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Abstract—This paper presents a novel cognitive beamspace
algorithm for integrated sensing and communications (ISAC)
systems, focusing on the optimization of spatial resources. The
proposed method operates in the beamspace domain that enables
an orthogonal design between the sensing and communication
functions. Additionally, the approach leverages the principles of
Thompson sampling, known for effectively balancing exploration
and exploitation in uncertain environments. It enables the ISAC
system to dynamically adjust radar target search strategies
based on environmental feedback while maintaining acceptable
communication rates with the user equipment. We demonstrate the
algorithm’s effectiveness over traditional methods through numeri-
cal simulations. These simulations reveal significant improvements
in radar search functionality while meeting the communications
quality of service constraints.

Index Terms—Integrated sensing and communications, cognitive
radar, beamspace algorithm, Thompson sampling, spatial resource
optimization

I. INTRODUCTION

Integration of radar and communication functionalities into
unified systems, known as ISAC systems, is one of the key
new technologies envisioned for the emerging 6G wireless
communications [1], [2]. By merging these traditionally distinct
functionalities, ISAC systems offer a promising avenue toward
more efficient use of the hardware and spectrum resources.
However, ISAC systems introduce new challenges, particularly
in resource management and simultaneously optimizing the
performance of the two functionalities [3].

This paper considers the optimization of spatial resources
in an ISAC system. Transmit beamformer designs for ISAC
systems have been considered in several works, which can
be classified into three main categories of radar-centric,
communications-centric, and joint designs [4]. The objective of
the radar-centric designs is to add communications functionality
to radar systems [5]–[7], whereas the communications-centric
designs utilize communications signals not only for transmitting
data through some communications links but also for obtaining
information about targets present in environment [8]. The
joint designs view both communications and sensing tasks
as one functionality, leading to more general designs [9]. For
instance, two beamforming algorithms were proposed in [10].
One allocates separate sub-arrays of the base station (BS)
antennas to sensing and communications functionalities while
the other uses all antennas for both functions. It was shown in
[10] that the latter configuration outperforms the former. In [11],

the transmit beamforming has been designed by optimizing
the desired beam pattern while constraining the signal-to-
interference-plus-noise ratio (SINR) at the communications
user side. Utilizing backscattered radar and communications
signals for detecting targets enhances the power efficiency of the
developed ISAC system in [11]. The joint optimization of radar
spatial spectrum matching error and the spectral efficiency for
communications has been considered in [12] for beamforming
design in wideband ISAC systems.

In this paper, we develop a new cognitive resource allocation
method which enhances the radar search functionality of an
ISAC system while providing an acceptable communications
rate to the user equipments (UEs). The concept of cognitive
radar [13], [14] refers to fully adaptive radar systems capable
of learning and making decisions based on environmental
closed-loop feedback. The proposed method is based on a
design in a beamspace domain [15] that facilitates a convenient
orthogonal model of the sensing and communications tasks.
It also enables us to develop reinforcement learning methods
based on multi-armed bandit (MAB) framework to address the
exploration-exploitation tradeoff [16]. Particularly, the proposed
beam allocation algorithm stems from Thompson sampling [17].
Thompson sampling is known for its efficacy in balancing
exploration and exploitation and can be adapted to the unique
requirements of ISAC systems. Combining ISAC with cognitive
radar principles and Thompson sampling results in dramatically
boosting the radar search functionality.

II. PROBLEM FORMULATION

Consider an ISAC BS operating in an environment containing
Q radar targets and, for the sake of clarity of the derivation, a
single UE. The model and method can be extended to multi-
user scenarios. The BS is equipped with an uniform linear
array (ULA) of N antenna elements, and the UE is equipped
with a single omnidirectional antenna. The steering vector u(θ)
of the ULA is written as

[u(θ)]n = e−j(n−1)π sin(θ) ∀ n ∈ [N ] (1)

where [N ] := {1, . . . , N}.
The task is to guarantee a desired downlink (DL) commu-

nications rate to the user while simultaneously searching for
radar targets. For the communications task, we assume perfect
channel state information (CSI) estimated either from channel
feedback or utilizing the channel reciprocity. For the target



search task, it is assumed that the number of targets and their
directions are initially unknown. We propose a closed-loop
cognitive algorithm [13] for the radar search task based on an
active Sense-Learn-Adapt (SLA) cycle.

A. Signal Model

We consider the Swerling model for the target scattering
coefficient such that the target complex gain αq ∀ q ∈ [Q],
including all the losses such as propagation loss and the
radar cross section (RCS), obeys zero-mean circular Gaussian
distribution αq ∼ CN (0, σ2

α,q). Thus, the monostatic sensing
channel can be written as follows

Hr(t, τ) =

Q∑
q=1

αr
qu(θ

r
q)u

H(θrq)e
j2πνqtδ(τ − τq) (2)

where θrq is the target angle with respect to the boresight, νq
is the target radial velocity, and τq is the two-way propagation
delay to the target.

Let us consider that the radar signal sr and the DL
communications symbol sc are transmitted simultaneously.
Thus, the overall transmit signal of the ISAC system can be
written as

x(t) = a(t)
a

Ptot(srwr + scwc) (3)

where a(t) is the sub-pulse shape and Ptot is the total power
as well as wr and wc are the radar and communications
beamformers, respectively. The received signal is filtered with
a matched filter in the analog domain with the sub-pulse a(t).
We assume that either there is no clutter or the impact of clutter
has been suppressed through a pre-processing step. Thus, the
backscattered signal at the ISAC receiver can be written as

yr(t) =

Q∑
q=1

αq

a

Ptote
j2πνqtA0(τq − t)

× u(θrq)u
H(θrq)(srwr + scwc) + vr(t) (4)

where A0(t) is the zero Doppler cut of the (delay) ambi-
guity function of the sub-pulse a(t), and the DL commu-
nications signal scwc is considered as mutual interference.
We sample the received signal yr(t) at the time instants
tm = m−1

T +T0 ∀ m ∈ [M ] to obtain observation matrix Yr =
[yr

1, . . . ,y
r
M ] ∈ CN×M where M is the number of samples and

T0 is a guard time to prevent receiving backscattered signals
while transmitting. For full-duplex configurations, the guard
time is not necessary. The noise vr(tm) := vr

m ∼ CN (0, σ2
rI)

obeys independent and identically distributed (i.i.d.) complex
Gaussian distribution. With a minor abuse of notation, we can
write yr ∈ {yr

m}Mm=1 as

yr = Hrx+ vr (5)

where x =
?
Ptot(srwr + scwc), and vr ∈ {vr

m}Mm=1.
Furthermore, the sensing channel matrix is

Hr =

Q∑
q=1

αqe
j2πνqtA0(τq − t)u(θrq)u

H(θrq) (6)

for t ∈ {tm}Mm=1.
Considering the extended Saleh-Valenzuela model [18], the

DL communication channel to the UE can be expressed as

hc =

L∑
l=1

αc
lu(θ

c
l ) (7)

where L is the number of paths, and αc
l and θcl are the complex

gain and the direction of the path l ∈ [L], respectively. The
received signal at the UE receiver can be written as

yc = hH
c x+ vc (8)

where vc ∼ CN (0, σ2
c ) is the receiver noise of the UE.

B. Beamspace Transform

The beamspace refers to the transformation domain where
channels and signals are analyzed in the angle or beam domain,
as opposed to the element domain. The beamspace model
defines N discrete Fourier transform (DFT) beams of the ULA
to directions

ϕn =


sin−1

´

2(n−1)
N

¯

, ∀n = 1, . . . , N
2

±π
2 , n = N

2 + 1

sin−1
´

2(n−1)
N − 2

¯

, ∀n = N
2 + 2, . . . , N

(9)

where all the beams are orthogonal. We use matrix U ∈ CN×N

to denote the unitary DFT matrix. Pre-multiplying (5) by UH

and using the unitary property of the DFT matrix, we can write

ȳr := UHyr = sHrx̄+ v̄r (10)

where sHr = UHHU is the beamspace channel matrix, x̄ =
UHx is the beamspace transmitted signal, and v̄r = UHvr is
the noise in beamspace domain. Since U is a unitary matrix,
the distribution of noise v̄r is the same as in the element
domain. Furthermore, the beamspace transmitted signal can be
expressed as

x̄ =
a

Ptot(srw̄r + scw̄c) (11)

where w̄r = UHwr and w̄c = UHwc are the beamformers in
the beamspace domain. Similarly, we can write the received
communications signal at the UE as

yc = h̄
H
c x̄+ vc (12)

where h̄c = UHhc.

III. OPTIMIZATION IN THE BEAMSPACE DOMAIN

According to (6) and (10), the beamspace channel matrix
is diagonal when assuming that each target is perfectly at the
center of one of the DFT beams with direction ϕn, ∀n ∈ [N ]
defined in (9). Therefore, we can approximate

sHr ≈ diag pβq (13)

where β = [β1, β2, . . . , βN ]T, and βn, ∀n ∈ [N ] correspond
to the complex target gains in the directions ϕn, ∀n ∈ [N ].
Let us also define a binary random variable z ∈ {0, 1}N where
zn indicates the target presence in the beam n ∈ [N ]. Let us



assume that z is constant during the considered time period.
The variables z and β are coupled as follows:

• zn = 0 ⇔ βn ∼ δ(βn) where δ(·) is the Dirac delta, and
• zn = 1 ⇔ βn ∼ CN (0, gn) which is a zero mean circular

complex Gaussian distribution with variance gn > 0.
The vector g = [g1, g2, . . . , gN ]T contains the variances of
the target complex gains (see eq.(2)) for hypothetical targets
existing in the different beams. We assume that elements of
z = [z1, z2, . . . , zN ]T obey independent Bernoulli distributions
with parameters ρ = [ρ1, ρ2, . . . , ρN ]T.

The radar search function aims to find the (coarse) directions
of unknown targets.1 This can be interpreted as finding the
elements of z equal to 1. We address this problem by employing
the mutual information (MI) criterion I(ȳ;β) that is the
information we receive about β by observing ȳ. If βn contains
information, a target is in the nth DFT beam. Consequently,
maximizing I(ȳr;β) leads to identifying the DFT beams that
contain targets. This criterion is written as

I(ȳr;β) =

N∑
n=1

ξn log

ˆ

1 +
gn|w̄r

n|2

gn|w̄c
n|2+σ2/Ptot

˙

(14)

where we consider the back-scattered communications signals
as interference, and the variables ξn ∈ {0, 1}, ∀n ∈ [N ] are
introduced to indicate the beams that have been already declared
to have a target present, i.e., tracking task has been initialized.2

Thus, ξn = 0 gives zero utility if the track has been created
and ξn = 1 otherwise.

For communications, we consider communications MI as
the optimization criterion. It can be written as

C = log

˜

1 +
|h̄H

c w̄c|2

|h̄H
c w̄r|2 +σ2

c/Ptot

¸

. (15)

We formulate an optimization problem that is solved sequen-
tially to facilitate active target search while communicating
with the UE. The optimization problem can be written as

argmax
w̄c,w̄r

I(ȳr;β) (16a)

s.t. ∥w̄c∥22 + ∥w̄r∥22 ≤ 1 (16b)
C ≥ Cmin (16c)

where Cmin is the minimum required communications rate.
However, the optimization problem of (16) is not convex, and
the gain g is not known in advance in a more realistic scenario.
We address these issues in our proposed algorithm.

IV. PROPOSED METHOD BASED ON THOMPSON SAMPLING

Thompson sampling [17] is a method that balances explo-
ration (gathering more information about unknown parameters)
and exploitation (maximizing current performance using ex-
isting knowledge of these parameters). It efficiently addresses

1The method is straightforward to extend to range and Doppler dimensions.
These additional dimensions are not included in the model to simplify the
presentation.

2To consider the range and Doppler dimension, the MI is the sum over
range, Doppler, and beam dimensions.

various problems compared to other algorithms developed for
exploration and exploitation problems, such as MAB algorithms
[16] that work only in certain types of problems. The immediate
optimization objective this paper considers is (16), and the
unknown parameters are the gains g. Thompson sampling is a
Bayesian approach where g has a prior distribution, and the
posterior distribution of g is updated sequentially based on
the new observations. Let us define time slot index k ∈ N to
refer to a specific coherent processing interval (CPI) of the
sensing functionality. We use the notation ȳr

k to refer to the
beamspace observation of equation (10) at specific time index
k. In the decision-making phase, we sample from the posterior
Pr {g|ȳr

1, . . . ȳ
r
k} and use the sampled g in the optimization

problem (16).

A. Optimization method

We consider an orthogonal design between the communica-
tions and sensing for the ISAC system, which can be achieved
by utilizing the orthogonality of the DFT beams in Section
II-B. Setting h̄

H
c w̄r = 0 in (15), the UE receiver does not

suffer interference from the sensing functionality. Furthermore,
we require that gi|w̄c

i |2= 0 if |w̄r
i |2> 0 for all i ∈ [N ] to

remove the interference of the back-scattered communications
signals to the sensing receiver (see (14)). The latter constraint
means we cannot simultaneously transmit communications and
sensing signals along the same beams. We propose a two-
stage optimization algorithm similar to the one proposed for
allocating sub-carriers of multicarrier ISAC system in [19].

Let us first optimize the performance of the communications
functionality by allowing transmission to all beams. Thus, we
can optimize

argmax
w̄c

log

˜

1 +
|h̄H

c w̄c|2

σ2
Ptot

¸

(17a)

s.t. ∥w̄c∥22 ≤ 1 (17b)

which has the optimal solution w̄∗
c = h̄c/

∥∥h̄c

∥∥
2
. The desired

communications beamformer is obtained by keeping the
minimum number of the elements of w̄∗

c with the largest
magnitudes that satisfy (16c) and setting the remaining ele-
ments to zero. Furthermore, to remove the excess power, the
resulting beamformer is scaled to meet (16c) strictly. After the
communications beamformer optimization, we can optimize
the sensing beamformer as follows

argmax
w̄r

I(ȳr;β) (18a)

s.t. ∥w̄r∥22 ≤ 1− ∥w̄c∥22 (18b)

h̄
H
c w̄r = 0 (18c)

diag
`

1{|wc|>0}
˘

w̄r = 0 (18d)

where |·| is the element-wise absolute value. The optimization
problem of (18) is not convex since I(ȳ;β) is not concave with



respect to w̄r. However, by the change of variables prn = |w̄r
n|2

and pr = [pr1, . . . , p
r
N ]T, we can first optimize

argmax
pr

I(ȳ;β) (19a)

s.t. 1Tpr ≤ 1− ∥w̄c∥22 (19b)
pr ≥ 0 (19c)

which is a well-known water-filling problem that can be solved
efficiently [20]. To satisfy constraints in (18c) and (18d) we use
projection, i.e, minimize L2-norm

∥∥?
pr − w̄r

∥∥2
2

subject to
the constaints. This projection can be implemented efficiently
by computing the null space A0 of the linear constraints using
singular value decomposition (SVD). Then, the optimal power
allocation of (19) along with the projection can be used to
construct w̄r = A0(A

H
0 A0)

−1AH
0

?
pr.

B. Posterior update equations

The proposed algorithm utilizes the posterior distributions
of the variables z and g. Since the signal model is assumed to
be independent among the beams, we can derive the update
expressions independently. Thus, to simplify the notation, we
can derive the posterior update equations using the scalar signal
model

yrk,n = βk,nxk,n + vrk,n (20)

where βk,n ∼ CN (0, gn) is the target complex gain, xk,n is
the transmitted signal and vk,n ∈ CN (0, σ2

k) is the noise at
specific time index k and beam n ∈ [N ]. We will use the
shorthand pk,n = |xk,n|2 for the power.

First, let us consider an update rule for the distribution
ηk(gn) := Pr(gn|yr1:k,n, zn = 1) that is the distribution of gain
gn if the target is present given all the observations up to and
including time instance k. We can write the distribution as
follows

ηk(gn) ∝ CN (yrk,n; 0, pk,ngn + σ2
k)ηk−1(gn) (21)

using the Bayes rule where η0(gn) = Pr(gn|zn = 1) is the
prior distribution. However, since pk,n and σ2

k vary as a function
of k, there is no conjugate prior distribution to implement the
update (21) in a closed form. Moreover, the computational
and memory requirements for the update in (21) must be
reasonable, and we need to be able to sample from ηk to
use Thompson sampling. We address this problem using the
Laplace approximation and Newton–Raphson method to update
the posterior parameters efficiently [17].

Laplace approximation approximates a distribution by fitting
the normal distribution to the (local) mode of the posterior. We
use it to approximate the distribution of un = log gn such that
gn is log-normal distributed. Thus, we set Pr(un|yr1:k,n, zn =
1) ≈ N (un;µk,n, s

2
k,n) where µk,n and s2k,n are the mean and

the variance of the Laplace approximation. By approximating
Pr(u|y1:k′,n, zn = 1) ≈ N (u;µk′,n, s

2
k′,n) ∀ k′ ∈ [k − 1]

the memory complexity of the Laplace approximation can be

Algorithm 1: Thompson Sampling Based Optimization
for ISAC System

1 Initialize priors η0 and ρ0

2 for each time index k ∈ N do
3 For all n sample zk,n ∼ Bernoulli(ρk−1,n)
4 If zk,n = 0 set gn = 0, else sample gn ∼ ηk−1(gn)
5 Optimize w̄c and w̄r according to Section IV-A
6 Transmit the signal xk and observe ȳr

k

7 Update ηk(g) ∝
ηk−1(g) CN

`

ȳr
k;0, diag

`

g ⊙ |xk|2
˘

+ σ2
kI

˘

using
Laplace approximation and Newton-Raphson
method

8 Update ρk by using the equation (24)
9 Set ξn = 1 for all n that had track initialized

10 endfor

reduced from linear (as a function of k) to constant. Thus, the
proposed method computes the mean as

µk,n = argmax
un

log CN (yk,n; pk,ne
un + σ2

k)+

logN (un;µk−1,n, sk−1,n) (22)

and the variance as

sk,n =−
ˆ

− 1

sk−1,n
+

∂2

∂u2
n

log CN (yrk,n; pk,ne
un+σ2

k)

˙−1
ˇ

ˇ

ˇ

ˇ

ˇ

un=µk,n

(23)

where the maximization in (22) can be done using the Newton-
Raphson method initialized with µk−1,n. It is reasonable to
assume that µk−1,n is a good starting point since the posterior
modes are typically close in subsequent time steps. However,
a robust version of the Newton-Raphson method is required to
address the rare cases where the objective is not locally concave.
We employ an approach that forces the second derivative to
be negative via the absolute value.

Next, we consider the posterior ρk,n = Pr(zn = 1|yr1:k,n).
It can be written as follows

ρk,n ∝ Pr(yrk,n|yr1:k−1,n, zn = 1)ρk−1,n (24)

where

Pr(yrk,n|yr1:k−1,n, zn = 1)

=

∫ ∞

0

Pr(yrk,n|zn = 1, gn)ηk−1(gn)dg (25)

Equation (25) is approximated by a Gaussian distribution
CN (yrk,n; 0, pk,n Eηk−1

rgns + σ2
k) by matching the first and

second moments. Note that (24) can be normalized to proba-
bility by using

Pr(zn = 0|yr1:k,n) ∝ CN (yrk,n; 0, σ
2
k)(1− ρk−1,n). (26)

Algorithm 1 summarizes the overall method using the posterior
updates and the proposed optimization method.



V. NUMERICAL EXAMPLES

In this section, we evaluate the developed algorithm through
numerical simulations. To focus on the core functionalities
of the algorithm, we limit our simulations only to the beam
domain. Thus, the processing in Doppler and range domains is
not implemented. We evaluate the method over a sequence of
time steps to understand its dynamic behavior. The number of
correct tracks is used to assess the performance as a function
of time. A track is correctly initialized if the target is within
3dB beamwidth of the initialized beam. We also evaluate the
number of incorrect tracks. Incorrect track means that a track
is initialized to a beam where a target does not exist within
the 3dB beamwidth. Maximizing the number of correct tracks
subject to keeping the number of incorrect tracks manageable
is central to the performance of the search functionality.

Two variants of the proposed algorithms are evaluated; one
as written in Section IV, and the other ignoring the sampling
step and instead using the learned expected sensing gain
E rg|yr

1, . . . ,y
r
ks in the optimization, referred to as the greedy

method. Both variants initialize a track to beam n ∈ [N ] if ρn
exceeds the threshold 0.98. We compare the proposed algorithm
to three other baseline algorithms. All baseline algorithms
ensure the desired communications performance as in Section
IV-A. Then, the sensing performance is optimized as follows.

1) An algorithm we refer to as conventional optimizes the
radiated power to one DFT direction at a time, and
sequentially scans through all beams. In case of detection,
the same beam is used in the next time slot until the
criterion for track initialization is met. In the simulations,
two subsequent detections are required to initialize a track.
It uses a constant false alarm detector with a false alarm
rate of 0.1 in order to detect low observable targets.

2) An algorithm referred to as random is a simplified
variant of the proposed algorithm that samples beam
powers randomly and uses the projection to satisfy the
orthogonality constraints.

3) An algorithm we refer to as single beam Thompson is
another simplified variant of the proposed algorithm that
selects one beam for sensing at a time by choosing the
beam with maximum signal-to-noise ratio (SNR) from the
sampled SNRs. Furthermore, it uses an inverse-gamma
distribution as the prior. This choice of prior, along with
the fact that pk,n is either Ptot − ∥w̄c∥2 or 0, facilitates
closed-form the posterior updates.

The algorithms are compared with Monte Carlo with 1000
in two settings. In the first setting, the targets are precisely at
one of the DFT directions, so the assumption about the sensing
channel employed in this paper is satisfied. In the second setting,
the target directions can be between the DFT directions. The
number of beams we consider is 32, the number of propagation
paths to the UE is L = 4, and the communications requirement
is Cmin = 3. The SNRs to K = 10 targets are from 0dB to
20dB when a DFT beam is steered to the correct direction with
maximum power Ptot. The target RCSs are selected to fill this
interval uniformly in the dB scale. The communications rate

0 25 50 75 100
Time step

0

2

4

6

8

Nu
m

be
r o

f c
or

re
ct

 tr
ac

ks

Correct tracks

0 25 50 75 100
Time step

0.00

0.01

0.02

0.03

0.04

0.05

Nu
m

be
r o

f i
nc

or
re

ct
 tr

ac
ks

Incorrect tracks

Conventional
Proposed (greedy)
Proposed (w. sampling)

Thompson (single beam)
Random

Fig. 1: The proposed method acquires a large number of correct
tracks the quickest while keeping the number of incorrect tracks
comparable to the other methods.

requirement Cmin is always satisfied for all the scenarios and
algorithms. Thus, our results focus on the sensing performance.

A. Targets precisely at the DFT directions

Fig. 1 shows the performance in the setting where targets
are precisely located at one of the DFT directions. We first
observe that the proposed method finds targets faster than the
baseline methods. Furthermore, the proposed greedy method
finds approximately as many targets as the best baseline, namely
single beam Thompson, in the simulated time frame. The
simulations surprisingly show that the performance of the
proposed sampling method is worse compared to the greedy
method. This may be caused by the prior η0 and ρ0 implicitly
encouraging the necessary exploration, and thus the sampling
is not required. In fact, due to the prior, the learned expected
gains tend to overestimate the true gain values, thus resembling
upper confidence bound algorithms in MAB literature [16].

The proposed methods achieve quick track acquisition in
the initial phases by distributing the power to multiple beams
to gain more information than using a single beam. However,
it can be seen from the performance of the random method
that more than distributing the power randomly is required
for optimal performance. The random method initially (the
first 25 time instances) finds targets faster than the other
baseline methods but is still slower than the proposed methods.
Moreover, the number of tracks the random method generates
in the simulation period is the worst because it cannot find
targets with low SNR. The results also show that limiting the
beamforming to a single beam, as the single beam Thompson
does, significantly slows the track acquisition even if the method
utilizes the acquired posterior of the target gains and presence.
However, the performance of the single beam Thompson is
still better compared to the conventional method.

B. Target directions on a continuous scale

Fig 2 shows the performance in the setting where the target
directions are randomly sampled from the uniform distribution
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Fig. 2: The number of false tracks is increased significantly in
the scenario where targets can be between the DFT directions
due to the power leakage problem in the beamspace domain.
The proposed method acquires correct tracks the fastest.

defined on the interval of (−π/2, π/2). The main finding
is that the number of incorrect tracks has increased. This
occurs because of power leakage in the beamspace domain,
which means that several beams can illuminate a single target
simultaneously and receive the signals that are scattered back
from it. Thus, typically, an incorrect track is created to the
adjacent beam of the correct beam. More complicated receiver
processing would be required to eliminate those incorrect tracks.
The random method obtains fewer incorrect tracks than others
due to its inability to steer the power toward the incorrect
targets caused by the power leakage problem. The results in
the correct tracks align mostly with the findings we made in
the ideal scenario. Namely, the proposed methods find the
targets quickest, and the number of correct tracks acquired
in the simulation period is almost as good as with the single
beam Thompson method.

VI. CONCLUSIONS

This paper considered optimizing spatial resources of inte-
grated sensing and communications (ISAC) systems to manage
the dual demands of sensing and communication tasks. We
proposed a novel cognitive beamspace algorithm that markedly
improved the overall performance of the ISAC system. It
achieved this by intelligently optimizing in the beamspace
domain to achieve cognitive target search behavior while
communicating with a user equipment (UE) with an acceptable
rate. A vital feature of this algorithm was its adaptive learning
capability, enabling it to adjust its radar target search strategy
dynamically in real-time according to environmental feedback.
Future research directions include evaluating and improving the
cognitive beamspace algorithm to be more robust in realistic
operational environments.
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