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ABSTRACT

This paper investigates array geometry and waveform design
for integrated sensing and communications (ISAC) employ-
ing sensor selection. We consider ISAC via index modula-
tion, where various subsets of transmit (Tx) sensors are used
for both communications and monostatic active sensing. The
set of Tx subarrays make up a codebook, whose cardinality
we maximize (for communications) subject to guaranteeing
a desired target identifiability (for sensing). To characterize
the size of this novel optimal codebook, we derive first upper
and lower bounds, which are tight in case of the canonical
uniform linear array (ULA) and any nonredundant array. We
show that the ULA achieves a large codebook—comparable
to the size of the conventional unconstrained case—as satis-
fying the identifiability constraint only requires including two
specific sensors in each Tx subarray (codeword). In contrast,
nonredundant arrays, which have the largest identifiability for
a given number of physical sensors, only have a single ad-
missible codeword, rendering them ineffectual for communi-
cations via sensor selection alone. The results serve as a step
towards an analytical understanding of the limits of sensor
selection in ISAC and the fundamental trade-offs therein.

Index Terms— Index modulation, ISAC, sensor selec-
tion, sparse arrays, redundancy, waveform design, MIMO

1. INTRODUCTION

ISAC is envisioned to be a core technology of 6G and be-
yond wireless systems [1]. In multiple-input multiple out-
put MIMO) ISAC, two key resources shared by the sensing
and communications functionalities are the transmit wave-
form and sensor array geometry, which impact, e.g., link re-
liability, throughput, and spatial resolution. Jointly harness-
ing the waveform and array geometry in an optimal manner
becomes key to reap these advantages, which typically im-
prove with an increasing number of sensors. However, the
number of digital spatial channels is often limited by cost
and power consumption constraints, as in, for instance, au-
tonomous sensing [2, 3] or millimeter wave communications
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[4]. A common solution is to employ fewer digital channels
than sensors, possibly combined with sensor selection at the
transmitter (Tx) or receiver (Rx) [3-9]. An application of Tx
sensor selection that has recently experienced a surge of re-
newed research interest stems from the family of so-called in-
dex modulation techniques [10-14], and is known as spatial
modulation in classical MIMO communications [15]. Here,
Tx sensor subsets (subarrays) constitute information bearing
codewords, which in the context of ISAC are simultaneously
used for sensing by launching independent (typically orthog-
onal) waveforms from the selected transmit elements. This
intimate coupling between communications and sensing man-
ifests as a dual-function codebook design problem, which is
the focus of this paper. To tackle this challenging problem, we
leverage recent advances in sparse sensor arrays, which enjoy
provable advantages over conventional uniform array geome-
tries, including enhanced identifiabilty and resolution [16,17].
Despite active research into ISAC and sensor selection,
important fundamental questions still lack sharp answers,
such as which (sparse) array geometries are suitable for ISAC,
and how many such configurations exist? This paper provides
partial answers to these questions by focusing on Tx sensor
selection in monostatic MIMO ISAC systems employing in-
dex modulation. We present first analytical results on ISAC
codebook design with identifiability guarantees. Specifically,
we formulate a novel optimization problem for maximizing
the size of the ISAC codebook, subject to guaranteeing a
desired target identifiablity for a given number of Tx and Rx
sensors. The Rx array is fixed for all codewords, which corre-
spond to different Tx sensor subsets of equal cardinality. We
fully characterize the solution in case of the ULA and nonre-
dundant array, showing that the optimal codebook contains
many admissible codewords (mappings) in the former case
and only one in the latter. We also derive generally applicable
upper and lower bounds on the optimal codebook size. These
preliminary results shed light on fundamental trade-offs be-
tween communications and sensing in ISAC, paving the way
towards a more complete analytical understanding thereof.

2. SIGNAL MODEL AND BACKGROUND

Consider a narrowband MIMO ISAC system, where a base
station (BS) with collocated Tx and Rx arrays simultaneously



senses the environment and communicates with a single M-
antenna user equipment (UE). Crucially, the BS uses the same
Tx array geometry D; and spatio-temporal waveform matrix
S € CT*N¢ for both (active) sensing and (downlink) com-
munications. Here, T" denotes the length of the waveform and
N; = |Dy| the number of Tx sensors. Similarly, the Rx ar-
ray geometry at the BS, D, C N with |D,| = N,, is assumed
one-dimensional, collinear and collocated with the Tx array.
The downlink received signal at the UE is represented by

Z=HS" +W,

where H € CM*Ne js the channel matrix between the BS
and UE, and W € CM*T ig a noise matrix. We assume
that H is known to the UE. The communications task of the
BS is to transmit information to the UE by designing the set
from which S is drawn; the so-called “codebook” (defined
formally in Section 3). The task of the UE is to decode S
given measurement Z and channel H, or an estimate thereof.

Dual-function waveform S is also used for sensing by the
BS. Assuming K far field scatterers with angular directions
6 € [-Z,Z)" and scattering coefficients v € C¥, the N;xT
backscattered signal observed at the BS assumes the form [18]

Y = A,(6) diag()A{ (6)ST + N, 1)

where A,(0) € CN-*K and A (0) € CN+*K denote the
manifold matrices of the Rx and Tx arrays, respectively, and
N € CM*T is a matrix of additive noise. The sensing task
of the BS is to estimate 6 given measurement Y, waveform
matrix S, and knowledge of the array manifolds A, (), A¢(-).

2.1. Communications via Tx sensor selection in ISAC

The BS communicates with the UE via sensor index modu-
lation (generalized spatial modulation [15]), where different
codewords correspond to different Tx subarrays. Such com-
munications schemes find applications in both conventional
MIMO communications [15] and modern ISAC systems [11—
13] where constraints on power consumption, cost, and de-
coding complexity can be alleviated by employing fewer RF
chains than antenna elements at the transmitter. In effect, S
becomes a “sensor selection” waveform matrix of the form

§=UJs, 2

where S = {g[i]}; C Dy = {d¢[n]}, is a Tx subarray and
Js € {0, 1}I51XNe 3 row selection matrix with (i, n)th entry

L, if g[i] = di[n]

[JS]i,n = {O

We assume that U € CT*l is a fixed full column rank
matrix, known to the UE.! Typically, the columns of U are
orthogonal, representing independent waveforms launched
from the selected Tx sensors [11]. Hence, S is the information-
bearing quantity unknown to the UE, whose task is to detect
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otherwise.

In general, U may be unknown or only partially known to the UE, depend-
ing on whether any encoding is employed beyond sensor selection [10].

S belonging to some finite codebook C of Tx subarrays.

The choice of C crucially impacts communications perfor-
mance, including achievable rate and decoding complexity.
In particular, let C = C(Q, Dy) denote an arbitrary codebook
based on selecting () out of Ny sensors from Tx array Dy.
Denoting the set of all (Q-sensor subsets of D by

C'(Q,Dy) £ {SCDy: [S] =@}, )
it is clear that C(Q), D) C C*(Q,Dy) and thus |C(Q,Dy)| <
ICY(Q,Dy)| = (%) From a communications perspective, di-
rectly using codebook C"(Q,D;) would maximize the con-
stellation size and thereby achievable rate at high signal-to-
noise-ratios (SNRs), or simply yield maximally many code-
words to choose from. From a sensing perspective, how-
ever, all codewords in C"(Q,Dy) may not be equally desir-
able. For example, some may yield unsatisfactory Tx or joint
Tx-Rx beampatterns [11, 12]. The question arises how large
the codebook can be to meet a desired level of sensing per-
formance? We explore this question by focusing on identifi-
ability of 8 in (1) as a key performance indicator (KPI) for
sensing. This fundamental KPI has not been considered be-
fore in ISAC codebook design. As we will see, the maximal
codebook size can be analytically characterized as a function
of the number of identifiable targets, providing insight into
trade-offs and optimal array/waveform designs in ISAC.

2.2. Sum co-array and identifiability in active sensing

The number of targets that can be identified by a monostatic
active sensing system depends on the so-called sum co-array:

Dt+Dr:{dt+drldt GDt,drEDr}.

It is well known that up to K < |Dy + D, |/2 targets can be
uniquely identified from (1), in absence of noise, by appropri-
ate waveform and array design [18, Ch. 1]. A sufficient con-
dition for achieving this upper bound is that the sum co-array
is contiguous and waveform matrix S has full column rank
(rank(S) = N;). A contiguous sum co-array satisfies Dy +
D, = Uy, where Ny ES |D; + ;| denotes the number of
sum co-array elements, and Uy = {0,1,..., N—1} the set of
nonnegative integers smaller than [V, i.e., the normalized sen-
sor positions of a ULA in units of half carrier wavelengths.
However, when S is column-rank-deficient (rank(S) < Ny),
a contiguous sum co-array is no longer sufficient, but judi-
cious waveform design becomes necessary for achieving the
maximum identifiability N;/2 facilitated by the array geom-
etry [19]. This is also the case when employing Tx sensor
selection, since any S in (2) satisfies rank(S) < |S|, where
|S| < Nt holds when S is a strict subset of D;. Indeed, when
the sum co-array is contiguous, it can be shown that a sensor
selection waveform (of rank |S|) corresponding to Tx subset
S C D achieves maximal identifiability if and only if the sum
set of S with the Rx array D, is also contiguous [20], that is,

S+D, =D + D, = Uy, 5)

Next, we investigate how many such S exist at most.




3. IDENTIFIABILITY-MAXIMIZING CODEBOOK:
OPTIMAL TX SENSOR SELECTION FOR ISAC

We propose constraining the sum set of all codewords in the
ISAC codebook to guarantee maximum identifiability. First,
we define the set of Q-sensor Tx subarrays whose sum sets
equal that of a given physical Tx-Rx array pair (D, D,):

C(Q,Dy, D) 2 {SC Dy : [S| = Q, S +D, =Dy +D,}.

Observe that the Rx array geometry D, is fixed for all code-
words (Tx subarrays S). We now wish to optimize code-
book C¢(Q, Dy, D,) with respect to physical array geometries
Dy, Dy, given parameter tuple (Q, Ni, N, Nx;). Herein, we
consider maximizing the size of C¢ subject to each codeword
S € C°¢ achieving a contiguous sum set S + D, = Upy:

(C*,D;‘,D;‘)éarg max{|C| : C=C*(Q, Dy, D), |D¢| = Ny,
ey |Dr‘ = N, Dy +Dr:UN>;}~

We refer to C* C C"(Q, DY) as the identifiability-maximizing
ISAC (IM-ISAC) codebook, or optimal codebook for short.
Specifically, C* represents a set of (J-sensor Tx subarrays
yielding a contiguous sum set of size Ny. Importantly, among
all codebooks with this property, C* has the largest cardinal-
ity. Note that each codeword in C* encodes |log, |C*|] bits
and guarantees the identifiability of Ny /2 targets. Optimal
codebook C*, and the associated Tx array D} and Rx array
D7, need not be unique. Finding (any) C* is nevertheless a
challenging combinatorial problem. We will therefore instead
seek bounds on |C*| for admissible tuples (Q), Ny, Ny, Nx).

4. BOUNDS ON SIZE OF OPTIMAL CODEBOOK:
PRELIMINARY INSIGHTS INTO ISAC TRADE-OFF

We start by specifying for which tuples (Q, N¢, Ny, Nx;) set
C* is nonempty. Note that the range of values that such ) and
Ny, can take depends on (free) parameters Ny, IV, € N
Firstly, the number of sum co-array elements can be
shown to satisfy Ny, € [N; + N, — 1, Ny N, ], where the lower
and upper bounds correspond to maximally and minimally
redundant array configurations, respectively. However,

Ny € [Ny + N, — 1,QN,] ©6)

must actually hold for any @ € [1, Vy] such that Tx subarray

S C D, has a contiguous sum set S + D, equal to the sum

co-array Dy + Dy, since |S + D;| < [S]|D;| = QNy < Ny N,

Similarly, the minimum value of @ is given by

L £ [Ng/N,]. )

Indeed, the contiguous sum set constraint S + D, = Upy,

implies that [S||Dy| > [S+ D,| = Ny, ie, Q = [S| >
Ny /N;. Since @ is an integer and S C Dy, we have

Q € [L, N¢J. ®)

Interestingly, any sensor selection waveform in (2) with QQ =
L is a special case of a family of optimal rank waveforms.
Specifically, rank(S) = L is a lower bound on the rank of

waveforms that can fully leverage the sum co-array in the
sense of identifying the maximum number of Ny /2 targets
[19]. Whether this lower bound is achievable in the case of
a given redundant (Ny < N;/V,) array depends not only on
the array configuration itself, but also on whether the cho-
sen waveform S is matched to the array geometry [19]. In the
case of sensor selection waveforms, this matching—assuming
a contiguous sum co-array—can be verified to be equivalent
to satisfying (5) and rank(U) = |S] in (2) [20].

Any positive tuple (Q, Ni, Ny, Nx) is admissible, ie.,
C*(Q, N, N;, Ny,) is nonempty, if (6) and (8) are satisfied.

4.1. Upper bound on |C*|: Tx sensors on edges necessary

For any admissible (Q, N¢, Ny, Nx;) tuple, the upper bound
|IC*(Q, Ni, Ny, Ng)| < (]Z;) clearly holds. A less trivial up-
per bound follows from noting that the extremal Tx sensors
must be included in any Tx subset S for (5) to hold.

Lemma 1 (Upper bound). For any admissible (Q, Ny, Ny, Ny.),

C*(Q. Ne, Ny, Ny)| < (JZ;_;). ©)
Proof. The proof follows by contradiction. Suppose elements
[ = minDy and v = maxD; are not included in S. Then
S+D, CD\ {l,u}+D, C (Dt +Dp) \ {{ + minD,, u +
maxD,} C Dy + D,. Hence, S + D, = Dy + D, only if
S D {l,u}. This implies that at least two elements of S must
be fixed, which leaves at most (%) choices for subset S
satisfying S + D, = Dy + D, regardless of Dy, D). O

Surprisingly, the simple upper bound in Lemma 1 is
tight for two canonical array geometries illustrated in Fig. 1:
(a) ULA Tx and Rx arrays (of appropriate size), and (b) any
nonredundant array. In these two key cases, we have thus fully
characterized the size of the optimal IM-ISAC codebook.

4.2. Full characterization of ULA & nonredundant array

Proposition 1 (ULA and nonredundant array). If Ny, = Ny+
N, — 1 (ULA) and Ny < N, + 1, then for any Q € [2, N¢]

Ny —2

* j—

IC*(Q, N¢, Ny, Nx)| = (Q B 2). (10)

If Ny, = N, N; (nonredundant array), then QQ = N, and
IC*(Q, Ny, Ny, Nx)| = 1. (11)

Proof. ULA: Let @ > 2 and S 2 {0, N; — 1}, and recall
that Dy = Uy, and D, = Uy,. Hence, S+ D, 2 {0, N; —
1} +[UNr = [UNr U ([UNI. + N; — 1) = [UNr-i—Nt—l, where the
last equality follows from assumption Ny < N, + 1. Hence,
Di+D, O2S4+D, 2Un,4n,-1 =Dt + Dy, ie., S+ D, =
Dy + D,. The remaining ) — 2 sensors of S can be freely
chosen from Dy \ {0, Ny — 1} without affecting the sum set.
Since there are (]Z)f;) such unique choices of S, (9) is tight.

Nonredundant array: Note that Ny, = N, N; — @ =
N by (8). Substitution into (9), along the fact that S = Dy
(implying that |C*| > 1), then yields (11). O
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Fig. 1. Example of ULA and nonredundant array geometry.

Proposition 1 fully characterizes |C*| for these two cases.
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Fig. 2. Tx subarrays S sufficient for satisfying (5) by Propo-
sition 2. Including the edge sensors is necessary (Lemma 1).

The ULA achieves the maximum IM-ISAC codebook size
(13:22) by Proposition 1 and hence enjoys an abundance of
codeword choices. This array geometry is of great interest
due to its ubiquity in the ISAC literature and beyond. The
large codebook of the ULA follows from the sufficiency, not
just necessity, of including the outermost sensors in any Tx
subarray (S 2 {min Dy, maxD;}) for the respective sum set
to be contiguous (S + D, = Uy, )—under mild conditions
(Ny < N; + 1). This fact, revealed by the proof of Proposi-
tion 1, is illustrated in Fig. 2a. For nonredundant arrays, C* is
nonempty only if () = N, which corresponds to selecting all
Tx sensors. Hence, communication solely via sensor selec-
tion is not possible when a sum co-array of (maximum) size
Ny, = NN, is desired, i.e., redundancy is needed.

Remark 1 (Necessity of redundancy). A redundant array
configuration is necessary for communications via Tx sensor
selection, when each Tx subarray is constrained to achieve a
sum set equal to the (full, possibly contiguous) sum co-array.

Remark 1 hints at an intuitive trade-off between the sizes
of the sum co-array Ny, and codebook |C*|: a small Ny, seems
desirable to achieve a large codebook, while a large Ny, would
guarantee identifying more targets. Rigorously establishing
and characterizing this trade-off requires deriving both tighter
upper and lower bounds for intermediate values of Ny, in (6).
As a step in this direction, we next present a new lower bound
displaying this expected trade-off between |C*| and Ny.

4.3. Lower bound on |C*|: Nested subarray construction

Proposition 2 (Lower bound). Suppose (Q, Ny, Ny, Nx3) is
admissible and L = Ny, /N, € N. Then

Ny — L
QN NN = ()

Proof. The proof follows by construction: we choose Dy and
D, appropriately, and fix L = Ny /N, of the () sensors in

12)

each Tx array subset S C Dy such that the sum setis S+ =
Uy, regardless of how the remaining () — L sensors in S are
selected. In particular, let D, = Uy, and Dy = Dy U Do,
where Dy = N, Uy and Ds is an arbitrary Ny — L element
subset of Uy, (z—1)4+1 \ D1. Any Q-sensor subset S, where
D; € S C Dy, thus satisfies U, = Dy + D, D S+ D, D
D; + D, = U.. There are at least (g‘__‘gll‘l) such unique
choices of S, since the remaining ¢ — |D1| sensors of S can
be freely chosen from Dy without affecting the sum set. The
proof is completed by noting that |[D;| = L = Ng/N,. O

The lower bound (12) of Proposition 2 is constructive and
hence achievable. Specifically, the Rx array is chosen to be
a standard ULA D, = Uy, and the Tx array (as well as
every subset thereof) to contain an L sensor dilated ULA
Dy O S O N, Uy. This generalizes the construction estab-
lishing tightness of (9) for the standard ULA Tx/Rx array in
the proof of Proposition 1. Fig. 2b shows an example of this
generalized construction. Extensions of Proposition 2 to non-
integer values of Ny; /N, are possible and part of future work.

4.4. Towards a tighter characterization of |C*|

Fig. 3 illustrates the derived bounds (9) and (12) as a function
of the number of sum co-array elements Ny, and selected Tx
sensors ). The number of physical sensors Ny, N, is fixed
in both cases. Fig. 3a shows that for a fixed @), the lower
bound on the size of the optimal codebook |C*| decreases with
increasing N, which is consistent with a trade-off between
identifiability and codebook size. The upper bound is tight at
Ny; = Ny + N, —1and Ny = N;N,. For intermediate values
Ny + N, — 1 < Ny < NIV, tighter bounds likely exist and
present a pertinent direction for future work.

Fig. 3b shows that for a fixed Ny, both the upper and
lower bounds are concave in ). This raises the question:
which value of () maximizes |C*|? For the unconstrained
codebook in (4), the answer is clear since (IZ;) = (Ntivié)lc;)'
is maximized by @ = |N;/2]. A similar conclusion holds
for the IM-ISAC codebook C* if Ny, = Ny + N, — 1 (ULA),
since by Proposition 1, |C*| = (13:22), which is maximized
by Q = | N;/2 — 1] + 2. However, as Fig. 3b demonstrates,
the answer is nontrivial for other values of Vs:, and remains
an interesting open question for future work.

5. CONCLUSIONS

This paper presented first results on transmit-sensor-selection-
based ISAC waveform design with identifiability guaran-
tees. Such waveforms find applications in resource-efficient
MIMO ISAC systems, where, for instance, the transmitter
has a limited number of RF chains due to power or cost
constraints. We formulated a novel codebook optimization
(transmit subarray selection) problem, where the size of the
codebook was maximized subject to guaranteeing a desired
number of identifiable targets. We fully characterized the
size of this codebook in case of two widely-considered array
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Fig. 3. Derived bounds on size of the optimal IM-ISAC code-
book. The bounds are tight for Ny, = Ny + N, — 1 (ULA)
and Ny = Ny N, (nonredundant arrays).

geometries: the ULA and nonredundant array. We showed
that only redundant arrays can communicate via transmit sen-
sor selection under the considered identifiability constraint.
Interestingly, the ULA achieves the maximum codebook car-
dinality, providing greater constellation size and flexibility
in choosing codewords. This comes at the expense of lower
target identifiability compared to less redundant arrays—
indicative of a general trade-off between communications
and sensing performance. To tentatively characterize this
trade-off, we derived upper and lower bounds on the size of
the optimal codebook. Directions for future work include
tightening these bounds and further exploring the potential of
sensor-selection-based waveform design in ISAC.
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