of 250
tests produced error-free code that yielded the correct result,
corresponding to an 80% success rate. This outcome is partic-
ularly encouraging, for both LLMs, especially given the fact
that the goal was to generate code in PySpark using Spark
DataFrames, whose intricate differences from the widely-
used pandas DataFrames could have posed challenges for the
model, making the low error rate an even more significant
achievement. However, it should be noted that, in Qwen’s
case, an additional statement to the original prompt message
had to be included, for the model to properly generate PyS-
park commands, which it sometimes merged with invalid pure
Python ones. This will be further mentioned in subsection
VI-Al

Figures [23] and [24] present the distribution of the error
occurrences and their impact on functional correctness across
all five datasets used for testing, as well as across the three
levels of query complexity. Although the amount of errors
makes it unwise to draw safe assumptions, some early insights
can be formed, providing a basis for future research and
analysis. Regarding the distribution per dataset, for Code-
stral it is the ‘Shared Cars Locations’ dataset that exhibits
the highest number of error-labeled tests, with a total of 13
errors. This significantly surpasses the other datasets, with the

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3556973

IEEE Access

Nikolakopoulos et al.: Exploring the Potential of Offline LLMs in Data Science: A Study on Code Generation for Data Analysis

‘COVID-19 Twitter’ dataset containing 3 errors, the ‘Super-
market Sales’ dataset 2 errors, and both the ‘Madrid Daily
Weather’ and ‘Netflix’ datasets having only 1 error each. In
comparison, Qwen 2.5 Coder also shows the highest error
count for the ‘Shared Cars Locations’ dataset, with a total
of 22 errors. The ‘Netflix’ dataset for Qwen accumulated 7
errors, the ‘COVID-19 Twitter’ dataset 6 errors, the ‘Madrid
Daily Weather’ dataset 4 errors, and the ‘Supermarket Sales’
dataset 2 errors.

Correctness
@ Incorrect - Codestral
20 B Correct - Codestral
B Incorrect - Qwen-2.5
mmm Correct - Qwen-2.5

&

Count of Errors

15

e

Dataset

FIGURE 23: The amount of errors found in the tests, per
dataset.
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FIGURE 24: The total count of errors, grouped by query
complexity levels.

As for the functional correctness distribution, in most
cases, errors in the datasets led to incorrect results, indicating
that the code impacted the desired output. However, in the
‘Shared Cars Locations’ dataset, 10 tests for Codestral and
20 tests for Qwen contained errors in the code, but still
produced correct results. Most tests were from the dataset’s
two intermediate queries, as depicted in Fig. 24] although
Qwen had a fair amount of such tests (with errors in code but
correct output) in basic queries as well. The reason behind
this issue is that both LLMs interpret the dataset’s times-
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tamps. They fail to modify them as required, but PySpark
handles datetime data internally, even if the initial LLMs’
conversion or type specification was not perfectly aligned
with what was expected by the system. For Codestral, these
10 occasions represent 20% of the total tests for the ‘Shared
Cars Locations’ dataset. In case of Qwen, these 20 occasions
represent 40% of the same dataset. An early assumption
for this system’s behavior could be that both Codestral and
Qwen models need further clarification in understanding the
context and relationships between columns in location data
(e.g., pairing location information with their corresponding
timestamps). Additional analysis should be conducted, along
with other types of location data for further validation, such
as indoor positioning information [83]].

VI. CRITICAL ASSESSMENT

A. STRENGTHS AND LIMITATIONS

The results showed the model’s strong performance in pro-
ducing code scripts that met the objectives. For Codestral, out
of 250 tests, 87% were fully successful, meaning that these
tests were functionally correct and had no errors in their code.
At the same time, Qwen 2.5 Coder achieved a fully successful
rate of 80% over the same number of tests. In addition, both
models’ tests had code with readability scores between 2’
and ‘3’ (with only 2 out of 250 tests having a score of ‘1’
for Qwen), indicating that — in general — the code was
easy for a human to interpret. Furthermore, while Codestral
had 80% of its tests fully automated, meaning that human
intervention for minor code refinements was relatively not
necessary, Qwen-2.5 exhibited an even higher automation rate
at 96.5%. Bottom line, regardless of the queries’ complexity,
Codestral achieved a 91% score in producing correct code
(irrespective of automation levels and minor errors), while
Qwen attained a 90% score. These results illustrate the robust
code-generation capabilities of both models, showing solid
signs of success. Despite the potential difficulties of code
generation, stemming from the intricacy of requesting PyS-
park code rather than classic Python commands, each model
managed to provide correct code snippets.

Overall, both models demonstrated that it is feasible to
conduct data analysis using an offline LLM without loading
data to the model, but by generating specialized code and ap-
plying it to the data through a well-designed platform. These
findings further demonstrate that the proposed approach ef-
fectively materializes the initial motivations of this study. The
generation of code within a secure, on-premises environment,
enables offline LLMs to address key challenges such as data
security, integrity, and privacy. This successful demonstration
also suggests that offline LLMs could be further validated for
generating code in data analytics tasks within organizational
contexts, providing a viable alternative to online models that
pose data exposure risks, and also potentially replacing exist-
ing data analytics frameworks.

However, specific concerns were also identified during
the study. Despite the robust hardware specifications of the
physical machine hosting the LLM, they were insufficient for
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quick, real-time code generation. The average time taken to
produce a response was about 60 seconds for Codestral, and
25 seconds for Qwen. Both averages are not ideal for real-
world scenarios, especially Codestral’s. Although the GPU
and CPU usage rates were moderate, GPU memory utilization
was consistently high. A need for a more powerful GPU
became evident early on, in order to provide faster responses.
This serves as the main limitation for future expansion of this
study, based on the current capabilities of offline LLMs.

Large language models are a rapidly evolving field, partic-
ularly in recent years. Given the current state of technology,
a significant upgrade to a more powerful GPU appears to
be the only way to drastically speed up the responses by
the LLM. The upgraded GPU should have enough dedicated
memory to fully offload the model. In order to achieve near
real-time responses by the model, a highly powerful server
would need to be dedicated solely to the model. Given the
high requirements of the desired GPU, the cost for such a
server would be substantial for any organization. Whether it
would be worth investing to such a physical machine, only to
take advantage of offline LLMs for on-premise data analysis,
is up for each organization to decide. However, the advantage
of eliminating data privacy and sensitivity concerns is still a
compelling reason to consider the use of offline LLMs.

Apart from the performance shortages, the automation of
the process — mainly for Codestral — should also be im-
proved. In 20% of its tests, human intervention was needed
for minor code adjustments, such as removing additional text,
or specifying the variable to where the final result should be
stored, despite the prompt’s explicit instructions in both cases.
In real-world scenarios, ensuring full automation is essential.
Qwen failed to produce automation-ready code in only 4.4%
of its tests, which highlights its readiness for potential real-
world deployment.

Last but not least, while both Codestral and Qwen 2.5
Coder demonstrated robust performance by following the
commands of the main prompt message, it was observed that
Qwen initially had the tendency to partially generate standard
Python code, rather than strictly valid PySpark operations.
To address this, an additional instruction was appended to
the prompt for Qwen: ‘Ensure the code runs as valid PyS-
park DataFrame operations, not standard Python, and verify
its execution within Spark.” This adjustment emphasizes the
need for model-specific prompt tuning. It does not represent
a failure, but rather an iterative enhancement in the evaluation
framework.

B. FUTURE WORK

Focusing on improving the code generation process, which is
the essence of this study’s subject, future work will prioritize
fine-tuning of Codestral and Qwen to potentially achieve even
better results. If other large language models emerge that rival
the selected models in terms of efficiency and performance,
they could also be taken under consideration. The goal is
to fine-tune Codestral and Qwen to increase the levels of
automation, by ensuring it reduces unnecessary text when
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generating code, and consistently stores final results in a
pre-determined variable recognizable by the Data Processing
Platform, as was done in the current study. While the levels of
error-free tests and correct final results in this study are high,
the evaluation of a fine-tuned model should also improve
these metrics as well. In summary, a fine-tuned offline model,
fully offloaded to a more powerful GPU, could enhance the
outcomes of a similar follow-up study, potentially improving
the evaluation results in almost all aspects. However, rigorous
safeguards must be implemented during fine-tuning to pre-
vent the introduction of bias, ensuring the model’s outputs
remain robust and generalizable across diverse data domains.

In addition to these enhancements, future work could also
explore hybrid approaches of the framework’s infrastructure.
Hybrid models integrate offline processing with private cloud
infrastructures. Such a configuration would leverage scalable
computational resources, in order to enable extensive model
optimization and rapid iteration cycles. In addition, it would
still preserve the inherent data privacy benefits of an offline
framework. However, implementing such a hybrid approach
does come with cost implications, as it requires investments
in both robust offline systems and scalable cloud resources,
along with the complexity of maintenance.

Moreover, the current study could benefit by expanding its
focus to include the development of a dedicated user interface.
As of now, the research framework — depicted in Fig. [T —
is primarily aimed at assessing the underlying capabilities of
the models in a controlled environment. For the current study
to move towards a production-ready solution, the importance
of an intuitive and user-friendly interface is evident. Such an
interface should accommodate both non-technical users and
experts, particularly for practical applications and real-world
deployment. Additionally, future work could address the in-
corporation of additional functionalities and tests required,
in order to make this study a solid solution for enterprise
deployment. Leveraging the model-agnostic design of the
proposed framework and the extensibility of the underlying
architecture could safely lead to a transition from the current
research-based approach, into a fully operational tool suitable
for enterprise applications.

VII. CONCLUSION

This study aimed to explore the capabilities of offline LLMs
in generating code for data analysis operations. The use of
popular, online models like GPT or Gemini could raise secu-
rity concerns, due to data privacy and sensitivity regulations.
In addition, current models may struggle to manage larger
volumes of data, and may not always fully comprehend the
context of the data they are provided, leading to incorrect
results. The usage of offline LLMs could address both issues,
enabling organizations to take advantage of a model’s capa-
bilities while keeping both the model and their data locally.
In this setup, the model receives natural language queries
from the user, understands the context, generates data analysis
code, and, through a Communication Pipeline, the code is
being forwarded to a Data Processing Platform where it is

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3556973

IEEE Access

Nikolakopoulos et al.: Exploring the Potential of Offline LLMs in Data Science: A Study on Code Generation for Data Analysis

applied to the data for the final results’ extraction.

The system used Mistral AI’'s Codestral LLM and Al-
ibaba’s Qwen 2.5 Coder, due to their efficiency and better
performance against other code-oriented models. Moreover,
the Communication Pipeline and Data Processing Platform
were implemented atop of Apache’s Spark framework, en-
suring efficient data handling and management. Five datasets
were selected for the testing and evaluation phase. For each
dataset, five queries of varying complexity were authored. For
each query, 10 tests were conducted. This resulted in a total
of 250 tests for each LLM, evaluating Codestral’s and Qwen’s
ability to generate precise code for the provided queries.

The study’s findings highlight the considerable promise
of offline LLMs for generating accurate and interpretable
code, while preserving data security. Both Codestral and
Qwen have demonstrated stellar capabilities in producing
functionally correct scripts, with high levels of automation
and readability. However, the primary bottleneck remains
the computational performance, mainly the need for more
powerful GPU resources in order to achieve faster, near real-
time responses. Looking ahead, targeted enhancements such
as careful model fine-tuning, the development of an intuitive
user interface, and the exploration of hybrid infrastructures
to optimize scalability and privacy, are areas for potential
future research. These steps would not only address current
performance constraints. They could also guide the transition
from a controlled research setting, to an enterprise-ready
solution.

This study could lay the groundwork for other future
research efforts, aiming to establish offline large language
models (LLMs) as a viable alternative for data analysis op-
erations, using code generation based on natural language
queries. Instead of bringing the data to the LLM, this ap-
proach suggests bringing the LLM’s code to the data. The
exploration of the large language models’ applicability to the
field of Data Science will continue. Future applications are
likely to fully harness the power of LLMs for optimal data
processing and analysis. Over time, this study could be one
of the standard methodologies of analyzing data. One thing
is certain: Large language models will continue to expand
their influence across all scientific fields, with Data Science
being a key area of integration. How deeply LLMs will embed
themselves in current data analysis trends remains to be seen.
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APPENDIX A THE PYTHON CODE READABILITY
CALCULATION FUNCTION

Listing 5: A custom function to provide a readability score, from 1 to 3
(with 3 meaning higher readability), to the LLM’s generated code

def evaluate_readability(code):

VOLUME 11, 2023

i

The function analyzes the code to determine the readability score
by:

— Checking the length of each command.

— Counting the number of method call chains.

— Analyzing the depth of nested structures.

i

try:

# Split the code into individual commands based on newlines and
semicolons

commands = [cmd.strip() for cmd in code.replace(’\n’, ’;’).split(’;
*) if cmd.strip()]

readability_score = 0 # Initialize the readability score
total_commands = len(commands) # Get the total number of
commands

if total_commands == 0:
return readability_score

# Initialize counters for long lines and maximum chain length
long_lines =0
max_chain_length =0

for cmd in commands:

# Split the command into lines to check for long lines

lines = re.split(r’;\sx\n’, cmd)

long_lines += sum(1 for line in lines if len(line) > 80) # Count
lines longer than 80 characters

# Parse the command into an abstract syntax tree (AST)
try:

tree = ast.parse(cmd)

except SyntaxError:

continue # Skip this command if there’s a syntax error

# Count method calls in chained operations

for node in ast.walk(tree):

if isinstance(node, ast.Call):

chain_length =0

current_node = node.func

# Traverse the chain of method calls to count its length
while isinstance(current_node, ast.Attribute):

chain_length +=1

current_node = current_node.value

max_chain_length = max(max_chain_length, chain_length)

# Adjust readability score for long lines

if long_lines / total_commands < 0.1: # Allow some tolerance for
long lines

readability_score += 1

# Adjust readability score based on the length of method call
chains

if max_chain_length <= 3: # Full score for chains up to 3 method
calls

readability_score += 1

# Parse the entire code to evaluate nested structures

try:

tree = ast.parse(code)

except SyntaxError:

return readability_score # Return the score if there’s a syntax
error in the entire code

def count_nested_structures(node, depth=0):

# Increase depth for specific nodes (if, for, while, function
definitions)

if isinstance(node, (ast.If, ast.For, ast. While, ast.FunctionDef)):

depth +=1

# Recursively check the depth of nested structures

return max([count_nested_structures(child, depth) for child in
ast.iter_child_nodes(node)], default=depth)
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nested_structure_depth = count_nested_structures(tree)

# Full score if the maximum depth of nested structures is 2 or less

if nested_structure_depth <= 2:
readability_score += 1

return readability_score # Return the final readability score
except Exception as e:

print(f"Errorevaluatingreadability: {e}")

return O # Return a score of 0 if there’s an error

)

APPENDIX B SUMMARY OF THE ‘'SHARED CARS
LOCATIONS’ DATASET

Listing 6: A dataset summary of the "Shared Cars Locations" dataset,

carefully crafted by a research team member.

"intro": "Thisdatasetcontainsinformationaboutsharedcarlocations,
includingvariousattributesthatdescribeeachentry.",
"columns": [
{
"name": "latitude",
"type": "float64",
"simplified_type": "float",
"description": "Latitudecoordinateofthecar’slocation.",
"sample_values": [
32.083,
32.064615,
32.113535

"name": "longitude",
"type": "float64",
"simplified_type": "float",
"description": "Longitudecoordinateofthecar’slocation.",
"sample_values": [
34.8043,
34.77571,
34.7911

non

"name": "total_cars",
"type": "int64",
"simplified_type": "int",
"description": "Totalnumberofcarsavailableatthelocation.",
"sample_values": [
0,
1,
3

non

"name": "cars_list",
"type": "object",
"simplified_type": "string",
"description": "Listofcaridentifiersavailableatthelocation.",
"sample_values": [
",
"[213]",
"[137,180,193]"

non

"name": "timestamp",

"type": "object",

"simplified_type": "datetime",

"description": "TimestampofthedatarecordinUTC.",

"sample_values": [
"2019—12—0621:51:02UTC",
"2019—11-2914:00:02UTC",
"2019—09—2013:21:03UTC"

26

"

1,
"datetime_format": "%Y —%m—%d%H:%M:%S %"

}

note": "Thesampledataprovidedhereissyntheticandintendedtoillustrate
thedatastructure.”
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